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Abstract. New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation 
of flelded sensors and supporting capacity for processing al'lCl displaying dala will translate into ever more capable platforms, but 
with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human 
operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their currenllask 
using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real·time model of the 
analysts' task and subsequently use the model to dynamically re trieve relevant content. This paper presents results from a pilot 
experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle 
traffic environment. we compare agent performance between MIL·aided trials and unaided trials. 

1.0 INTRODUCTION 
As the number of surveillance 

projects has increased over the years, so 
has the amount of data collected that 
requires analysis. Projects such as Gorgon 
Stare have produced UAVs that can record 
video with 12 cameras simultaneously, thus 
amassing large quantities of video over 
short periods of time. VVhile the collected 
information is a significant resource for 
defense analysts, the sheer volume of video 
that requires processing can be 
overwhelming. As a result , instead of 
improving mission effectiveness, the extra 
information strains the analysts, perhaps 
decreasing their effectiveness. 

In this paper, we propose and test a 
method to decrease strain on analysts by 
dynamically presenting them with data most 
pertinent to the cognitive task they are 
currently carrying out. We assume that the 
adversaries targeted by analysts are highly 
adaptable in their approaches given past 
US defense responses. Therefore, the data 
filtering system we propose seeks to 
maximize the performance of analysts in the 
face of changing enemy doctrine. 

While we discuss here the filtering of 
video data, we are not supplying a solution 
to the computer vision problem. Rather, we 
assume that data extraction from video is 
already possible and we therefore work with 
higher-level features stemming from video 

feature extraction. In order to provide some 
structure to the problem, we limited our 
environment to that of vehicle traffic and 
consequently built it to support possible 
analyst tasks regarding vehicle surveillance 
data. We assume that any possible analyst 
task will have a valid representation in our 
vehicle feature set. Our data filtering system 
first learns the analyst's task based on 
simple input from the analyst and then 
proceeds to support the analyst by providing 
information relevant to the learned task. We 
discretize an otherwise continuous data flow 
by time epics. The input given by the 
analyst is simply a Musefullnot useful" label 
on the time epic of data just seen. If the 
data just presented to the analyst was 
useful in accomplishing their task. they will 
provide a Museful~ label for that particular 
time epic. Otherwise, they will provide a "not 
usefulw label for that time epic. This method 
of obtaining input from the analyst is 
advantageous because it does not require 
the analyst to describe their task at any 
length and technical detail. Instead, we 
learn the analyst's task based on the 
features present in the data for the time 
epics labeled useful. The analyst's task is 
both complex and dynamic and we believe 
that our approach is flexible enough and 
that building a template for each task would 
be impossible under the given time 
constraints and complexity of tasks. 

https://ntrs.nasa.gov/search.jsp?R=20110012111 2019-08-29T18:31:43+00:00Z



 

31 

 

Driving our data filtering system is a 
machine-learning algorithm know as Multi­
Instance Learn ing (MI L). MIL is useful given 
our problem because it is responsive to 
changes in the analyst's task and because it 
does not require a label for every piece of 
data. A detailed description of the 
architecture and functioning of MIL follows 
in a later section. 

Finally, in order to evaluate the value 
added to mission effectiveness by the MIL­
driven data filtering system, we devised a 
way to test analyst mission effectiveness 
both with the MIL filtering system in place 
and without it To this end, we devised a 
series of tasks relating to vehicle 
information and assigned them to a 
computer agent, which performed them both 
with and without MIL aid in a simulated 
environment. The agent was scored under 
both aid conditions and the scores were 
compared across all tasks. We will show 
that the agent performed better with MIL 
aid . 

2.0BACKGROUND 
Machine learning can broadly be 

divided into two different approaches: 
supervised learning and unsupervised 
learning. In the supervised learning 
approach, the learning algorithm is provided 
with a label for every training example. 
Oftentimes, it is not feasible or possible to 
provide labels for training examples. Thus, 
in unsupervised learning, the learning 
algorithm is provided with completely 
unlabeled training examples, with learning 
algorithms in unsupervised learning 
stemming from clustering principles. MIL 
blurs the difference between supervised and 
unsupervised learning because it use 
partially labeled training examples. 

