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Abstract- In this paper, we developed a wavelet neural network (WNN) algorithm for EEG artifact removal without EOG recordings.
The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet.
We compared the WNN algorithm with the ICA technique and a wavelet thresholding method, which was realized by using the
Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data
set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

1.0 INTRODUCTION
Electroencephalogram (EEG) recordings
are known to be contaminated by
physiological artifacts from various sources,
such as eye blinking or movements, heart
beating and movements of other muscle
groups [1]. Such types of artifacts are mixed
together with the brain signals, making
interpretation of EEG signals difficult [2].

Eye movements or blinks usually produce
large electrical potentials, which spread
across scalp and contaminate EEG
recordings. This class of potential generates
significant  electrooculographic  (EOG)
artifacts in the recorded EEG. Removal of
EOG artifacts is nontrivial because these
artifacts spread across the scalp,
contaminate and overlap in frequency with
the EEG. The effect of EOG artifacts on
EEG activity is found most significantly in
low frequency bands: Delta (1-4Hz), Theta
(4-8 Hz) and Alpha (8-13 Hz) [3]. Eye
blinking generates spike-like shapes with
their peaks can reach up to 800uV and
occur in a very short period, 200-400 ms [4].
Meanwhile, artifacts generated by eye
movements are square-shaped, smaller in
amplitude but last longer in time,
corresponding to lower frequency
components [5].
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In recent years, there has been an
increasing interest in applying various
techniques to remove ocular artifacts from
EEG [1, 2, 5 6,8, 10, 13, 14-19]. The
methods for removing EOG artifacts based
on regression in time domain or frequency

domain [8] were widely studied. All
regression methods, both in time and
frequency domains, rely on EOG

recordings, which are however, not always
available. Furthermore, these methods
usually eliminate the neural potentials which
are common to reference electrodes and
other frontal electrodes.

Berg and Scherg [10] proposed principle
component analysis (PCA) based technique
for removing ocular artifacts. In this method,
EEG and EOG signals were simultaneously
collected. It was observed that PCA of the
variance in these signals produced major
components corresponding to various eye
blinks and eye movements. The artifacts
were removed by eliminating these
contaminated components. Their
experiments proved that PCA removes
artifacts more effectively than regression
based models. However, PCA models
usually failed to completely separate
artifacts from cerebral activity [11], and the



orthogonal assumption for data components
in PCA is hardly satisfied [5].

Independent component analysis (ICA),
which was developed for the blind source
separation problems, the class of algorithms
which decompose mixtures into original
sources without any a priori knowledge
about the mixing process or properties of
those sources, has been used as an
alternative method for EEG artifact removal
[1, 12-14]. ICA for artifact removal usually
requires a large amount of data and manual
visual inspection to eliminate noisy
independent components, making the
method time-consuming and not suitable for
real-time applications.

Recently, the wavelet-based methods [14-
19] for EEG artifacts removal have received
significant attention. Wavelet analysis has
been used as an effective tool for
measuring and manipulating non-stationary
signals such as EEG. It provides flexible
controls over the resolution with which
neuroelectric components and events can
be localized in time, space, and scale. The
biggest advantage of using this method for
EEG correction is that it does not rely on
neither the reference EOG signal nor visual
inspection.

This paper proposes a novel, robust, and
efficient technique to remove EEG artifacts
by combining the approximation capabilities
of both wavelet and neural network
methods. The method can be described
briefly as the following (1) contaminated
EEG signals are first decomposed to a set
of wavelet coefficients, (2) low frequency
wavelet sub-band coefficients are then
passed through and corrected by a trained
neural network and (3) the corrected
coefficients are used to reconstruct clean
EEG signals. The method was applied to
correct EEG data contaminated by ocular
artifacts and compared with other state-of-
the-art methods including ICA and a wavelet
thresholding method.

The rest of the paper is organized as
follows: Section 2 shows other related
works. Section 3 presents the proposed
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technique. Section 4 describes the
experimental settings. Section 5 presents
some of the achieved results. Section 6
provides discussions for the results and
Section 7 concludes the paper.

