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Abstract- !n this pap~r . we dev~loped a wavel.et n~ural network. (WNN) algorahm for EEG artifact removal without EOG recordings. 
The algorithm combines the u~lversal approMlmatlon c~araclenstics of neural networl< and the time/frequency property of wavelet. 
We. c.ompa~ed th~ WNN algor"hm with .the leA te~hnlque ,and a wavelet thresholding method, which was realized by using the 
Stein s unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data 
set show Ihat WNN can remove EEG artifacts effecllvely without diminishing useful EEG information even for very noisy data. 

1.0 INTRODUCTION 
Electroencephalogram (EEG) recordings 
are known to be contaminated by 
physiological artifacts from various sources, 
such as eye blinking or movements, heart 
beating and movements of other muscle 
groups [1} . Such types of artifacts are mixed 
together with the brain Signals, making 
interpretation of EEG signals difficult [2}. 

Eye movements or blinks usually produce 
large electrical potentials, which spread 
across scalp and contaminate EEG 
recordings. This class of potential generates 
significant electrooculographic (EOG) 
artifacts in the recorded EEG. Removal of 
EOG artifacts is nontrivial because these 
artifacts spread across the scalp, 
contaminate and overlap in frequency with 
the EEG. The effect of EOG artifacts on 
EEG activity is found most significantly in 
low frequency bands: Delta (1·4Hz), Theta 
(4-8 Hz) and Alpha (8-13 Hz) (3]. Eye 
blinking generates spike-like shapes with 
their peaks can reach up to 800uV and 
occur in a very short period, 200-400 ms [4] . 
Meanwhile, artifacts generated by eye 
movements are square-shaped, smaller in 
amplitude but last longer in time, 
corresponding to lower frequency 
components [51 . 

In recent years , there has been an 
increasing interest in applying various 
techniques to remove ocular artifacts from 
EEG [1 , 2, 5, 6,8, 10, 13, 14-1 91. The 
methods for removing EOG artifacts based 
on regression in time domain or frequency 
domain [8] were widely studied. All 
regression methods, both in time and 
frequency domains, rely on EOG 
record ings, which are however, not always 
available. Furthermore, these methods 
usually eliminate the neural potentials which 
are common to reference electrodes and 
other frontal electrodes. 

Berg and Scherg [1 0] proposed principle 
component analysis (peA) based technique 
for removing ocular artifacts. In this method, 
EEG and EOG signals were simultaneously 
collected. It was observed that peA of the 
variance in these signals produced major 
components corresponding to various eye 
blinks and eye movements. The artifacts 
were removed by eliminating these 
contaminated components. Their 
experiments proved that peA removes 
artifacts more effectively than regression 
based models. However, peA models 
usually failed to completely separate 
artifacts from cerebral activity [11}, and the 
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orthogonal assumption for data components 
in peA is hardly satisfied [5]. 

Independent component analysis (ICA), 
which was developed for the blind source 
separation problems, the class of algorithms 
which decompose mixtures into original 
sources without any a priori knowledge 
about the mixing process or properties of 
those sources, has been used as an 
alternative method for EEG artifact removal 
[1 , 12-14[. leA for artifact removal usually 
requires a large amount of data and manual 
visual inspection to eliminate noisy 
independent components, making the 
method time-consuming and not suitable for 
real-time applications. 

Recently, the wavelet-based methods [14-
19] for EEG artifacts removal have received 
significant attention. Wavelet analysis has 
been used as an effective tool for 
measuring and manipulating non-stationary 
signals such as EEG. It provides flexible 
controls over the resolution with which 
neuroelectric components and events can 
be localized in time, space, and scale. The 
biggest advantage of using this method for 
EEG correction is that it does not rely on 
neither the reference EOG signal nor visua l 
inspection. 

This paper proposes a novel, robust, and 
efficient technique to remove EEG artifacts 
by combining the approximation capabilities 
of both wavelet and neural network 
methods. The method can be described 
briefly as the following (1) contaminated 
EEG signals are first decomposed to a set 
of wavelet coefficients, (2) low frequency 
wavelet sub-band coefficients are then 
passed through and corrected by a trained 
neural network and (3) the corrected 
coefficients are used to reconstruct clean 
EEG signals. The method was applied to 
correct EEG data contaminated by ocular 
artifacts and compared with other state-of­
the-art methods including ICA and a wavelet 
thresholding method. 

