

30

1.5 Multi-Instance Learning Models for Automated Support of Analysts in
Simulated Surveillance Environments

Mult i-Instance Learn ing Models for Automated Support of Analysts in
Simulated Surveillance Environments

Mihnea Birisan and Peter Beling
The University of Virginia

mb5yv@virginia.edu, pb3a@virginia.edu

Abstract. New generations of surveillance drones are being outfitted with numerous high definition cameras. The rapid proliferation
of flelded sensors and supporting capacity for processing al'lCl displaying dala will translate into ever more capable platforms, but
with increased capability comes increased complexity and scale that may diminish the usefulness of such platforms to human
operators. We investigate methods for alleviating strain on analysts by automatically retrieving content specific to their currenllask
using a machine learning technique known as Multi-Instance Learning (MIL). We use MIL to create a real·time model of the
analysts' task and subsequently use the model to dynamically re trieve relevant content. This paper presents results from a pilot
experiment in which a computer agent is assigned analyst tasks such as identifying caravanning vehicles in a simulated vehicle
traffic environment. we compare agent performance between MIL·aided trials and unaided trials.

1.0 INTRODUCTION
As the number of surveillance

projects has increased over the years, so
has the amount of data collected that
requires analysis. Projects such as Gorgon
Stare have produced UAVs that can record
video with 12 cameras simultaneously, thus
amassing large quantities of video over
short periods of time. VVhile the collected
information is a significant resource for
defense analysts, the sheer volume of video
that requires processing can be
overwhelming. As a result , instead of
improving mission effectiveness, the extra
information strains the analysts, perhaps
decreasing their effectiveness.

In this paper, we propose and test a
method to decrease strain on analysts by
dynamically presenting them with data most
pertinent to the cognitive task they are
currently carrying out. We assume that the
adversaries targeted by analysts are highly
adaptable in their approaches given past
US defense responses. Therefore, the data
filtering system we propose seeks to
maximize the performance of analysts in the
face of changing enemy doctrine.

While we discuss here the filtering of
video data, we are not supplying a solution
to the computer vision problem. Rather, we
assume that data extraction from video is
already possible and we therefore work with
higher-level features stemming from video

feature extraction. In order to provide some
structure to the problem, we limited our
environment to that of vehicle traffic and
consequently built it to support possible
analyst tasks regarding vehicle surveillance
data. We assume that any possible analyst
task will have a valid representation in our
vehicle feature set. Our data filtering system
first learns the analyst's task based on
simple input from the analyst and then
proceeds to support the analyst by providing
information relevant to the learned task. We
discretize an otherwise continuous data flow
by time epics. The input given by the
analyst is simply a Musefullnot useful" label
on the time epic of data just seen. If the
data just presented to the analyst was
useful in accomplishing their task. they will
provide a Museful~ label for that particular
time epic. Otherwise, they will provide a "not
usefulw label for that time epic. This method
of obtaining input from the analyst is
advantageous because it does not require
the analyst to describe their task at any
length and technical detail. Instead, we
learn the analyst's task based on the
features present in the data for the time
epics labeled useful. The analyst's task is
both complex and dynamic and we believe
that our approach is flexible enough and
that building a template for each task would
be impossible under the given time
constraints and complexity of tasks.

https://ntrs.nasa.gov/search.jsp?R=20110012111 2019-08-29T18:31:43+00:00Z

31

Driving our data filtering system is a
machine-learning algorithm know as Multi­
Instance Learn ing (MI L). MIL is useful given
our problem because it is responsive to
changes in the analyst's task and because it
does not require a label for every piece of
data. A detailed description of the
architecture and functioning of MIL follows
in a later section.

Finally, in order to evaluate the value
added to mission effectiveness by the MIL­
driven data filtering system, we devised a
way to test analyst mission effectiveness
both with the MIL filtering system in place
and without it To this end, we devised a
series of tasks relating to vehicle
information and assigned them to a
computer agent, which performed them both
with and without MIL aid in a simulated
environment. The agent was scored under
both aid conditions and the scores were
compared across all tasks. We will show
that the agent performed better with MIL
aid .