2.0 RELATED WORK

2.1 EEG model
We assume the model for contaminated

EEG signal as in the following form:
EEGyec(t) = EEGyye(t) + k. EOG(E)
where EEG,...(t) is recorded contaminated
EEG, EEG4,.(t) denotes the true EEG
signal, and k.EOG (t) represents the
propagated ocular artifact from eye to the
recording site. The ultimate purpose of any
artifact removal techniques is to recover

EEG,,.(t) from EEG,..(t)

2.2 Wavelet thresholding

Wavelet thresholding technique is built on
the multiresolution analysis of wavelet
transform, a tool that analyses signal in
different time and frequency components

[20]. These components, called
approximations and details, are further
processed by thresholding before

reconstruction [14]-[18]. By selecting a
‘good’ mother wavelet, which resembles the
shapes of the artifacts, large-valued
coefficients are generated in the areas
corresponding to the EEG artifacts at low-
frequency sub-bands and are considered as
an estimate of the ocular artifacts. Thus,
shrinking the amplitude range of these
coefficients by nonlinear thresholding
functions would remove those artifacts. In
this paper, a wavelet thresholding method
was implemented as follow,

a. Use a butterworth lowpass filter to
smooth the EEG signal before further
processing

b. Apply Wavelet transform to
contaminated EEG signal

c. Utilize a thresholding function to
automatically corrected high-valued
coefficients at low-frequency sub-bands

d. Reconstruct the corrected EEG signal

the



2.3 Independent Component
Analysis

Independent component analysis was first
proposed by Herault and Jutten at a
meeting in Snowbird Utah in 1986 [1, 11] to
solve the blind source seperation problem
(BSS). ICA aims at recovering independent
source signals s = {sy(t), so(i),...... sn(t)},
from recorded mixtures x = {x¢(1),
Xat),...... xn(f)} by an unknown matrix A of
full rank. The basic problem of ICA is to
estimate the mixing matrix [A] or
equivalently, the original independent
sources (s) based on the following linear
relationship (x = As) while no knowledge is
available about the sources or the mixing
process. The method was developed based
on several assumptions such as, the
sources are statistically independent, the
independent components must have non-
Gaussian distributions and the matrix [A] is
assumed to be square and invertible. ICA
identifies an unmixing matrix, [W], which
decomposes the multi-channel scalp data
into a sum of temporally independent and
spatially fixed components. ICA finds (u =
Wx), where the rows of the output data
matrix represent time courses of activation
of the ICA components [1, 9, 11]. Several
algorithms have been proposed to
implement ICA such as INFOrmation
MAXimization approach (InfoMax), Fixed-

Up-
sampling
|| Wavelet I
X decomposition G
Filtering

point ICA, Joint Approximate
Diagonalization of Eigenmatrices (JADE)
algorithm and the Second Order Blind
Identification (SOBI). In this research, the
InfoMax algorithm was used to perform for
EEG artifact removal.

3.0 PROPOSED METHOD

In this paper, we present a novel algorithm,
Wavelet Neural Network (WNN), for EEG
artifact revomal. In our method, the WNN is
trained with simulated data resembling the
properties in both time and frequency
domains of EEG signal. The trained WNN is
then used as the corrector for contaminated
data. In both testing and training processes,
the original signal is decomposed first with a
wavelet to get different frequency
components. The low frequency sub-band
coefficients are then interpolated to maintain
same lengths. A trained artificial neural
network (ANN) is fed with such interpolated
inputs to yield the corrected coefficients at
its outputs. Finally, the corrected
coefficients are downsampled for the
wavelet construction to get the corrected
signal y of original contaminated x as shown
in Figure 1.

The core idea of the method, decomposing
the signal in both time and frequency
domains with wavelet and using an ANN to

Filtering

+
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Wavelet
b reconstruction

Figure 1. Proposed Wavelet Neural Network Structure.
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correct them, can be viewed in a more
succinct (and perhaps more precise) way.
By combining the time/frequency property of
wavelet and the universal approximation
capability of neural network, we would be
able to keep useful information related to
cognitive activities while eliminate artifacts
in EEG.

