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1.0 INTRODUCTION 
Eliminating noise effectively is an important 
step for most image processing tasks. 
Median Filters (1] are one class of effective 
non-linear noise removal techniques for 
gray scale images thanks to their edge 
preserving capability. Another important 
property of median fi lters is that the output 
Image from the filter does not contain any 
synthesized pixels, in other words all of the 
?utput pixels can be found in the input 
Image. For three channel color image 
denoising, one way is to apply median filter 
to each channel separately (Marginal 
ordering vector median filter) (2-3]" however 
this technique results in the loss of no 
synthesized pixels property. Another widely 
us~d technique is vector median filter (4], in 
which color values of pixels are treated as 
3-component vectors and the vector median 
of a filter kernel is computed to be the one 
that has the smallest sum of distances to 
other vectors in the kernel. By applying 
vector median filter to color images, the no 
synthesized pixel property is also satisfied. 
Although an effective filtering technique, 
median filters are computationally 
expensive. For an implementation with a 
kernel width of n, each of the n 2 vector has 
to be compared to other n2 - 1 vectors in 
distances (5]. Each Eudidean distance (L2-
norm) calculation involves 8 floating point 
operations and a square root operation. For 
a kernel window size 3x3, the total number 

of operations is equal to 576 floating point 
and 72 square root operations. 

General purpose computation on graphics 
processing units (GPGPU) can be 
described as a paradigm of utilizing high
performance many-core graphics 
processing units (GPUs) for computation 
tasks that are normally handled by CPUs. 
With the transition from fixed to 
programmable graphics pipel ine, software 
developers gained the ability to use multiple 
computational cores on a GPU for non
graphics data without the explicit need of 
managing parallel computation elements 
such as threads, shared memory, and 
message passing interfaces. Initially, 
GPGPU applications suffered from 
limitations and difficulties arising from using 
graphics API elements such as vertex and 
pixel shaders (6] to perform non-graphics 
computations. To address this issue three 
widely accepted solutions have bee~ 
proposed: the open industry standard Open 
Computing language (OpenCl) [7] 
framework, Microsoft's DirectCompute, and 
NVIDIA's Compute Unified Device 
Architecture (CUDA) [81 . CUDA is an 
extension to the C programming language 
for massively parallel computing using 
GPUs. With the introduction of CUDA and 
the other architectures, software developers 
were able to perform GPGPU without the in-
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depth knowledge of programmable graphics 
shaders. 

In this work, our main contribution is 
implementing vector median filter using the 
CUDA programming paradigm and applying 
CUDA specific optimizations. The 
performance of the implemented filter is 
compared to the single thread CPU and 
multi-processor MPI versions with respect to 
different image and kernel sizes. 

The remainder of the paper is organized as 
follows. Section 2 describes the definition of 
vector median filter, previous attempts for 
accelerating vector median filters , and 
CUDA and MPI implementations. Section 3 
compares the different implementations of 
the filter in terms of performance. Finally, 
Section 4 concludes the paper and 
discusses future work. 

2.0 BODY 

2.1 Vector Median Filters 
Non-linear filters such as Bilateral [9] and 
Median filters are important image 
processing techniques of gray scale and 
colored image processing because of their 
ability to preserve edge, line, and other 
image structures while removing noise 
artifacts. Vector median filter performs non
linear filtering by moving a window over a 
pixel (Fig. 1) (with RGB channels) and 
selects the pixel that has the smallest sum 
of distance to the other pixels in the window 
as the output [4]. 

Given a window that contains N = n x n 
pixels denoted by W = {XI ,X2' ... ,XN) the 
output of vector median filter XVM is 
computed by Eq. (1). 

N N 

L) XVM - xiii:;; l)Xj - xdl ,j = 1, ... ,N, (1) 
i=l i=l 

where 11·11 denotes the distance metric 
between the vectors. In this paper 
Euclidean distance (L2-norm) is used to 
determine the distance between two 
vectors. The Euclidean distance between 

two vectors u and v that are in IR,P is given 
in Eq. 2. 

p 

lIu - vII = L (u(') - V(,)2. (2) 
k=l 

Figure 1. An example 5x5 window. This 
window slides over the target pixels and 
compute the output according to the 25 pixel 
values inside. 

Variations of vector median filters have 
been developed to address wide variety of 
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problem domain. Weighted vector median 
filters [10] fuzzy vector median filters {11] 
are two variations of vector median filter that 
have been successfully deployed in a 
number of applications. 