2.0BACKGROUND
Machine learning can broadly be

divided into two different approaches:
supervised learning and unsupervised
learning. In the supervised learning
approach, the learning algorithm is provided
with a label for every training example.
Oftentimes, it is not feasible or possible to
provide labels for training examples. Thus,
in unsupervised learning, the learning
algorithm is provided with completely
unlabeled training examples, with learning
algorithms in unsupervised learning
stemming from clustering principles. MIL
blurs the difference between supervised and
unsupervised learning because it use
partially labeled training examples.

MIL was first introduced in the
context of the drug activity prediction
problem described in reference [2].
Reference (2) also proposed the first
algorithm to solve the MIL problem. In drug
activity prediction, one must predict if a
given molecule will bind to a target binding
site. The binding site is located on a much
larger molecule, such as a protein, and has

a very specific shape, making it impossible
for any given molecule to bind there unless
is has the perfect matching shape.
Incomplete information stems from the fact
that while it is possible to tell whether a
molecule did or did not bind to the target
site, it is impossible to tell what shape it had
when it did bind to the target site. This
happens because each molecule can take
on several different shapes based on its
bond angles. Thus, the positive label given
to a molecule that did bind to the target site
is ambiguous in that it does not define the
shape that the molecule took on when the
binding occurred .

Following reference [2] , reference (3)
tested a new MIL algorithm on the drug
activity data set and also tried two new
applications: forming a concept of what a
person looks like from a series of labeled
pictures and dealing with noise in stock
selection. Reference [4) then used the new
algorithm from reference [3] for natural
scene image classification. Reference (6)
used the drug activity data set to test yet
another MIL algorithm. Two more
applications of MIL have been in automated,
content-based image retrieval described in
reference (7) and text categorization
describe in reference [1] . Reference (7)
used the same algorithm as reference (3).
but applied it to a different problem (that of
content-based image retrieval), thus
showing that MIL algorithms are flexible
enough to have a variety of applications as
long as the structure of the problem is
maintained . The content-based image
retrieval problem, specifically , was also
worked on by reference (5) , who proposed a
new algorithm for this problem. In this paper
we use the algorithm first described in
reference [3} .

3.0THE ARCHITECTURE OF MIL
Before we proceed , we must

establish some terminology. We will refer to
examples, such as the training examples
discussed in the Background section, as
objects. Each object has a representation in
feature space known as an instance. In the
supervised learning case, each object is

32

described by a single instance and each
instance has a label. Figure 1 shows the
one-to-one relationship of instances,
objects, and labels.

object

instance label ---- . ---,

Figure 1 - Supervised Learning Labels

In the MIL case, however, there is no ane­
ta-one mapping of instances, objects, and
labels. Instead, each object can be
represented by multiple instances in feature
space. In the MIL case, labels are assigned
to each object, not to each instance. Figure 2
depicts the architecture of labels in MIL.

instance

instance label

instance

Figure 2 - MIL Labels

In MIL, the term bag is used to refer
to an object. The term bag is used in order
to illustrate that an object can "contain~ or
be described by several instances - a bag
of instances. Since the label is not placed
on each instance, but rather on the bag as a
whole, rules must be set for labeling a bag
as a function of the instances. A bag is
labeled positive if at least one instance in
the bag is positive. A bag is labeled
negative if all the instances in the bag are
negative. When looking at a bag labeled
positive, it is ambiguous which instance
triggered the positive label. MIL algorithms
examine the instances in positive bags in
order to find a feature space representation
of the instances that triggered positive
labels.