MIL was first introduced in the 
context of the drug activity prediction 
problem described in reference [2]. 
Reference (2) also proposed the first 
algorithm to solve the MIL problem. In drug 
activity prediction, one must predict if a 
given molecule will bind to a target binding 
site. The binding site is located on a much 
larger molecule, such as a protein, and has 

a very specific shape, making it impossible 
for any given molecule to bind there unless 
is has the perfect matching shape. 
Incomplete information stems from the fact 
that while it is possible to tell whether a 
molecule did or did not bind to the target 
site, it is impossible to tell what shape it had 
when it did bind to the target site. This 
happens because each molecule can take 
on several different shapes based on its 
bond angles. Thus, the positive label given 
to a molecule that did bind to the target site 
is ambiguous in that it does not define the 
shape that the molecule took on when the 
binding occurred . 

Following reference [2] , reference (3) 
tested a new MIL algorithm on the drug 
activity data set and also tried two new 
applications: forming a concept of what a 
person looks like from a series of labeled 
pictures and dealing with noise in stock 
selection. Reference [4) then used the new 
algorithm from reference [3] for natural 
scene image classification. Reference (6) 
used the drug activity data set to test yet 
another MIL algorithm. Two more 
applications of MIL have been in automated, 
content-based image retrieval described in 
reference (7) and text categorization 
describe in reference [1] . Reference (7) 
used the same algorithm as reference (3). 
but applied it to a different problem (that of 
content-based image retrieval ), thus 
showing that MIL algorithms are flexible 
enough to have a variety of applications as 
long as the structure of the problem is 
maintained . The content-based image 
retrieval problem, specifically , was also 
worked on by reference (5) , who proposed a 
new algorithm for this problem. In this paper 
we use the algorithm first described in 
reference [3} . 

3.0THE ARCHITECTURE OF MIL 
Before we proceed , we must 

establish some terminology. We will refer to 
examples, such as the training examples 
discussed in the Background section, as 
objects. Each object has a representation in 
feature space known as an instance. In the 
supervised learning case, each object is 
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described by a single instance and each 
instance has a label. Figure 1 shows the 
one-to-one relationship of instances, 
objects, and labels. 

object 

instance label ---- . ---, 
# 

Figure 1 - Supervised Learning Labels 

In the MIL case, however, there is no ane­
ta-one mapping of instances, objects, and 
labels. Instead, each object can be 
represented by multiple instances in feature 
space. In the MIL case, labels are assigned 
to each object, not to each instance. Figure 2 
depicts the architecture of labels in MIL. 

instance 

instance label 

instance 

Figure 2 - MIL Labels 

In MIL, the term bag is used to refer 
to an object. The term bag is used in order 
to illustrate that an object can "contain~ or 
be described by several instances - a bag 
of instances. Since the label is not placed 
on each instance, but rather on the bag as a 
whole, rules must be set for labeling a bag 
as a function of the instances. A bag is 
labeled positive if at least one instance in 
the bag is positive. A bag is labeled 
negative if all the instances in the bag are 
negative. When looking at a bag labeled 
positive, it is ambiguous which instance 
triggered the positive label. MIL algorithms 
examine the instances in positive bags in 
order to find a feature space representation 
of the instances that triggered positive 
labels. 

4,0 SIMULATION 
We constructed a vehicle simulation 

environment to test if MIL-based data 
filtering would add value to operator mission 
effectiveness. In the simulation each vehicle 

exhibits either a normal behavior or a rogue 
behavior. Normal behaviors consist in 
entering traffic through an entry point, 
following traffic rules , and ultimately leaving 
the simulation through an exit point . Rogue 
behaviors consist in abnormal patterns that 
contradict traffic rules. In addition, each 
vehicle will also have two characteristics: 
color and type - car or truck. Table 1 shows 
each type of behavior and the rule used to 
determine if that behavior applies to a given 
vehicle. 

Table 1 - Vehicle Behavior Definitions 

Behavior Rule 
Speeding Instantaneous speed 

» speed Jimit 
Slow Moving Instantaneous speed 

« speed limit 
Caravanning 2 or more vehicles 

with max Euclidian 
distance < epsilon 
distance, matching 
speed at every step 
within some epsilon 
speed, matching at 
least 4 turns 

Abandoning In a set of 
caravanning vehicles, 
one vehicle stops 

Circling Vehicle makes a 
series of more than 8 
same-direction turns 

Multiple U-Turns Vehicle reverses 
coordinates 

In MIL terminology, vehicle behaviors are 
instances, time epics are bags, and the 
description of behaviors in terms of low­
level features defines the feature space. To 
support the instances (vehicle behaviors) in 
our simulation, we defined a feature space 
that is consistent with vehicle behavior 
metrics. Table 2 shows the features present 
in the simulation. 