The computational complexity of vector 
median f ilter makes it very challenging to be 
used for large problems that have stringent 
time requirements. To address this issue, 
there have been numerous attempts to 
accelerate the vector median computation 
by different means. 

In the work of Boudabous et al . {12] , a 
parallel architecture of the vector median 
filter was implemented in an embedded 
system . The time consuming steps of the 
filter were implemented in hardware level, 
specifically by programming Field 
Programmable Gate Array (FPGA) devices 
with VHSIC Hardware Description 
Language (VHDL). 

Another approach to accelerate the vector 
median f ilter was proposed by Barni and 
Cappellini [13] . In this work, the 
peliormance of the filter is increased by 
using the L 1-norm distance metric instead 
of the L2-norm. In addition to using the 
simplified distance metric, another 
simplification the authors adopted is using a 
central color for comparisons. In other 
words , for a window of pixels, the output 
pixel is chosen to be the one that is closest 
to the central color that is obtained by 
component wise application (marginal) of 
median filter to the color channels. These 
simplifications increase the performance of 
the filter significantly, however at a cost of 
decreased quality of the output. 

There are other attempts to accelerate 
vector median filters by utilizing different 
distance metrics. For a list of such work and 
their computational complexity, the reader is 
encouraged to refer to the work of Barni and 
Cappellini [5]. 

2.2 A Brief CUDA Primer 
For more than two decades, the end users 
of computer systems with single central 

processing units (CPU) enjoyed the 
increasing performance of their applications 
with each new generation of CPUs. The 
equation was simple, as the clock frequency 
of the CPUs increased with each 
generation; the very same application was 
able to run faster on the new architecture. 
However, this profile of increasing speeds 
has slowed down in 2003 due to the power 
consumption and heat dissipation issues 
{14]. The responses of CPU manufacturers 
to address these limitations were producing 
multi-core CPUs having similar clock 
frequencies with previous generations. With 
this adopted strategy, the expectation of 
increased peliormance with new generation 
of CPUs vanished especially for the so 
called sequential applications that rely on a 
single CPU. In order to satisfy the 
peliormance demand of the end users, 
application developers need to delve into 
the art of parallel programming, which is 
typically performed on large-scale 
expensive parallel computers, such as 
clusters. 

Since 2003, microprocessor manufacturers 
adopted two main strategies for their 
processor designs. The multi-core strategy 
(CPU designs) provides small number of 
large cores (typically 2-4 cores) that try to 
maximize the execution speed of sequential 
programs with their large control logic 
elements and cache structures. On the 
other hand, designs that adopt many-core 
strategy (GPU designs) try to maximize the 
floating point calculation throughput by 
devoting more processor area (typically 
120-240 cores) to data processing units 
instead of flow control logic elements and 
large data caches {8]. Because of these 
design choices, the recent ratio of 
theoretical computation peak of GPUs over 
CPUs is roughly 6.5 to 1 (1300 Gflop/s to 
200 Gflop/s). When the huge difference 
between the two architecture's memory 
bandwidth is included in the equation (Fig. 
2) , GPUs tum out to be well suited for 
massively parallel applications with high 
arithmetic intensity, in which the same 
instruction is applied to multiple data {a]. 
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Figure 2. The comparison of GPU and CPU 
architectures in terms of computation power 
and memory bandwidth [8}. 

General~purpose programming using 
graphics processing units (GPGPU) 
became an active research area that 
studies the methods and algorithms for a 
wide range of problem domain such as 
signal and image processing, physically 
based simulations, computational finance, 
and computational biology [15-16] _ The first 
generation of GPGPU applications were 
difficult to implement because programmers 
had to use interfaces that were primarily 
designed for computer graphics 
computations such as C for graphics (Cg) 
by NVIDIA, High Level Shading Language 
(HLSL) by Microsoft, and OpenGL Shading 
Language (GLSL) by Khronos Group. 
These computer graphics oriented APls 
limited the kinds of applications that can 
work on GPUs [14). 

To address this issue, in 2007 NVIDIA 
released Compute Unified Device 
Architecture (CUDA) , which is not only an 
extension to the C programming language, 
but also adding additional hardware to the 
chip to facititate the ease of parallel 
programming [141. In the CUDA enabled 
chips , CUDA programs do not go through 
the graphics interface. CUDA requests are 
handled by a new general-purpose parallel 
programming interface located on the chip. 
CUDA relieves GPGPU application 
developers the necessity of having in-depth 
knowledge of graphics interfaces or 
programmable shaders. 