4,0 SIMULATION
We constructed a vehicle simulation

environment to test if MIL-based data
filtering would add value to operator mission
effectiveness. In the simulation each vehicle

exhibits either a normal behavior or a rogue
behavior. Normal behaviors consist in
entering traffic through an entry point,
following traffic rules , and ultimately leaving
the simulation through an exit point . Rogue
behaviors consist in abnormal patterns that
contradict traffic rules. In addition, each
vehicle will also have two characteristics:
color and type - car or truck. Table 1 shows
each type of behavior and the rule used to
determine if that behavior applies to a given
vehicle.

Table 1 - Vehicle Behavior Definitions

Behavior Rule
Speeding Instantaneous speed

» speed Jimit
Slow Moving Instantaneous speed

« speed limit
Caravanning 2 or more vehicles

with max Euclidian
distance < epsilon
distance, matching
speed at every step
within some epsilon
speed, matching at
least 4 turns

Abandoning In a set of
caravanning vehicles,
one vehicle stops

Circling Vehicle makes a
series of more than 8
same-direction turns

Multiple U-Turns Vehicle reverses
coordinates

In MIL terminology, vehicle behaviors are
instances, time epics are bags, and the
description of behaviors in terms of low­
level features defines the feature space. To
support the instances (vehicle behaviors) in
our simulation, we defined a feature space
that is consistent with vehicle behavior
metrics. Table 2 shows the features present
in the simulation.

Table 2 - Feature Set

Feature Name T e
S eedin Cars Present Boolean

33

Number Speedina Cars Inteaer
Slow Moving Cars Boolean
Present
Number Slow Moving Integer
Cars
Caravans Present Boolean
Number Caravans Inteaer
Abandoned Cars Present Boolean
Number Abandoned Cars Inteaer
Circling Cars Present Boolean
Number Circlina Cars Inteaer
Multiple U-Turn Cars Boolean
Present
Number Multiple U-Turn Integer
Cars
Number Cars Inteaer
Number Trucks Inteaer
Number Red Vehicles Inteaer
Number Blue Vehicles Inteaer
Global Maximum Soeed Inteaer
Global Minimum $Deed Inte-a-er

The simulation will be launched in
two stages: the pilot stage and the full
simulation stage. This paper describes the
structure and test results on the pilot stage
of the simulation and outlines the structure
of the full simulation stage.

4.1 Pilot Stage
The pilot stage simulation is written

in Java and is designed to be a proof of
concept for MIL-based data filtering in a
defense analysis environment. Since the
pilot simulation is smaller in scale, it
contains a subset of all the features present
above. The features present are illustrated
in Figure 3 below. The pilot simulation
consists of three main components: the
GUI, the simulation engine, and the MIL
classifier.

4.1.1 Pilot Stage GUI
The pilot stage GUI is designed

solely to obtain labels from an analyst or
agent on different time epics. Figure 3 shows
the pilot simulation GUI. The top part of the
GUI allows the experiment organizer to load
the simulation for each participant or agent.
Each agent can then use the three buttons

to provide a label on the summary data for a
given time epic and to move on to the next
time epic. Below the input buttons is a
window that shows the summary data for a
given time epic. The agent is only allowed to
view the next time epic after they have
provided a label for the current epic.

' A ~ Vebkle Be~ ... ior Pilot Exptrlmen •
Filt Load Statiuks

Pluse dulde If the cunen! epic Is useful to your ta s~.

.L_u_ .. _r"_' _~l Not U~eful Next Time [pIC

LIbeling TIme [pic 1 / 60
"umber Circling Cars : 0
Numb", Mult iple U- Turn (ar.; : 0
Global MlI~imum Speed : 2S
Clob..1 Minimum Speed ; 22
Number SpHdinr; COl,. ; 0
Number Slow Moving Cilrs : 3
'Numbe r (arivinlng (if! : 2
Number Ablndonf<l Cirs : 0

I #
Figure 3 - Pilot Simulation GUI

4.1.2 Pilot Stage Simulation Engine
The simulation engine is in charge of

loading the summary data for each time
epic, presenting that to the agent, recording
the label for each time epic, and finally
instantiating the MIL classifier with the
labeled data for each time epic. The
simulation engine takes as input a text file
containing the summary data for 60 training
time epics. The engine reads the text file
line by line, displays it to the agent, and
then records the same data along with the
labels provided by the agent in a new text
file formatted to be readable to the MIL
classifier. Once the agent has finished
labeling each of the 60 training time epics
according to their task, the simulation
engine instantiates and trains the MI L
classifier using the labeled data file as input.