Table 2 - Feature Set 

Feature Name T e 
S eedin Cars Present Boolean 
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Number Speedina Cars Inteaer 
Slow Moving Cars Boolean 
Present 
Number Slow Moving Integer 
Cars 
Caravans Present Boolean 
Number Caravans Inteaer 
Abandoned Cars Present Boolean 
Number Abandoned Cars Inteaer 
Circling Cars Present Boolean 
Number Circlina Cars Inteaer 
Multiple U-Turn Cars Boolean 
Present 
Number Multiple U-Turn Integer 
Cars 
Number Cars Inteaer 
Number Trucks Inteaer 
Number Red Vehicles Inteaer 
Number Blue Vehicles Inteaer 
Global Maximum Soeed Inteaer 
Global Minimum $Deed Inte-a-er 

The simulation will be launched in 
two stages: the pilot stage and the full 
simulation stage. This paper describes the 
structure and test results on the pilot stage 
of the simulation and outlines the structure 
of the full simulation stage. 

4.1 Pilot Stage 
The pilot stage simulation is written 

in Java and is designed to be a proof of 
concept for MIL-based data filtering in a 
defense analysis environment. Since the 
pilot simulation is smaller in scale, it 
contains a subset of all the features present 
above. The features present are illustrated 
in Figure 3 below. The pilot simulation 
consists of three main components: the 
GUI, the simulation engine, and the MIL 
classifier. 

4.1.1 Pilot Stage GUI 
The pilot stage GUI is designed 

solely to obtain labels from an analyst or 
agent on different time epics. Figure 3 shows 
the pilot simulation GUI. The top part of the 
GUI allows the experiment organizer to load 
the simulation for each participant or agent. 
Each agent can then use the three buttons 

to provide a label on the summary data for a 
given time epic and to move on to the next 
time epic. Below the input buttons is a 
window that shows the summary data for a 
given time epic. The agent is only allowed to 
view the next time epic after they have 
provided a label for the current epic. 

' A ~ Vebkle Be~ ... ior Pilot Exptrlmen • 
Filt Load Statiuks 

Pluse dulde If the cunen! epic Is useful to your ta s~. 

.L_u_ .. _r"_' _~l Not U~eful Next Time [pIC 

LIbeling TIme [pic 1 / 60 
"umber Circling Cars : 0 
Numb", Mult iple U- Turn (ar.; : 0 
Global MlI~imum Speed : 2S 
Clob..1 Minimum Speed ; 22 
Number SpHdinr; COl,. ; 0 
Number Slow Moving Cilrs : 3 
'Numbe r ( arivinlng (if! : 2 
Number Ablndonf<l Cirs : 0 

I # 
Figure 3 - Pilot Simulation GUI 

4.1.2 Pilot Stage Simulation Engine 
The simulation engine is in charge of 

loading the summary data for each time 
epic, presenting that to the agent, recording 
the label for each time epic, and finally 
instantiating the MIL classifier with the 
labeled data for each time epic. The 
simulation engine takes as input a text file 
containing the summary data for 60 training 
time epics. The engine reads the text file 
line by line, displays it to the agent, and 
then records the same data along with the 
labels provided by the agent in a new text 
file formatted to be readable to the MIL 
classifier. Once the agent has finished 
labeling each of the 60 training time epics 
according to their task, the simulation 
engine instantiates and trains the MI L 
classifier using the labeled data file as input. 

Once the classifier object is trained 
on the labeled data, a new raw data file is 
presented to the classifier. This new file 
contains summary data for 60 evaluation 
time epics. Based on the concept learned in 
training, the classifier now predicts a label 
for each of the 60 evaluation time epics. 
The agent then proceeds to the first of two 
evaluation phases. The first evaluation 
phase is an aided phase where the agent is 
shown only time epics that the MIL classifier 
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labels as matching the learned concept of 
the agent's task. In the evaluation phase, 
the "Useful/Not Useful~ input buttons no 
longer provided labels for the classifier, but 
rather score the classifier, with the 
classifier's score increasing for every 
"Useful" time epic label provided by the 
agent in evaluation. After the aided 
evaluation phase described above, the 
agent is shown an equal number of 
randomly selected time epics. These time 
epics are not selected by the MIL classifier 
and thus mayor may not be relevant to the 
agent's task. Once again, a score is 
incremented each time the agent labels a 
time epics as "Useful~ . In the Results 
section, we compare the evaluation scores 
in the MIL-aided and the unaided evaluation 
phases. 

