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Abstract. We adopt Markov Decision Processes (MOP) to model sequential decision problems, which have the characteristic that 
the current decision made by a human decision maker has an uncertain impact on future opportunity. We hypothesize that the 
individuality of decision makers can be modeled as differences in the reward function under a common MOP model. A machine 
learning technique, Inverse Reinforcement Learning (I RL), was used to learn an individual's reward function based on limited 
observation 01 his or her decision choices. This work serves as an initial investigation for using IRL to analyze decision making , 
conducted through a human eKperiment in a cyber shopping environment Specifically, the ability to determine the demographic 
identity of users is conducted through prediction analysis and supervised learning. The resuHs show thaI IRL can t>e used 10 
correctly identify participants, at a rate of 68% for gender and 66% for one of three college major categories. 

1 INTRODUCTION 

There has been significant work in the field 
of machine learning to understand human 
decision making. Inverse Reinforcement 
Learning (IRL) is a method for computers to 
learn to perform complex tasks by watching 
human operators [2]. IRL is built upon 
Markov Decision Processes (MOPs), which 
examine sequential decision making over 
time. Decision makers are modeled to 
choose actions based upon maximizing 
reward, which is captured by a reward 
function that assigns preferences to being in 
certain states. Decisions made in the 
present directly impact future decisions and 
opportunities, often stochasticall y, so short
term gain must be balanced against future 
goals. Decisions are complex because an 
individual may have many actions to choose 
between and may have to assimilate 
various pieces of information and trade-ofts 
between conflicting goals. These types of 
decisions are commonplace in daily life, 
from choosing which lane to drive in on the 
interstate to choosing when to buy or sell 
stocks. 

Our thesis is that IRL techniques can be 
used to understand human decision making 
by creating a mathematical model of the 
human's decision strategy. We do not claim 
that people solve complex mathematical 
formulae mentally while making difficult 
decisions; however, a projection of their 
preferences can be captured through 
machine learning. Specifically, we can begin 
to understand under which conditions an 
individual would take a certain action and 
therefore find if people adopt different 
strategies to the same problem. There is 
reason for optimism that IRL can model 
decision making. Researchers have run 
controlled experiments where a participant 
is instructed to exhibit certain preferences 
and have shown heuristically that a 
computer is able to mimic the behavior by 
solving a mathematical version of the 
problem [2]. We feel that IRL does indeed 
capture aspects of an individual's true 
decision rules , but the previous work has 
not tried to verify this important requirement 
for many applications through rigorous 
analysis. 

https://ntrs.nasa.gov/search.jsp?R=20110012064 2019-08-29T18:33:00+00:00Z
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1.1 Expected Contribution 

This work identifies a bridge between those 
who develop solutions to sequential 
decision problems and those who have 
methods to test and quantify human 
behavior. In broad terms, the two fields can 
be defined as machine learning and 
cognitive science. Machine learning 
encompasses artificial intelligence and 
reinforcement learning as researchers who 
train computers to solve decision problems 
that may be too difficult for humans to solve. 
Cognitive science studies how the human 
brain uses information, and cognitive 
scientists run controlled experiments to 
investigate the impact of some changing 
condition on human performance. The two 
fields join when researchers use machine 
learning algorithms to understand human 
decision making. This work lies in this 
middle area, as we investigate the potential 
of IRL to analyze decision strategies 
through human experimentation. 

In the machine learning literature found 
predominantly in the engineering field , 
researchers have not validated that IRL 
captures human decision making through 
robust experimentation. The literature ;s 
focused on improving algorithms in terms of 
speed and accuracy [6], or adapting work to 
apply to a larger class of problems [1 ,3]. 
The algorithms are heuristically validated by 
instructing human experts to follow different 
strategies that map well onto the qualities 
the computer was trained to learn. The 
machine learning literature lacks hypothesis 
testing that would demonstrate that IRL can 
find differences in decision making between 
groups of people, and we therefore look to 
the cognitive science field to find studies 
analyzing human sequential decision 
making. 

Cognitive 
understanding 
information in 

science is devoted to 
how humans make use of 
the brain and is therefore 

closely related to characterizing decision 
making. Researchers in cognitive science 
make use of human experiments to perform 
hypothesis testing; often to compare two 
groups of people to one another. There 
have been studies where IRL and MOPs 
could be used to analyze the data gathered 
from human experiments, but researchers 
lost power by only using results-based 
analysis. For instance, [4] performed a 
sophisticated experiment with a motorcycle 
simulator and asked the riders to identify 
potential hazards and collected eye-gaze 
data. The researchers could have sought to 
understand where the user was looking as a 
function of the objects on the screen, but 
instead were relegated to analyzing the 
higher-level metric of general size of 
viewing area. 