Once the classifier object is trained
on the labeled data, a new raw data file is
presented to the classifier. This new file
contains summary data for 60 evaluation
time epics. Based on the concept learned in
training, the classifier now predicts a label
for each of the 60 evaluation time epics.
The agent then proceeds to the first of two
evaluation phases. The first evaluation
phase is an aided phase where the agent is
shown only time epics that the MIL classifier

34

labels as matching the learned concept of
the agent's task. In the evaluation phase,
the "Useful/Not Useful~ input buttons no
longer provided labels for the classifier, but
rather score the classifier, with the
classifier's score increasing for every
"Useful" time epic label provided by the
agent in evaluation. After the aided
evaluation phase described above, the
agent is shown an equal number of
randomly selected time epics. These time
epics are not selected by the MIL classifier
and thus mayor may not be relevant to the
agent's task. Once again, a score is
incremented each time the agent labels a
time epics as "Useful~ . In the Results
section, we compare the evaluation scores
in the MIL-aided and the unaided evaluation
phases.

4.1.3 Pilot Stage MIL Classifier
The pilot stage MIL classifier is built

based on the Diverse Density algorithm
introduced by reference [3]. The classifier is
instantiated in the pilot simulation using a
Java jar file from the WEKA data-mining
package. The simulation engine utilizes the
classifier's training, prediction, and cross
evaluation functions . Following general data
mining rules, the simulation engine presents
completely different data sets to the
classifier for training and prediction . For
each task we also run a cross evaluation on
the prediction data set. The cross evaluation
function uses parts of the prediction data set
for training and parts for evaluation,
recursively changing which parts are used
for training and which for evaluation. We will
also present cross evaluation scores across
all tasks in the Results section.

4.2 Full Simulation Stage
The full simulation stage will be built

on the existing pilot stage. The goal is to
design a visual way to present each time
epic to a human participant as opposed to a
computer agent. Instead of showing the
participant summary data for each time
epic, the simulation will instead show a map
with vehicles moving from entry to exit
points. Each vehicle will have an associated

track - GPS coordinates for each time step.
Most vehicles will have normal, random
behaviors, but some vehicles will exhibit
" rogueH behaviors. Rogue behaviors will
consist in speeding, moving too slowly, two
or more cars caravanning , cars being
abandoned , and so forth . While each time
epic unfolds, the simulation engine will
compute the value of each feature in feature
space. Instead of labeling the time epic
based on parsed summary data, the
participants will have to observe how each
time epic unfolds by following the cars and
seeking behaviors relevant to their task.
This method of presenting the participants
with information is more realistic and similar
to what an analyst would experience in a
defense environment.

5.0EVALUATING MIL
We used an agent-based simulation

to measure if the MI L-based data filtering
we propose in this paper can add value to
analyst mission effectiveness. To that end ,
we created a list of fourteen tasks relating to
vehicle behavior that an analyst might be
interested in. Table 3 shows a list of the
tasks. Each task is based in identifying at
least one rogue vehicle behavior.