3.1 EEG data simulation

As described in [23], EEG signal can be
simulated based on three assumptions, (1)
Short segments of the spontaneous EEG
can be described as linearly filtered, (2)
non-stationary components in the
spontaneous EEG can be simulated by
changing the characteristics of this filtering
process and (3) the spectral property of the
simulated EEG data resembles that of
actual signal. As shown in Figure 2, a set of
Gaussian noises (GN) were generated and
then filtered by a number of lowpass and
bandpass filters with different cut-off
frequencies that are similar to the spectral
property of EEG frequency bands.
Transients like eye blinks and eye
movements, colleted from real signals were
then filtered by lowpass filter and added to
make the simulated data contaminated.
Cutoff frequencies for those filters are

GN1 » Delta

GN2 » Theta

GN3 » Alpha

GN4 » Beta-1
GN5 » Beta-2
GN6 » Gamma
Transients

summarized in Table 1.

Table 1. EEG Frequency Band
Specifications

Freq. bands | Lower (Hz) | Upper (Hz)
Delta 0.5 4

Theta 4 8

Alpha 8 13

Beta-1 13 20

Beta-2 20 30

Gamma 30 50

3.2 Neural Network Training

The backpropagation (BP) is used as the
machine learning technique for multi-layer
perceptron (MLP) neural nework.
Experimental results show that the one
hidden layer neural network structure 3-5-3
(3 inputs, 5 hidden units and 3 outputs) is
good enough for EEG occular aritfact
removal issue. The trained ANN’s input and
output are low frequency sub-band
coefficients of the wavelet-decomposed
simulated data and these coefficients after
corrected, respectively. In this paper, the
number of iterations for ANN training is set

Simulated
EEG signal

Qverall
Gain

A

Figure 2. EEG Signal Simulation Model.
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at 200, but this number might be optimized
to improve the training accuracy.

3.3 Performance metric

We use two metrics, power spectrum
density (PSD) and frequency correlation, to
assess the proposed method. The PSD is a
popular metric used to show information
about the power spectrum of EEG signal at
specific frequencies. Calculation of the
correlation in frequency domain before and
after artifact removal is equivalent to the
correlation in time domain after filtering the
time series with the corresponding
frequency filter [14]-[22]. The frequency
correlation between X and y is computed as
in the following formula,

7* WE+ 7D

IR 2y

where w1 and w2 are the lower and upper
limits of the interested power spectrum
region to be calculated, c is the correlation
value that will be assigned to the frequency
of (wi1+w2)/2. If frequencies X and y are
identical, ¢ gets 1, otherwise, ¢ obtains a
value between 0 and 1. In this paper, the
‘window size’, w1-w2, is selected equal to 2.

4.0 EXPERIMENTS

4.1 Datasets

We validate our method on a data set,
which was collected when participants were
performing a driving test. The EEG
information was collected by a 128-channel
recording system at the sampling rate of
1000 Hz along with other information
including description of the task, system
dynamics related information, performance
measures, physiological signals (ECG,
respiration, etc.), and eye tracking. The
workload was also analyzed according to
the driving conditions (city-driving, stopped,
highway passing, etc.). Due to the recording
condition, the subject eye movements and
blinks happen at high frequency making the
data, especially at frontal recording

channels, highly contaminated by ocular
artifacts.

4.2 Experimental settings

We implemented three artifact removal
methods for comparison, the ICA method,
the wavelet thresholding algorithm and the
proposed WNN technique. For each
algorithm, we computed PSD and frequency
correlation before and after artifact removal
to illustrate the effectiveness of each of the
algorithms. For the proposed method, we
first simulated EEG signals to train an ANN
and tested the trained model on a simulated
signal and the driving test data set. For the
wavelet thresholding method, we
implemented it by following the instruction in
[20] and for the ICA, we utilized the
EEGLAB software.