There has been a great deal of work in 
the economics field to investigate the ability 
of mathematical models to describe real 
human behavior. Ref. [5] completed a 
survey of research in predominantly the 
economic field that analyzed human 
decision making with respect to MOPs. 
They found that humans perform near
optimal behavior in discrete decision 
problems, but the opposite was true for 
continuous decision problems. As a case 
study. they highlighted work by RAND 
where the decision of Air Force pilots to 
remain in service or retire to the civilian 
sector was analyzed. Among other practical 
conclusions, the work showed that 
prediction is a valid method for testing 
MOPs as a decision framework. 

2 MATHEMATICAL FORMULATION 

IRL refers to any method where a reward 
function is learned to mimic expert behavior 
through observation [2]. The foundational 
premise is that a rational actor may choose 
between several actions and may conduct 
analysis to determine the best course of 
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action. Decisions are captured in a 
mathematical model that can be analyzed 
and optimized to find the best action. The 
theory is applied to sequential decision 
making where the actor will have to make a 
series of time-ordered decisions. This raises 
a difficult problem that requires analysis to 
solve because current actions impact future 
decisions and opportunities. 

2.1 Markov Decision Processes 

IRL uses the well-understood framework of 
Markov Decision Processes (MOP). MOPs 
are built upon the idea that all of the 
information one needs to make a decision is 
characterized by the state of the system. 
Markov chains become powerful when 
applied to decision making because the 
probability of transitioning to a certain state 
is dependent on the current state and the 
decision maker's action. The decision maker 
chooses actions at every time point with the 
updated knowledge of his or her situation. 
Decisions can be chosen greedily to 
maximize short-term gain, but it is dear that 
since decisions made in the present directly 
affect future opportunities that a farsighted 
strategy is needed to make the best 
possible decisions. 

We use the notation from (2] to 
formulate Markov Decision Processes. An 
MOP is fully described by the tuple 
(S,A, T, y, D, R), where: 

• S is the set of all possible states, and the 
state at time t is given by St. 

• A is the set of all possible actions, and 
the particular action chosen at time t is 
a, 

• T is the function of state transition 
probabilities. 

• y E [0,1) is a discount factor 
• D is the initial-state distribution 

• R is the transition reward gained from 
taking action at at St while transitioning 
to St+l 

Once the MOP has been completely 
formulated, the goal is to solve the problem 
by developing an optimal policy 1r that maps 
an optimal action to every state. Due to the 
stochastic nature of MOPs, the objective is 
to choose actions that maximize total 
expected reward. The goal of the decision 
maker is to find 1r that maximizes Vlt and 
therefore know which action to choose at 
t = O. Once the system transitions to the 
next state at t = 1, then the actor has the 
information necessary to take the best 
action, i.e. the actor does not determine at 
t = 0 how he or she will act in the future . 
Once the problem has been formulated as 
such, the optimal policy may be derived 
through dynamic programming or 
reinforcement learning. 

2,2 Discretized-Reward Search 
Method for IRL 

As discussed above, the computer learns to 
mimic a human by learning the problem that 
the expert is attempting to solve. [2] places 
constraints on the problem definition so that 
IRL uses a linear reward function in order to 
apply standard optimization techniques to 
perform policy evaluation. If we relax these 
constraints, then we void the developed 
algorithm and must perform IRL in another 
manner. We have developed an exhaustive 
search algorithm by discretizing the space 
of reward functions to a finite set in order to 
attribute reward functions to actions which, 
although it has its limitations, works for a 
broader class of problems. 

The process of mapping a reward 
function to an observed action path x is as 
follows: 



 

767 

 

1. Start with initial weight wo, which is the 
starting point for weight iteration. There 
must be some method to iterate through 
all of the feasible weights. For example, 
if we choose Iwll = 1, then the first 
weight could be WO = (1,0, ... ), and the 
next weight would be w1 = (0.9,0.1, ... ) . 
Seti = 0. 

2. Solve or approximate the optimal policy 
to the MOP where R = W i • <p(s). 
Simulate an action path using the 
optimal policy and set as Xi. Use the 
size of observed actions x as stopping 
criteria if necessary. 

3. Use a reward distance function to find 
the difference in the rewards generated 
by x and Xi with respect to W i and set 
as d i . 