Table 3 - Tasks

Task Task Type Task
10
1 Simple Identify

ABANDONED
vehicles

2 Simple Identify CARAVANS
3 Simple Identify CIRCLING

vehicles
4 Simple Identify SLOW

vehicles
5 Simple Identify SPEEDING

vehicles
6 Simple Identify U·TURN

vehicles
7 Composite Identify

1/2 ABANDONED &
CARAVANS

8 Composite Identify CIRCLING &
1/2 U·TURNS

35

9 Composite Identify SLOW &
112 SPEEDING

10 Composite Identify SPEEDING
112 & CARAVANS

11 Composite Identify CARAVANS
213 & ABANDONED &

SLOW
12 Composite Identify SLOW &

213 CIRCLING & U-
TURNS

13 Composite Identify SLOW &
213 SPEEDING & U-

TURNS
14 Composite Identify SPEEDING

213 & CARAVANS & U-
TURNS

Tasks 1 through 6 ask the agent to
provide positive labels for time epics that
exhibit a single vehicle behavior given in the
task. Tasks 7 through 10 ask the agent to
provide positive labels for time epics that
exhibit at least one of two vehicle behaviors
given in the task . Finally. tasks 11 through
14 ask the agent to provide positive labels
for time epics that exhibit at least two of
three vehicle behaviors given in the task .

A computer agent was assigned
each of the fourteen tasks in turn . The agent
labeled all 60 training time epics according
to the task at hand. After the training phase,
the agent proceeded to the evaluation
phase. In the aided evaluation phase, the
agent was only shown time epics that the
MIL classifier labeled as matching the
agent's task . The agent was given a positive
point for every positive label it assigned to
time epics in the evaluation phase. In the
unaided evaluation phase, the agent was
shown a random set of time epics and again
scored on the number of positive labels it
assigned. The evaluation data set did not
contain exactly the same number of time
epics matching each of the fourteen tasks.
To be fair, the agent was shown exactly the
same number of random time epics in the
unaided phase as the number of time epics

6 .0RESULTS
We present the results from all

matching the agent's task in the aided
phase. To illustrate, suppose that in the
tra ining phase, the MIL classifier learned
that the agent had been assigned task 2. In
the aided evaluation, the MIL classifier
showed the agent all time epics matching
task 2 in the evaluation data set. Suppose
there were 13 matches. Then, the agent
was also shown 13 random time epics in the
unaided evaluation some of which
happened to match task 2 and some that
did not. This was done to ensure that the
agent had a chance to score the same
number of points in both the aided and the
unaided evaluations.

As we discussed, the next stage in
the simulation will provide real human
subjects with a visual display of each time
epic. This will mimic a defense analysis
environment better than the pilot simulation,
but will introduce the possibility of human
error into ali measurements. In order to
simulate the effect of human error on the
accuracy of the MIL classifier, we ran six
more trials with imperfect labels. In these
trials, the agent injected 1, 2, or 3 wrong
labels when labeling the 60 training time
epics. The wrong labels were both false
positives (i.e. a bag was incorrectly labeled
positive even though it did not match the
task at hand) and false negatives (i.e. a bag
was labeled negative even though it did
match the task at hand), thus adding six
more trials in addition to the perfect labels
trial . This approach is perhaps unfair toward
the MIL classifier because we simulate
human error or indecision in the training
phase, yet in the evaluation phase, the
agent makes no mistakes in labeling, thus
adding negative bias to the accuracy of the
classifier. Nonetheless, the point was to
stress the classifier by simulating real-world
conditions. The Results section shows the
performance of the MIL classifier across the
perfect labels trial as well as the six
imperfect labels trials.

seven trials as lift charts. We graph the
scores form the unaided evaluations on the
x-axis and the scores from the aided
evaluations on the y-axis. If the aided and

36

unaided evaluations exhibited similar
performance, all points would lie on the 45-
degree line. On the other hand, if the aided
evaluation scores are higher than the
unaided scores, then we expect the points
to lie above the 45-degree line. Figure 4
shows the results from the perfect labels
trial.

Perfect Labels

20 r--+--~~--------~ ...
15 +------"'.'----+-------,~'----__I •• •
1 0 +--.. --------,~'---------_I

5 +----.;'"'---------------1

o-j£--~----~--~----I

o 5 10 15 20

L,~=_~==~~~~~# Figure 4 - Scores with Perfect labels

The scores from all fourteen tasks are in the
top left of the chart, showing that the Mil
algorithm has added value to mission
effectiveness by showing the agent time
epics that matched its task in the aided
evaluation phase. Figure 5 shows the results
from the two trials with one wrong label. In
this and all following figures the green
(triangle) points represent false positive
labels and the blue (diamond) points
represent false negative labels.