4.1.3 Pilot Stage MIL Classifier 
The pilot stage MIL classifier is built 

based on the Diverse Density algorithm 
introduced by reference [3]. The classifier is 
instantiated in the pilot simulation using a 
Java jar file from the WEKA data-mining 
package. The simulation engine utilizes the 
classifier's training, prediction, and cross 
evaluation functions . Following general data 
mining rules, the simulation engine presents 
completely different data sets to the 
classifier for training and prediction . For 
each task we also run a cross evaluation on 
the prediction data set. The cross evaluation 
function uses parts of the prediction data set 
for training and parts for evaluation, 
recursively changing which parts are used 
for training and which for evaluation. We will 
also present cross evaluation scores across 
all tasks in the Results section. 

4.2 Full Simulation Stage 
The full simulation stage will be built 

on the existing pilot stage. The goal is to 
design a visual way to present each time 
epic to a human participant as opposed to a 
computer agent. Instead of showing the 
participant summary data for each time 
epic, the simulation will instead show a map 
with vehicles moving from entry to exit 
points. Each vehicle will have an associated 

track - GPS coordinates for each time step. 
Most vehicles will have normal, random 
behaviors, but some vehicles will exhibit 
" rogueH behaviors. Rogue behaviors will 
consist in speeding, moving too slowly, two 
or more cars caravanning , cars being 
abandoned , and so forth . While each time 
epic unfolds, the simulation engine will 
compute the value of each feature in feature 
space. Instead of labeling the time epic 
based on parsed summary data, the 
participants will have to observe how each 
time epic unfolds by following the cars and 
seeking behaviors relevant to their task. 
This method of presenting the participants 
with information is more realistic and similar 
to what an analyst would experience in a 
defense environment. 

5.0EVALUATING MIL 
We used an agent-based simulation 

to measure if the MI L-based data filtering 
we propose in this paper can add value to 
analyst mission effectiveness. To that end , 
we created a list of fourteen tasks relating to 
vehicle behavior that an analyst might be 
interested in. Table 3 shows a list of the 
tasks. Each task is based in identifying at 
least one rogue vehicle behavior. 

Table 3 - Tasks 

Task Task Type Task 
10 
1 Simple Identify 

ABANDONED 
vehicles 

2 Simple Identify CARAVANS 
3 Simple Identify CIRCLING 

vehicles 
4 Simple Identify SLOW 

vehicles 
5 Simple Identify SPEEDING 

vehicles 
6 Simple Identify U·TURN 

vehicles 
7 Composite Identify 

1/2 ABANDONED & 
CARAVANS 

8 Composite Identify CIRCLING & 
1/2 U·TURNS 
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9 Composite Identify SLOW & 
112 SPEEDING 

10 Composite Identify SPEEDING 
112 & CARAVANS 

11 Composite Identify CARAVANS 
213 & ABANDONED & 

SLOW 
12 Composite Identify SLOW & 

213 CIRCLING & U-
TURNS 

13 Composite Identify SLOW & 
213 SPEEDING & U-

TURNS 
14 Composite Identify SPEEDING 

213 & CARAVANS & U-
TURNS 

Tasks 1 through 6 ask the agent to 
provide positive labels for time epics that 
exhibit a single vehicle behavior given in the 
task. Tasks 7 through 10 ask the agent to 
provide positive labels for time epics that 
exhibit at least one of two vehicle behaviors 
given in the task . Finally. tasks 11 through 
14 ask the agent to provide positive labels 
for time epics that exhibit at least two of 
three vehicle behaviors given in the task . 