4. If Wi is not the last weight, then find 
W i+1 and set i = i + 1. Return to Step 2. 

5. Find the minimum value for d i and 
create a set of all the Wi with that value. 
These are all of the weights and 
corresponding reward functions that 
match the observed actions. 

There are several design choices in the 
problem definition that are necessary to 
implement this method. The set of all weight 
vectors must be discretized into a finite 
countable set, and there must be a method 
for iterating through the set. The MOP must 
either be able to be solved through dynamic 
programming or an optimal solution must be 
approximated with reinforcement learning. 
Finally, a distance function must be 
developed to compare the expert's policy 
and optimal policies generated for candidate 
reward functions. 

3 METHODOLOGY 

We conducted human experiments to 
investigate the capability of using inverse 
learning methods to perform identity 
prediction. A task that meets the criteria of a 
sequential decision problem is online 
shopping. Shoppers navigate an online 

environment searching for items, and their 
actions can be readily extracted from 
looking at browsing history data. By 
recording their browsing history, we have a 
noninvasive sequential view of their actions 
and can determine how the user assimilated 
information to make decisions. Inverse 
learning calculates the user's policy in all 
situations and will describe the user's 
objective function . We wi ll be able to 
characterize how a particular user performs 
the task of shopping for an item. 

We developed an experiment to test 
how participants perform the task of 
purchasing a gift using an online shopping 
website. Each participant underwent a 30 
minute experiment, during which they 
performed 4 trials. At the start of each trial, 
the participant is given a profile of a person 
to buy a gift for, which includes personal 
characteristics and possible suggestions of 
what that person may like or dislike. The 
user was given 5 minutes and a budget of 
$100 to perform the taSk, during which time 
he or she browsed the item selection 
provided by the website and selected one or 
more gifts to purchase. Participants were 
not given any instruction except for the 
profile of the participant and to remain on 
the shopping site and not view another site. 
After some pretesting, we determined there 
were 10 predominant types of pages 
available at Walmart.com (e.g. store 
department page, item list page, and 
checkout page). 

3.1 Setup of the MDP and 
Corresponding IRL Method 

We set the state vector to represent the 
number of pages of each type the user has 
viewed. State transitions are deterministic, 
as the user fully decides which page type to 
view next. With a standard reward function , 
the optimal policy would simply choose to 
view the page type with the highest reward 
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over and over again. A reward function that 
causes users to switch pages , as opposed 
to choosing the same one over and over 
again, would be one that took into account 
the law of diminishing returns. A user may 
prefer to view one type over another, but as 
they view that page multiple times they 
receive decreasing reward. If we let M be 
the maximum number of pages a user 
wishes to view of a certain type, we could 
scale the reward gained from choosing a 
page by a factor that is inversel y 
proportional to the number of times the 
page was viewed up to M visits . In Eq. (3.1), 
a is the action corresponding to the page 
the user wants to view next, s is the 
complete state, sa is the current number of 
pages of type a that the user has viewed, 
and wa is the weight corresponding to that 
page type. 

R(s,a) = wO' (M - (so + 1)) (3.1) 

This reward function is nonlinear; it is 
not a linear combination of the state variable 
because only the part of the state regarding 
the action taken contributes to the transition 
reward. We therefore use the Discretized
Reward Search Method. There are many 
different ways to discretize the space. We 
chose to have each weight be nonnegative, 
and the sum of the weights was equal to 1, 
so that the possible value for each weight Wi 

was {O, 1]. We also set the granularity of 
each weight, such that a va lue of 10 meant 
we divided the range of (O, 1] into 10 equal 
parts, i.e., Wi = 0.0.0.1 •...• 0.9.1.0. The 
analysis reported here was performed using 
finer granularity of 20. 

We developed a method to find the 
distance between two policies under a 
single reward function. Instead of simply 
counting how many times the user policy 
and optimal policy differed, we used the 
amount of reward each policy generated as 
a differencing metric. The Incremental 

Reward Difference method (IRD) compares 
two action paths by sequentially examining 
each time period and finding the difference 
in the total accumulated reward up to that 
point. For example, consider a simple 
reward function of R = 0.451 + 0.652, and we 
had one policy of (1,1,2,2) and another 
policy of (2,2,1,1). The total reward 
accumulated by both policies is 2.0, so it is 
important to have a metric that takes into 
account sequence order. In our method, the 
difference of the total reward accumulated 
after the first period is 0.2 (0.5-0.4), after the 
second it is 0.4 (1.2-0.8), after the third it is 
0.2(1 .6-1 .4), and after the fourth it is 0 (2.0-
2.0). Therefore, the difference between the 
policies is 0.8, which takes into account 
sequence and end result. 