The rest of the paper is organized as 
follows: Section 2 shows other related 
works. Section 3 presents the proposed 

technique. Section 4 describes the 
experimental settings. Section 5 presents 
some of the achieved results . Section 6 
provides discussions for the results and 
Section 7 concludes the paper. 

2,0 RELATED WORK 

2.1 EEG model 
We assume the model for contaminated 
EEG signal as in the fOllowing form: 

E£G,·ec(t) = £EGtnJ.e (t) + k. £OG(t) 
where E£G,.ec(t) is recorded contaminated 

EEG, ££Gtl.ue(t) denotes the true EEG 
signal , and k.EOG (t) represents the 

propagated ocular artifact from eye to the 
recording site. The ultimate purpose of any 
artifact removal techniques is to recover 

££Gtl·ue(t) from ££Grec (t) 

2.2 Waveletthresholding 
Wavelet thresholding technique is built on 
the multiresolution analysis of wavelet 
transform, a tool that analyses signal in 
different time and frequency components 
[20] . These components, called 
approximations and details, are further 
processed by thresholding before 
reconstruction [14)-[18] . By selecting a 
'good' mother wavelet, which resembles the 
shapes of the artifacts, large-valued 
coefficients are generated in the areas 
corresponding to the EEG artifacts at low­
frequency sub-bands and are considered as 
an estimate of the ocular artifacts. Thus, 
shrinking the amplitude range of these 
coefficients by nonlinear thresholding 
functions would remove those artifacts. In 
this paper, a wavelet thresholding method 
was implemented as follow, 
a. Use a butterworth lowpass filter to 

smooth the EEG signal before further 
processing 

b. Apply Wavelet transform to the 
contaminated EEG signal 

c. Utilize a thresholding function to 
automatically corrected high-valued 
coefficients at low-frequency sub-bands 

d. Reconstruct the corrected EEG signal 
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2.3 Independent Component 
Analysis 

Independent component analysis was first 
proposed by Herault and Jutten at a 
meeting in Snowbird Utah in 1986 [1 , 11] to 
solve the blind source seperation problem 
(8 S8). ICA aims at recovering independent 
source signals s = (sdt) , szlt), ...... SN(t)}, 
from recorded mixtures x = (x,(t), 
x,(t) , .... " XN(t)} by an unknown matrix A of 
full rank. The basic problem of ICA is to 
estimate the mixing matrix [A] or 
equivalently, the original independent 
sources (5) based on the following linear 
relationship (x = As) while no knowledge is 
available about the sources or the mixing 
process. The method was developed based 
on several assumptions such as, the 
sources are statistically independent, the 
independent components must have non­
Gaussian distributions and the matrix fAJ is 
assumed to be square and invertible. ICA 
identifies an unmixing matrix, [W], which 
decomposes the multi-channel scalp data 
into a sum of temporally independent and 
spatially fixed components. ICA finds (u = 
Wx) , where the rows of the output data 
matrix represent time courses of activation 
of the ICA components [1 , 9, 11]. Several 
algorithms have been proposed to 
implement ICA such as INFOrmation 
MAXimization approach (InfoMax), Fixed-

Up-
sampling 

Wavelet + 

decomposition 
Filtering 

point ICA, Joint Approximate 
Diagonalization of Eigenmatrices (JADE) 
algorithm and the Second Order Blind 
Identification (SOBI). In this research, the 
InfoMax algorithm was used to perform for 
EEG artifact removal. 

3.0 PROPOSED METHOD 
In this paper, we present a novel algorithm, 
Wavelet Neural Network (WNN) , for EEG 
artifact revomal. In our method, the WNN is 
trained with simulated data resembling the 
properties in both time and frequency 
domains of EEG signal.The trained WNN is 
then used as the corrector for contaminated 
data. In both testing and training processes, 
the original signal is decomposed first with a 
wavelet to get different frequency 
components. The low frequency sub-band 
coefficients are then interpolated to maintain 
same lengths. A trained artificial neural 
network (AN N) is fed with such interpolated 
inputs to yield the corrected coefficients at 
its outputs. Finally, the corrected 
coefficients are downsampled for the 
wavelet construction to get the corrected 
signal y of original contaminated x as shown 
in Figure 1. 

The core idea of the method, decomposing 
the signal in both time and frequency 
domains with wavelet and using an ANN to 

Filtering 

+ 

Down· 
sampling 

r-;'1>--~ Wavelet 
Y reconstruction 

Figure 1. Proposed Wave let Neura l Network Structu re. 
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correct them, can be viewed in a more 
succinct (and perhaps more precise) way. 
8y combining the time/frequency property of 
wavelet and the universal approximation 
capability of neural network, we would be 
able to keep useful information related to 
cognitive activities while eliminate artifacts 
in EEG. 