5.0 RESULTS
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For the proposed WNN algorithm, two
simulated segments with a length of 5
seconds for training and testing at sampling
rate of 1000 Hz were created as shown in
Figure 3a and 3b, respectively, where the
artifacts were taken from the driving test
data set and added to the simulated data
segments. Data in Figure 3a was then used
to train the neural network in the proposed
WNN algorithm. We applied the trained
WNN model to the testing data segment
(Figure 3b), and the corrected EEG signal is
shown in Figure 4. Figures 5 shows PSD of
the contaminated, corrected and the clean
EEG signals. Figure 6 shows frequency
correlations among those signals.
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Figure 5. PSD of Clean, Contaminated
and WNN Corrected Signals for Testing

For the ICA algorintm, it took a computer,
equiped with Intel(R) Core(TM) 2 CPU 6400
@ 2.13 GHz and RAM 2.00 GB, 27 minutes
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with 382 steps to remove the artifacts for
one EEG segment in the driving data set.
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Figure 6. Frequency Correlation between
(A) Contaminated and Corrected
Simulated Signals and (B) Clean and
Corrected Simulated Signals.

We then applied the trained WNN model to
the driving test data set. WWe decomposed
the EEG signal to 8 levels and 3 low
frequency sub-band coefficients were
corrected by the WNN algorithm.

The wavelet thresholding method was used
to adaptively correct 4 low frequency sub-
bands coefficients. For specific data
segments, the corrections were repeated a
number of times with various wavelets and
at different levels of decompositions in
order to make the corrected data most
acceptable. The wavelets from Coiflet and
Daubechies family were chosen because
experiments show that they could extract
the features of artifacts efficiently.

Figure 7 show PSD plots for one sample
artifact removed segment in the driving test
data by the three algorithms. Figure 8
shows the segment in time domain. Figure 9
shows frequency correlations between the
contaminated and corrected segments.
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6.0 DISCUSSION

It is observed from various results that the
WNN algorithm removes ocular artifacts
efficiently while keeping cerebral
background information. Like Wavelet
Thresholding, WNN just needs one single
channel data to perform correction that
makes it advantageous over ICA, which
needs to perform on the whole dataset.
Furthermore, the method was proved
through repeated experiments on various
data segments for its effectiveness and
stability, which is not true for the wavelet
thresholding algorithm.

The PSD plot shows that the low frequency
components are reduced significantly in the
corrected signal. That is more evident if we
look at the frequency correlation metric plot
between contaminated and corrected
signals: there is a slight difference in the
range of low frequency components while in
other ranges, the useful information is well-
preserved.

The frequency correlation plots also show
that the correction made by ICA spreads
over the entire frequency range and the
power of low frequency components are
reduced not significantly. Mean while, the
low frequency components in the signal
were derogated by Wavelet Thresholding
and WNN while high frequency components
are well preserved by both.

ICA requires a lot more computing power
and multiple channel data sources for
artifact removal. It also demands either an
automatic or a manual step to determine
which independent component is artifact,
making an online implementation of ICA
difficult.

7.0 CONCLUSIONS

We proposed a novel algorithm, WNN, for
artifact removal for EEG signal. The
algorithm combines the time/frequency
property of wavelet and the approximating
capability of neural network to locate and
eliminate artifacts. Experimental results ona
driving data set show that WNN can
effectively remove artifact and achieve
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better results than the wavelet thresholding
algorithm. WNN is also much
computationally efficient than the I[CA
algorithm making it possible an automatic
online algorithm.
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» Introduction
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EEG and artifacts

« Electroencephalogram (EEG):
— Neural electrical signal
— Recorded by using recording system

— Important to many application fields:
Computer control and communication,
entertainment, education, military,
commercial, etc.

« Artifacts:
— Unavoidable non-cortical activities

— Sources: Muscle activity, line noise, heart
beating, eye movements and blinks, etc.