For each experiment observation, we 
store all of the reward functions that were 
closest to the expert and use a measure of 
central tendency as the point estimate of the 
true reward function. The standard method 
to measure distance between two n-tuple 
vectors is Euclidean distance. Standard 
cluster analysis uses the centroid as the 
averaging measure for a group of points, 
but this most likely will lead to an impossible 
reward function. Instead, we find the medoid 
(found in k-medoid cluster analysis), which 
is the element in the cluster that has the 
shortest average distance to every other 
point in the cluster. 

3.2 Weights of Evidence Prediction 
Models 

Rating the quality of generated rewards by 
IRL is directly dependent on the application. 
We have chosen to examine identity 
prediction in the sense that we could find 
someone's reward function and correlate 
identifying information by comparing against 
known data. We therefore desire the reward 
functions to group people into clusters 
based upon demographic similarities. In this 
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section we discuss how we rate whether 
meaningful clusters are formed by analyzing 
experimental data. 

Scoring models can be used to identify 
separation in the data and provide a means 
for prediction. Weights of Evidence (WOE) 
are used to convert data from an individual 
into a Single score, and it is desired that 
scores are able to differentiate people. 
Scoring models predict a binary outcome, 
such as good (G) or bad (8), according to a 
vector of features. Given a feature vector x, 
the quatities of interest are P(Glx) and 
P(Blx) . The score 5 is the log odds score, 
which can be broken into a population score 
spop and an information odds score Sin! by 
using Bayes Rule and the properties of 
logarithms, as shown in Eq. (4.7). 

s ex) = In P(G lx) 
P(8 Ix) 

= in p(G) + In !(xIG) 
p(8 ) ! ( xI B) 

= spop + Sfn! 

(4.7) 

The information odds score can be 
calculated from the data as the distribution 
that the feature vector takes a value given 
the person is good or bad. If each variable 
in the feature vector is conditionally 
indendent given the individual is good or 
bad, then the information score is given by 
Eq. (48) 

[(xd C) [(x"I C) 
Sin! ~ In [ (xd B) + .. . + In [(xnI B) (4 .8) 

Each log odd in the information score is 
the WOE indicating G for that particular 
variable. The WOE is the log odds that the 
feature Xi takes on a particular value given 
the person is good, and can be directly 
calculated from the data. For instance, the 
value {(Xl = O.l IG) is the proportion of the 
number of good people where Xl = 0.1 over 
the total number of good people. This 

method requires a descritization of each 
variable X into multiple bins. 

4 IMPLEMENTATION AND 
RESULTS 

We discuss our findings with the caveat that 
the analysis was exploratory, and there was 
no previous work or principles that people 
grouped according to the tested 
demographic factors are expected to 
perform the task differently (e.g., there is no 
definitive theory that males utilize a different 
shopping strategy than females) . However, 
IRL methods that find more correlation 
between demographic group and strategy 
are preferable, and this metric can be used 
in model selection when choosing between 
several predictive methods. 

4.1 Results from WOE Scoring 
Models 

For each IRL model, we developed credit 
scoring models for the gender and major 
variables. For the binary variable gender we 
calculated for male and not male, while for 
major we had to make three models for arts 
and not arts, engineering and not 
engineering, and commerce and not 
commerce. Each model was built using the 
10 weights from the reward function as 
predictive features. The features were 
separated into bins based upon taking 
values of 0 through 0.3 and an additional 
bin for being greater than 0.3. Once the 
weights of evidence were calculated by 
determining the log odds that a feature took 
a particular value, scores were assigned to 
each trial based upon the reward function. 
Frequency plots showed the distribution of 
scores according to the group the individual 
belonged to. The frequency plots for the 
model are shown in Fig. 4.1. 
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Fig. 4.1. Results from WOE scoring 

according to gender and school 

The scoring models based upon VVOE 
had the potential to perform the two tasks of 
identifying separation and predictive power. 
A benefit of the scoring analysis was the 
ability to visualize the data. If there was 
separation between the two demographic 
curves, we could have determined an 
optimal score threshold and tested for 
accuracy with training and testing data as in 
the regression analysis. 