A computer agent was assigned 
each of the fourteen tasks in turn . The agent 
labeled all 60 training time epics according 
to the task at hand. After the training phase, 
the agent proceeded to the evaluation 
phase. In the aided evaluation phase, the 
agent was only shown time epics that the 
MIL classifier labeled as matching the 
agent's task . The agent was given a positive 
point for every positive label it assigned to 
time epics in the evaluation phase. In the 
unaided evaluation phase, the agent was 
shown a random set of time epics and again 
scored on the number of positive labels it 
assigned. The evaluation data set did not 
contain exactly the same number of time 
epics matching each of the fourteen tasks. 
To be fair, the agent was shown exactly the 
same number of random time epics in the 
unaided phase as the number of time epics 

6 .0RESULTS 
We present the results from all 

matching the agent's task in the aided 
phase. To illustrate, suppose that in the 
tra ining phase, the MIL classifier learned 
that the agent had been assigned task 2. In 
the aided evaluation, the MIL classifier 
showed the agent all time epics matching 
task 2 in the evaluation data set. Suppose 
there were 13 matches. Then, the agent 
was also shown 13 random time epics in the 
unaided evaluation some of which 
happened to match task 2 and some that 
did not. This was done to ensure that the 
agent had a chance to score the same 
number of points in both the aided and the 
unaided evaluations. 

As we discussed, the next stage in 
the simulation will provide real human 
subjects with a visual display of each time 
epic. This will mimic a defense analysis 
environment better than the pilot simulation, 
but will introduce the possibility of human 
error into ali measurements. In order to 
simulate the effect of human error on the 
accuracy of the MIL classifier, we ran six 
more trials with imperfect labels. In these 
trials, the agent injected 1, 2, or 3 wrong 
labels when labeling the 60 training time 
epics. The wrong labels were both false 
positives (i.e. a bag was incorrectly labeled 
positive even though it did not match the 
task at hand) and false negatives (i.e. a bag 
was labeled negative even though it did 
match the task at hand), thus adding six 
more trials in addition to the perfect labels 
trial . This approach is perhaps unfair toward 
the MIL classifier because we simulate 
human error or indecision in the training 
phase, yet in the evaluation phase, the 
agent makes no mistakes in labeling, thus 
adding negative bias to the accuracy of the 
classifier. Nonetheless, the point was to 
stress the classifier by simulating real-world 
conditions. The Results section shows the 
performance of the MIL classifier across the 
perfect labels trial as well as the six 
imperfect labels trials. 

seven trials as lift charts. We graph the 
scores form the unaided evaluations on the 
x-axis and the scores from the aided 
evaluations on the y-axis. If the aided and 
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unaided evaluations exhibited similar 
performance, all points would lie on the 45-
degree line. On the other hand, if the aided 
evaluation scores are higher than the 
unaided scores, then we expect the points 
to lie above the 45-degree line. Figure 4 
shows the results from the perfect labels 
trial. 

Perfect Labels 

20 r--+--~~--------~ ... 
15 +------"'.'----+-------,~'----__I •• • 
1 0 +--.. --------,~'---------_I 

5 +----.;'"'---------------1 

o-j£--~----~--~----I 

o 5 10 15 20 

L,~=_~==~~~~~# Figure 4 - Scores with Perfect labels 

The scores from all fourteen tasks are in the 
top left of the chart, showing that the Mil 
algorithm has added value to mission 
effectiveness by showing the agent time 
epics that matched its task in the aided 
evaluation phase. Figure 5 shows the results 
from the two trials with one wrong label. In 
this and all following figures the green 
(triangle) points represent false positive 
labels and the blue (diamond) points 
represent false negative labels. 

20 

15 

10 

5 

0 

1 False Positive & 1 False 
Negative 

...... ... 
./'" 
0 5 10 15 20 

6 1 false positive . 1 false negative 

Figure 5 - Scores with 1 Mislabeled Bag 
# 

Here we see that some of the tasks have 
scores that are closer to the 45-degree line, 
suggesting less lift from the MIL classifier. 
Nonetheless, the majority of task scores 
remain in the top left region of the chart. 
Figure 6 shows the results with two wrong 
labels. 

2 False Positive & 2 False 
Negative 

20 ,---~~--~------~ 

1 5 t-;-~----=-' 

10 W~~-=o~~--l 
5 +--~""'=-------------I 

O~~~--~--~--_I 

o 5 10 15 20 

6 2 false positive + 2 false negative 

~~ .. ~~~~w=~~# Figure 6 - Scores with 2 Mislabeled Bags 

Finally, Figure 7 shows the results with three 
wrong labels. 