« Electrooculogram (EOG) artifact:
— Generated by eye movements or blinks
— Main artifactual portion of EEG recordings

]
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EEG model

+ EEGrecordings
— Contaminated EEG
— Superposition of true EEG and

propagated artifacts
 True EEG
— Cortical signals excluding
artifacts

* Propagated Artifacts
— Non-cerebral activities

— Contaminated EEG electrode
recordings

— Propagation factor k proportional
to the recording electrode
location
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Wavelet thresholding

Contaminated EEG 2
* Threshold function[18]:
wHt— ,,k:l,wd.t
wiw,t) = oo ¥ Jwl =t
wHt+ ﬂ;l,w> t
|
» Low-pass filter:
+ Wavelet basis function selection:
- Daubchies and Coiflet
- Sensitive to time/frequency
properties of EEG waves

oo [ndependent Component

Analysis
« Notations:
— X original mixtures 5 . i
— s blind source matrix Y -® g
— u estimated source .\\ @\ w %
— A mixing matrix ® )< ® ,\/\\ ®
— W un-mixing matrix, inverse of A ./ _./ \.
o @ @
« |CAassumptions: t t
— Source independence
— Non-Gaussianality Unknown Blind
mixing Source

— Aand Wto be square and invertible
« Source independence definition:

— Minimizing mutual information

— Maximizing non-Gaussianality .

process Separation
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set with at least an adequate number of data points, so the computational

power is expensive.
13

Outline

» Proposed method

14
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Wavelet Neural Network

Wavelet decomposition Neural Netwaork Wavelet recanstruction

EEGy, ()

Figure 2. Wavelet Neural Network structure
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Network Training
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Wavelet

ﬂ Interpolation s
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EE (t) ecomposition

4

Trained
ANN

Figure 3. Neural network training procedure
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5‘ Table 1. EEG frequency band

specifications
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‘ Figure 4, Simulated EEG generator mode|
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EEG,y (t)

EEGy, ()

Network testing
Wavelet . .
Decomposition Interpolation —
Trained

F 3

Wavelet
Reconstruction

ANN

F 3

Downsampling

|

Figure 5. Wavelet Neural Network testing procedure
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Outline

» Experiments and results
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Experiments

» Data set:
— Driving test

— 128 recording channel system
— Highly disturbed by multi-type artifacts

« Experimental settings:
— Methods: WNN, WT and ICA

— Validation metrics: PSD and frequency
correlation

* Frequency correlationmathematical tormula:

£
2

VEIWE ERe 2 B2

* RET+ )
&=
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Results — Simulated EEG

—Contaminated testmg 5|gna|
—Corrected by WHN
— Corrected by Wavelet Thresholding

Figure 6. WNN performance on simulated data
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——Clean testing signal
——Corrected by WNN
——Corrected by Wavelet Thresholding

Figure 7. Clean simulated and Decontaminated signals by
WNN and Wavelet Thresholding

P ig_wonsm_woam

Error signals

20 : T T
Technique RMSE —s ::::\:\et Threshokding
13 H b
RN 12.2473
Wavelet 16.4842
1% 1 Thresholding b

Figure 8. Error signals, or differences between the ‘ground
truth’ and signals corrected by WNN and WT
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correlation

— clean atidal igral
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Figure 9. PSD (left) and frequency correlation between contaminated and
corrected simulated signals (center) and clean and corrected simulated
signals (right)
R unesu et

Results — Real EEG

— Contaminated EEG
— Corrected by Wavelst Thresholding
—Corrected by WNN

Al “ W‘W

Figure 10. Contaminated, Wavelet Thresholding and
WNN Corrected EEG
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[€quopsis woro Results — Real EEG

— Contaminated EEG
— Corrected by ICA
—Corrected by WNN

Figure 11. Contaminated, ICA and WNN Corrected EEG

[ usesm yoree .
Power Spectrum Density

—— Contaminated EEG
—— Corrected by Wavelet Thresholding

— Corrected by ICA Il
——Carrected by WNN

Figure 12. PSD of Contaminated and De-contaminated EEG
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Figure 13. Frequency Correlation between Contaminated and
Decontaminated EEG, (a) by ICA, (b) by Wavelet Thresholding and (c)
by WNN
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» Discussions and conclusions
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Discussions

Techniques comparison

| Techniques |Regression| PCA | ICA | WI | WNN

Wavelet Thresholding: It is sensitive to Wavelet basis function choice

ICA: computational complexity

2

£ rossm woro |
Conclusions

<+ A novel and efficient method Wavelet Neural
Network and its application to EEG artifact
removal

s Make comparisons with several methods
- ICA
* Wavelet Thresholding

s+ Future work
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