To investigate the predictive power of 
the scoring models, Receiver Operating 
Characteristic (ROC) curves were built to 
show the tradeoff between sensitivity and 
specificity with choosing a particular cutoff 
point For instance, one may choose a 
cutoff such that a high percentage of males 
were correctly labeled as males, but in 
general there is a tradeoff associated with 
having an increased number of females that 
are incorrectly labeled as males. The former 
is the true positive rate , while the latter is 
the false positive rate, and a sample ROC 
curve is shown in Fig. 4.2 for gender. 

Fig. 4.2. ROC Curve for gender 

An ideal ROC curve would be one that 
included the point (0,1) indicating it was 
possible to achieve a 100% true positive 
rate with a 0% false positive rate. Using this 
logic, curves are measured by the area 
under the curve (AUROC) where a value of 
1 is considered the best while 0.5 is the 
worst. We show the AUROe score for the 
model in TabJe4.1. 

We developed decision rules to identify 
each participant and record the number of 
correct identifications. As an example, we 
found that classifying those with an 
engineering score above 1.05 as engineers 
and below as non-engineers yielded a 78% 
success rate. To further discriminate, we 
separated the non-engineers based upon 
the commerce score threshold of 0.92, and 
subsequently had a total success rate 
based on major of 66%. 

Table 4.1. Performance metrics to predict 
user identity 

AU ROe % Correct 
Gender 0.745 67.6% 

Arts & Sci 0.718 68.6% 
Engineering 0.716 77.9% 
Commerce 0.810 86.2% 
Total Major N/A 66.2% 

5 CONCLUSION 

Inverse reinforcement learning has the 
capability to quantify human decision 
making through observation. This machine 
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learning method can be used in many 
applications, including attribution. However, 
the literature does not verify that IRL 
captures real decision making. IRL has 
been tested to heuristically demonstrate its 
merit through controlled experimentation. In 
this work, IRL was used to analyze human 
behavior in experiments where the 
participants were not given any instruction 
regarding strategy. The most difficult aspect 
of performing IRL is developing an MOP 
that can capture the different strategies real 
participants use when performing a task. 
We provided a methodology that allows 
researchers to statistically test the ability of 
various IRL models to map reward functions 
to actions with respect to some application, 
in thi s case attribution. Models were 
compared based upon group significance 
testing and predictive power. These 
statistical methods can be used with any 
IRL scheme to test their usefulness with 
respect to attribution. 

Without IRL, it is very difficult to 
understand the strategy that each 
participant used to perform shopping. At the 
most, the other study could only analyze the 
relati ve frequencies of the number of times 
each page type was visited, and would lose 
any information on the order that the 
participant viewed pages. People choose 
the next page as a direct result of the page 
they are currently viewing and overall 
preferences of the final goal and the 
required steps to achieve satisfaction. Most 
work on analyzing differences in humans 
choose to test the change in an observable 
variable, and it is rare to see analysis on the 
mathematical formulation of strategy. 

The next step in assessing IRL as it 
pertains to capturing decision making is to 
analyze individual consistency. This work 
focused on analyzing differences between 
groups, whereas consistency analysis 
would investigate similarities of an individual 
over time. The primary goal of consistency 

analysis would be to show that an individual 
has an underlying strategy to perform tasks, 
and although actions may appear to be 
different across trials where the individual is 
placed in new situations, the strategy 
captured by the reward function would 
remain constant . This would serve to 
demonstrate that the user has a reward 
function and that IRL could recover the 
correct one. Users would need to be 
observed performing the same task multiple 
times, which would require additional testing 
than the data gathered for this experiment. 
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Markov Decision Processes 

-5 is set of all possible states at time t, given by 5t 
-A is the set of all possible actions, given your in 
state 5t 
-T is the Transition Probabilities, given your in 5t 
and chose at 
-y E [0,1) is a discount factor 
-D is the initial-state distribution 
-R is the Transition reward gained from taking 

action at at 5t 

Inverse Reinforcement Learning (IRL) 
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Selecting Optimal Reward Function 

Linea r Programm ing 
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Predicting Identity 
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Experimental Results 

Perfo rmance Metrics to pred ict user identity 

AURoe % Correct 

Gender 0.745 67.6% 

Arts & Sci 0 .718 68.6% 

Engineeri ng 0.716 77.9% 

Commerce 0.810 86.2% 

Total Major N/A 66.2% 
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Conclusions 

Inverse Reinforcement Learning can be set up in many 

different ways 

Machine Learning methods can be applied to 

attribution 

The statistical techniques presented are a good way 

to harness the predictive power of Inverse 
Reinforcement Learning 

Next Steps 

To determine consistency of an individual's 

reward function 

To examine Inverse Reinforcement Learning for 

training purposes 
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Any Questions? 