20

15

10

5

0

1 False Positive & 1 False
Negative

...... ...
./'"
0 5 10 15 20

6 1 false positive . 1 false negative

Figure 5 - Scores with 1 Mislabeled Bag

Here we see that some of the tasks have
scores that are closer to the 45-degree line,
suggesting less lift from the MIL classifier.
Nonetheless, the majority of task scores
remain in the top left region of the chart.
Figure 6 shows the results with two wrong
labels.

2 False Positive & 2 False
Negative

20 ,---~~--~------~

1 5 t-;-~----=-'

10 W~~-=o~~--l
5 +--~""'=-------------I

O~~~--~--~--_I

o 5 10 15 20

6 2 false positive + 2 false negative

~~ .. ~~~~w=~~# Figure 6 - Scores with 2 Mislabeled Bags

Finally, Figure 7 shows the results with three
wrong labels.

3 False Positive & 3 False
Negative

15 +--~~~~----~~--_I

10 ~~~~~~----~

5 +----."..=-------------1

O-j£=---~----,_--~----I

o 5 10 15 20

.. 3 false positive + 3 false negative
~~~~~~~~~~~# 

Figure 7 - Scores with 3 Mislabeled Bags 

The difference between the one wrong label 
case and the two wrong labels case is not 
immediately noticeable. In fact, it appears 
that, overall , the one wrong label case 
resulted in lower scores than the two wrong 
labels case. In the three wrong labels case 
it is noticeable that aided scores are overall 
lower, detracting from the lift of the Mi l 
classifier. Table 4 shows average score 



 

37 
 

values across all tasks by the number of 
wrong labels, Averaging across all label 
types, we observe that the agent obtained 
aided evaluation scores that were 3.3 times 
higher than unaided evaluation scores, 

Table 4 - Average Scores Across Tasks 

Score 

Label Type Aided Unaided 

Perfect 15.50 4.57 

1 False Positive 14.14 4.35 

1 False Negative 13.79 3.71 

2 False Positive 13.93 4.21 

2 False Negative 14.64 4.79 

3 False Positive 13.00 4.07 

3 False Negative 14.07 4.14 

Cross Evaluation Results Given 
False Positive and False Negative 

• ] 
• 

...J 0.95 
c 
o 
:; , 
~ 
w 0.85 t--tld'----=- 4 --• • 
~ 
u 
U 
~ 0.75 t-----------. - --i 
o 
u -c 

~ &. 0.65 +-____________ ---1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

~Perfect Labels 
--*-3 False Negative 
_ 2 Fatse Negative 
_ 1 False Negative 
- Sing le Benchmarll 

Task 10 
_ 3 False Positive 
_ 2 False Positive 
~1 False Positive 
- Composite Benchma 

Figure 8 - Cross Evaluation Results 

Given the current data, it is difficult 
to conclude if false positive or false negative 

training labels are more detrimental to the 
accuracy of the MIL classifier. Thus far, the 
scores show that false negative labels were 
more detrimental to the classifier if only one 
bag was mislabeled. If two or three bags 
were mislabeled, false positive labels were 
more detrimental to the accuracy of the 
classifier. 

Figure 8 shows the cross evaluation 
results obtained on the evaluation data set. 
Each line shows the percentage of correct 
labels from the MIL classifier given different 
numbers of wrong training labels. Naturally, 
the perfect labels line is highest in the chart, 
indicating best classifier performance. The 
green horizontal line marks the single 
behavior task benchmark. In other words, if 
the classifier labeled all bags negative, it 
would still get 78% correctly labeled bags 
because only 22% of bags have true 
positive labels in the evaluation data set. 
The red horizontal line marks the composite 
behavior task benchmark. The classifier 
would get 70% correct labels if it labeled all 
bags negative because there were only 
30% true positive bags in the eva luation 
data set. It is interesting to note that none of 