3.1 EEG data simulation 
As described in [23]. EEG signal can be 
simulated based on three assumptions, (1) 
Short segments of the spontaneous EEG 
can be described as linearly filtered , (2) 
non-stationary components in the 
spont~neous EEG can be simulated by 
changing the characteristics of this filtering 
process and (3) the spectral property of the 
simulated EEG data resembles that of 
actual signal. As shown in Figure 2, a set of 
Gaussian noises (GN) were generated and 
then filtered by a number of lowpass and 
bandpass fi lters with different cut-off 
frequencies that are simi lar to the spectral 
property of EEG frequency bands. 
Transients like eye blinks and eye 
movements, colleted from real signals were 
then filtered by lowpass filter and added to 
make the simulated data contaminated. 
Cutoff frequencies for those filters are 

[ GN1 Delta 

[" GN2 . I Theta 

summarized in Table 1. 

Table 1. EEG Frequency Band 
Specifications 

Freq. bands Lower (Hz) Upper (Hz) 

Delta 0.5 4 

Theta 4 8 

Alpha 8 13 

8eta-1 13 20 

Beta-2 20 30 

Gamma 30 50 

3.2 Neural Network Training 
The backpropagation (SP) is used as the 
machine learning technique for multi-layer 
perceptron (MLP) neural newark. 
Experimental results show that the one 
hidden layer neural network structure 3-5-3 
(3 inputs, 5 hidden units and 3 outputs) is 
good enough for EEG occular aritfact 
removal issue. The trained ANN's input and 
output are low frequency sub-band 
c?efficients of the wavelet-decomposed 
simulated data and these coefficients after 
corrected, respectively. In this paper, the 
number of iterations for ANN training is set 

[ GN3 l-k+~ Alpha Overall Simulated 

I GN4 
Gain t---t EEG signal 

1-Seta-1 

I GN5 Beta-2 

I GN6 Gamma 

Transients 

Figure 2. EEG Signal Simulation Model. 
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at 200, but this number might be optimized 
to improve the training accuracy. 

3.3 Performance metric 
We use tw"o metrics, power spectrum 
density (PSD) and frequency correlation, to 
assess the proposed method. The PSD is a 
popular metric used to show information 
about the power spectrum of EEG signal at 
specific frequencies. Calculation of the 
correlation in frequency domain before and 
after artifact removal is equivalent to the 
correlation in time domain after filtering the 
time series with the corresponding 
frequency filter [14]-[22[. The frequency 
correlation between x and y is computed as 
in the following formula , 

i * E:::lci'y + y ' i) 
c= 

.JL~~XX ·'" L~~YY · 

where w1 and w2 are the lower and upper 
limits of the interested power spectrum 
region to be calculated, c is the correlation 
value that will be assigned to the frequency 
of (w1+w2}12. If frequencies x and yare 
identical , c gets 1, otherwise, c obtains a 
value betw"een 0 and 1. In this paper, the 
'window size', w1-w2, is selected equal to 2. 

4.0 EXPERIMENTS 

4.1 Dalasels 
We validate our method on a data set, 
which was collected when participants were 
performing a driving test. The EEG 
information was collected by a 128-channel 
recording system at the sampling rate of 
1000 Hz along with other information 
including description of the task, system 
dynamics related information, performance 
measures, physiological signals (ECG, 
respiration, etc.) , and eye tracking. The 
workload was also analyzed according to 
the driving conditions (city-driving, stopped, 
highway passing, etc.). Due to the recording 
condition, the subject eye movements and 
blinks happen at high frequency making the 
data, especially at frontal recording 

channels, highly contaminated by ocular 
artifacts. 

4.2 Experimental settings 
We implemented three artifact removal 
methods for comparison, the ICA method, 
the wavelet thresholding algorithm and the 
proposed WNN technique. For each 
algorithm, we computed PSD and frequency 
correlation before and after artifact removal 
to illustrate the effectiveness of each of the 
algorithms. For the proposed method, we 
first simulated EEG signals to train an ANN 
and tested the trained model on a simulated 
signal and the driving test data set. For the 
wavelet thresholding method, we 
implemented it by following the instruction in 
[20] and for the ICA, we utilized the 
EEGLAB software. 

5.0 RESULTS 
c __ oo_ 

[ 
~-"II-

o·L , !·~"",;), .. ,J..~-.fN>tI _ "'I 
0 ~ 1000 ",00 2000 ZiOO :!IOOO lIOOO 4000 -., -

(a) 

,. 