3 False Positive & 3 False 
Negative 

15 +--~~~~----~~--_I 

10 ~~~~~~----~ 

5 +----."..=-------------1 

O-j£=---~----,_--~----I 

o 5 10 15 20 

.. 3 false positive + 3 false negative 
~~~~~~~~~~~# 

Figure 7 - Scores with 3 Mislabeled Bags 

The difference between the one wrong label 
case and the two wrong labels case is not 
immediately noticeable. In fact, it appears 
that, overall , the one wrong label case 
resulted in lower scores than the two wrong 
labels case. In the three wrong labels case 
it is noticeable that aided scores are overall 
lower, detracting from the lift of the Mi l 
classifier. Table 4 shows average score 
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values across all tasks by the number of 
wrong labels, Averaging across all label 
types, we observe that the agent obtained 
aided evaluation scores that were 3.3 times 
higher than unaided evaluation scores, 

Table 4 - Average Scores Across Tasks 

Score 

Label Type Aided Unaided 

Perfect 15.50 4.57 

1 False Positive 14.14 4.35 

1 False Negative 13.79 3.71 

2 False Positive 13.93 4.21 

2 False Negative 14.64 4.79 

3 False Positive 13.00 4.07 

3 False Negative 14.07 4.14 

Cross Evaluation Results Given 
False Positive and False Negative 

• ] 
• 

...J 0.95 
c 
o 
:; , 
~ 
w 0.85 t--tld'----=- 4 --• • 
~ 
u 
U 
~ 0.75 t-----------. - --i 
o 
u -c 

~ &. 0.65 +-____________ ---1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

~Perfect Labels 
--*-3 False Negative 
_ 2 Fatse Negative 
_ 1 False Negative 
- Sing le Benchmarll 

Task 10 
_ 3 False Positive 
_ 2 False Positive 
~1 False Positive 
- Composite Benchma 

Figure 8 - Cross Evaluation Results 

Given the current data, it is difficult 
to conclude if false positive or false negative 

training labels are more detrimental to the 
accuracy of the MIL classifier. Thus far, the 
scores show that false negative labels were 
more detrimental to the classifier if only one 
bag was mislabeled. If two or three bags 
were mislabeled, false positive labels were 
more detrimental to the accuracy of the 
classifier. 

Figure 8 shows the cross evaluation 
results obtained on the evaluation data set. 
Each line shows the percentage of correct 
labels from the MIL classifier given different 
numbers of wrong training labels. Naturally, 
the perfect labels line is highest in the chart, 
indicating best classifier performance. The 
green horizontal line marks the single 
behavior task benchmark. In other words, if 
the classifier labeled all bags negative, it 
would still get 78% correctly labeled bags 
because only 22% of bags have true 
positive labels in the evaluation data set. 
The red horizontal line marks the composite 
behavior task benchmark. The classifier 
would get 70% correct labels if it labeled all 
bags negative because there were only 
30% true positive bags in the eva luation 
data set. It is interesting to note that none of 
the single behavior tasks (1-6) dipped below 
the single benchmark and none of the 
composite behavior tasks (7-14) dipped 
below the composite benchmark, regardless 
of the number of wrong training labels. It is 
also noteworthy that all cross evolution 
results exhibited lower performance on 
tasks 10 and 12, indicating that there exists 
possible task dependence in the 
performance of the MIL classifier . To 
determine if such dependence exists with 
statistical significance, it is necessary to add 
more tasks and trials to the agent-based 
pilot experiment. 

7.0CONCLUSIONS 
Based on the results from the pilot 

simulation, the Multi-Instance Learning 
classifier added value to agent mission 
effectiveness. The robustness of the results 
in the face of mislabeled training bags 
suggests that the classifier will continue to 
add value to mission effectiveness as we 
transition from agent-based simulations to 
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human subject experiments on the full 
simulation. 

With the current data it is not 
possible to determine with any statistical 
significance if false positive or false 
negative training labels are more 
detrimental to concept learning on the part 
of the MIL classifier. However, given more 
trials on the full simulation it may be 
possible to determine which type of label is 
more detrimental . This information is vital in 
creating a fully featured data filtering system 
for defense analysis applications. 

Th is proof-ot-concept simulation 
served to show that (1) a data filtering 
system is useful in relieving strain from 
today's information-flooded defense 
analysts and (2) that employing machine 
learning techniques is a feasible approach 
in building such a system. 
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