the single behavior tasks (1-6) dipped below 
the single benchmark and none of the 
composite behavior tasks (7-14) dipped 
below the composite benchmark, regardless 
of the number of wrong training labels. It is 
also noteworthy that all cross evolution 
results exhibited lower performance on 
tasks 10 and 12, indicating that there exists 
possible task dependence in the 
performance of the MIL classifier . To 
determine if such dependence exists with 
statistical significance, it is necessary to add 
more tasks and trials to the agent-based 
pilot experiment. 

7.0CONCLUSIONS 
Based on the results from the pilot 

simulation, the Multi-Instance Learning 
classifier added value to agent mission 
effectiveness. The robustness of the results 
in the face of mislabeled training bags 
suggests that the classifier will continue to 
add value to mission effectiveness as we 
transition from agent-based simulations to 



 

38 

 

human subject experiments on the full 
simulation. 

With the current data it is not 
possible to determine with any statistical 
significance if false positive or false 
negative training labels are more 
detrimental to concept learning on the part 
of the MIL classifier. However, given more 
trials on the full simulation it may be 
possible to determine which type of label is 
more detrimental . This information is vital in 
creating a fully featured data filtering system 
for defense analysis applications. 

Th is proof-ot-concept simulation 
served to show that (1) a data filtering 
system is useful in relieving strain from 
today's information-flooded defense 
analysts and (2) that employing machine 
learning techniques is a feasible approach 
in building such a system. 

8.0 REFERENCES 
[1] S. Andrews, I. Tsochantaridis, T. 
Hofmann. Support Vector Machines for 
Multiple-Instance Learning. NIPS 2002. 
[2] T. G . Dietterich , R. H. Lathrop. T. 
Lozano-Perez. Solving the Multiple-Instance 
Problem with Axis-Parallel Rectangles. 
Artificial Intelligence Journal, 89, 1997. 
[3] O . Maron , T. Lozano-Perez, A 
framework for multiple-instance learning , 
Proc. ofthe 1997 Conf. on Advances in 
Neural Information Processing Systems 10, 
p .570-576, t 998. 
[4] O. Maron & A. L. Ratan, (1998). Multiple­
instance learning for natural scene 
classification . In Proceedings of the 
Fifteenth International Conference on 
Machine Learning (pp. 341 - 349). 
[5] S. Tong & E. Chang. (2001). Support 
vector machine active learning for image 
retrieval. In Proceedings of the ninth ACM 
international conference on Multimedia (pp. 
107- 118). 
[6) J . Wang and J . D. Zucker. Solving the 
multiple-instance problem: a lazy learning 
approach. Proc. 17th Int'l Cont. on Machine 
Learning. pp. 1119-1 125, 2000. 
[7) C. Yang and T. Lozano-Perez. Image 
database retrieval with multiple-instance 
learning techniques. Proc. ofthe 16th Int. 

Cant. on Data Engineering, pp.233-243, 
2000. 

ACKNOWLEDGMENT 
We would like to thank Brian Rigling of 
SAle for supporting Mihnea Birisan in this 
research . 



 

39 

 

 

Multi-Instance Learning Models for 
Automated Support of Analysts in 

Simulated Surveillance 
Environments 

Mihnea Birisan, Peter Beling 

Department of Systems and Information 
Engineering 

University of Virginia 

Outline 

• Introduction 
• Objective 
• The Multi-Instance Learning (MIL) Algorithm 
• Project Background 
• Applying MIL to Vehicle Tracking 
• Creating a Simulation 
• Evaluating MIL 
• Results 
• Final Observations 

2 



 

40 

 

 

 



 

41 

 

 

 



 

42 

 

 

 



 

43 

 

 

 



 

44 

 

 

 



 

45 

 

 

 



 

46 

 

 

 



 

47 

 

 

 