·""0 """.000 

(b) 

Figure 3. Clean and Contaminated 
Simulated Signal for (a) Training and (b) 
Testing. 



 

825 
 

For the proposed WNN algorithm, two 
simulated segments with a length of 5 
seconds for training and testing at sampling 
rate of 1000 Hz were created as shown in 
Figure 3a and 3b, respectively , where the 
artifacts were taken from the driving test 
data set and added to the simulated data 
segments. Data in Figure 3a was then used 
to tra in the neural network in the proposed 
WNN algorithm. We applied the trained 
WNN model to the testing data segment 
(Figure 3b), and the corrected EEG signal is 
shown in Figure 4. Figures 5 shows PSD of 
the contaminated , corrected and the clean 
EEG signals. Figure 6 shows frequency 
correlations among those signals. 

• oo 

.00 

• 

Figure 4. Contaminated Simulated and 
WNN Corrected Singals 

. ~~~~~~ I _."..,~ ...... 
""""~od.'" 
CMt.",lnoIodoqlOl 

Figure 5. PSD of Clean, Contaminated 
and WNN Corrected Signals for Testing 

For the leA algorihtm, it took a computer, 
equiped with Intel(R) Core(TM) 2 CPU 6400 
@2.13GHzand RAM 2.00 GB, 27 minutes 

with 382 steps to remove the artifacts for 
one EEG segment in the driving data set. 

., 

., 

.. 
•• . , 

I .. 
I :: ., .. .. 

'. 

(a) 

~ " ~ ~ ~ - ~ ~ ~ ;,_ ... , .. 
(b) 

Figure 6. Frequency Correlation between 
(A) Contaminated and Corrected 
Simulated Signals and (8) Clean and 
Corrected Simulated Signals. 

We then applied the trained WNN model to 
the driving test data set. We decomposed 
the EEG signal to 8 levels and 3 low 
frequency sub-band coefficients were 
corrected by the WNN algorithm . 

The wavelet thresholding method was used 
to adaptively correct 4 low frequency sub­
bands coefficients. For specific data 
segments, the corrections were repeated a 
number of times with various wavelets and 
at different levels of decompositions In 
order to make the corrected data most 
acceptable. The wavelets from Coiflet and 
Daubechies family were chosen because 
experiments show that they could extract 
the features of artifacts efficiently. 

Figure 7 show PSO plots for one sample 
artifact removed segment in the driving test 
data by the three algorithms. Figure 8 
shows the segment in time domain. Figure 9 
shows frequency correlations between the 
contaminated and corrected segments. 
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.~~---r===~===;] I - O:!nt ...... od fEG 
e:.-tec!by _ ~ 

- c.:...a ... by 1CA 

-~"-

Figure 7. PSD of Contaminated and De­
contaminated EEG 

(a) 

(b) 

Figure 8. Contaminated and 
Decontaminated EEG (a) Contaminated, 
ICA and WNN Corrected EEG (b) 
Contaminated, Wavelet Thresholding 
and WNN Corrected EEG 

" •• 
•• 

.. 
'. 

" .. 
•• 

... .. 
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.. 
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f_<IIn .... 

(a) ICA 

W 15 ~ ~ ~ ~ ~ e ~ 

f_,InHl 

(b) Wavelet Thresholding 

W .5 ~ ~ ~ ~ ~ e ~ 

F_cllnHl 

(c) WNN 

Figure 9. Frequency Correlation between 
Contaminated and Decontaminated EEG, 
(a) by ICA, (b) by Wavelet Thresholding 
and (c) by WNN 
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6.0 DISCUSSION 
It is observed from various results that the 
WNN algorithm removes ocular artifacts 
efficiently while keeping cerebral 
background information. Like Wavelet 
Thresholding, WNN just needs one single 
channel data to perform correction that 
makes it advantageous over ICA, which 
needs to perform on the whole dataset. 
Furthermore, the method was proved 
through repeated experiments on various 
data segments for its effectiveness and 
stability, which is not true for the wavelet 
thresholding algorithm. 

The PSD plot shows that the low frequency 
components are reduced significantly in the 
corrected signal. That is more evident if we 
look at the frequency correlation metric plot 
between contaminated and corrected 
signals: there is a slight difference in the 
range of low frequency components while in 
other ranges , the useful information is well­
preserved. 

The frequency correlation plots also show 
that the correction made by leA spreads 
over the entire frequency range and the 
power of low frequency components are 
reduced not significantly. Mean while, the 
low frequency components in the signal 
were derogated by Wavelet Thresholding 
and WNN while high frequency components 
are well preserved by both. 

leA requires a lot more computing power 
and multiple channel data sources for 
artifact removal. It also demands either an 
automatic or a manual step to determine 
which independent component is artifact, 
making an online implementation of ICA 
difficult. 

7.0 CONCLUSIONS 
We proposed a novel algorithm, WNN, for 
artifact removal for EEG signal. The 
algorithm combines the time/frequency 
property of wavelet and the approximating 
capability of neural network to locate and 
eliminate artifacts. Experimental results ona 
driving data set show that WNN can 
effectively remove artifact and achieve 

better results than the wavelet thresholding 
algorithm. WNN is also much 
computationally efficient than the ICA 
algorithm making it possible an automatic 
online algorithm. 
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Wavelet Neural Network 

Wlveltt ~t[amp osi liDn NeUf11 NE1war. Wilveld rUllnstrudian 

Filure 2. Wavelet Ne ural Network structure 

Network Training 

Wavelet 

Decomposition 

Filure 3. Neural networktraininc promdure 
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Gamiill 

'Mrite 

Noile 
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EEG data simulation 

Table 1. EEG frequency band 
specifications 

SimlAlled 
EEG siYlai 

Freq . bal1ds 

Delta 

Theta 

Alpha 

Beta-1 

Beta-2 

Gamma 

Simulated EEG 

Luwer(Hz) Upper(Hz) 

05 4 

4 8 

8 13 

13 20 

20 30 

30 50 
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Network testing 

EEG_ (t) 

Wovelet 
Decompo§ition 

Wovelet 

Recomtruction 

I Filure S. W ..... I.t Neural Networktestinc procedure 

Interpolation 

Dowmampling 
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Outline 

" Il"'troductlon 

" k elCited worl< 

,. I-'ronoseo method 

~ Experiments and results 

,.. l ISCUSSlon ;;tnd concluSion 

Trained 

ANN 



 

839 

 

 

rnMODSIM WORLD 
M C.,......."..,. &Expc 

• Data set: 
Driv ing test 

Experiments 

128 record ing channel system 
Highly disturbed by multi-type artifacts 

• Experimental settings: 
MethodsWNN, WTand leA 
Va lidation metrics: PSD and frequency 
correlation 

• Frequency COlTe18tiollllwthematical 1'0l1n111a: 

-". • I 

,- ' 
; ~­
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Results - Simulated EEG 

-Crntaminated testing s~mi 
-Ccrrected tJy W NN 
- Cc.rected by Wave~ TlI"eshcrdng 

Figure 6. WNN performance on simulated data 
22 
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Results - Simulated EEG 

~C(Xrected 

- ern-reeled 

Figure 7. Clean simulated and Decontaminated signals by 

rnMODSIM WORLD 
M c.,......."..,. &Expc 

Technique 

WNN and Wavelet Thresholding 23 

Error signals 

RMSE 

Figure 8. Error signals, or differences between the 'ground 
truth' and signals corrected by WNN and WT 
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- "'." .. "., ... - "' .. """, ....... 
-~.".", 

PSD and frequency 
correlation 

--..... 

Figure 9. PSD (left) and frequency correlation between contaminated and 
corrected simulated signals (center) and clean and corrected simulated 
signals (right) 
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Results - Real EEG 

Figure 10. Contaminated, Wavelet Thresholding and 
WNN Corrected EEG 
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Results - Real EEG 

Figure 11. Contaminated, ICA and WNN Corrected EEG 
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Power Spectrum Density 
-Con tamin ated EEG 
- Corrected by Wavel e t Thresh o ld ing 
- Corrected by l eA 
- Corrected by WNN 

Figure 12. PSD of Contaminated and De-contaminated EEG 
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Frequency correlation 

a) b) c) 

Figure 13. Frequency Correlation between Contaminated and 
Decontaminated EEG, (a) by ICA, (b) by Wavelet Thresholding and (c) 
byWNN 
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>- Discussions and conclusions 
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Techniques 

Discussions 

Techniques comparison 

Wavelet Thresholding: It is sensitive to Wavelet basis function choice 

leA: computational complexity 
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Conclusions 

.:. A novel and efficient method Wavelet Neural 
Network and its application to EEG artifact 
removal 

.:. Make comparisons with several methods 
• leA 

• Wavelet Thresholding 

.:. Future work 
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