CUDA also has significant advantages over 
classical parallel programming languages 
and models such as Message Passing 
Interface (MPI) for scalable cluster 
computing and OpenMP for shared-memory 
multiprocessor systems. MPI is for cluster 
systems, in which data sharing is done by 
explicit message passing, in other words 
processors in a cluster do not share 
memory. Parallel applications written using 
M PI model have been known to run on 
clusters with more than 100,000 processors. 
OpenMP, on the other hand, can support 
shared memory interlace. However, it 
suffers from scalability issues. Parallel 
applications using OpenMP could not be 
able to scale beyond a couple hundred 
computing nodes mainly because of the 
thread management overheads (14] . 
Compared to these legacy models, CUDA 
provides a shared memory interface among 
the cores of a streaming multiprocessor 
(SM) along with higher scalability and low
overhead thread management properties. 

CUDA enabled GPU architectures consist of 
arrays of streaming multiprocessors (SM). 
Different generations of GPUs contain 
different number of heavily threaded SMs. 
Each SM contains a total of 8 streaming 
processors (SPs) or in other words cores . 
Cores of the same SM share the control 
logic, instruction cache and fast access 
shared memory. GPUs support up to 4 GBs 
of graphics double data rate (GDDR) DRAM 
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that serves as the frame buffer and texture 
memory for 3D graphics applications. For 
general purpose computations, this memory 
space is referred as the global memory that 
resides off-chip and has very high 
bandwidth. Each SP has a multiply-add 
(MAD) unit, an additional multiply unit, and 
special function units performing floating 
point operations such as square roots. 
Because of massively threaded nature of 
SPs, thousands of concurrent threads can 
be handled for a GPGPU application. The 
recent GPUs with GT200 architecture can 
support 1024 threads per SM, which roughly 
sums up to about 30,000 threads for the 
entire chip [8]. 

In CUDA, fine-grained data parallelism is 
achieved by the massively threaded 
structure. Kernels are user created 
functions that contain statements that are 
executed by each individual thread. These 
threads are organized into a two-level 
hierarchy: 3D blocks consisting of individual 
threads and 20 grid consisting of blocks. 
The threads in the blocks are further divided 
into groups of 32 threads called warps. The 
notion of warp is important, because a warp 
is the unit of thread scheduling in SMs, i.e. 
when a warp is scheduled to run, all of the 
accompanying threads run the same single 
instruction. CU DA also scales transparently 
with the underlying hardware capabilities. 
Without changing the underlying code, the 
GPGPU application can run on different 
GPU hardware that may have different 
number of SMs or thread capacities. This 
important property of CUDA programs is 
achieved by allowing the execution of 
blocks in any order (8]. When a kernel is 
launched, the threads of the kernel are 
distributed among SMs on a block by block 
basis. Each 8M can claim at most 8 blocks 
at a time. When more blocks are involved 
than the maximum number of resident 
blocks (# of SMs x 8) in a CUDA 
application, the maintained list of blocks that 
need to be executed is used and new 
blocks are assigned to SMs as they 
complete the execution of previously 
assigned blocks. 

In order to obtain the maximum 
performance out of the CUDA capable 
GPUs, the memory hierarchy of CUDA has 
to be examined carefully. Global memory 
and constant memory are located at the 
bottom. Global memory (or device memory) 
supports high-bandwidth read-write access 
that has relatively higher access latency 
compared to system's RAM. Because of this 
relatively higher latency, it should be used 
wisely not to cause performance 
degradation. Constant memory supports 
Short-latency high-bandwidth read-only 
cached access by the device. Shared 
memory is an on-chip memory that is 
allocated to thread blocks. Shared memory 
is a very fast parallel access enabled 
memory space, which is often used by the 
threads of the same block to cooperate by 
sharing their input data and intermediate 
results. Registers are at the top of the 
hierarchy. They are allocated privately for 
each thread and typically used to hold 
frequently accessed variables other than 
arrays. Besides these basic memory 
structures, CUOA also provides a texture 
memory space that resides in global 
memory but cached in texture cache. The 
texture cache makes use of 20 spatial 
locality, i.e. if threads of the same warp 
access texture addresses that are close in 
2D space, they can achieve fast access 
rates {S, 14]. Special care has to be taken 
when accessing these memory spaces. 
Because of the underlying DRAM structure 
of global memory, it is used most efficiently 
when threads of the same warp access it in 
a certain pattern. Shared memory accesses 
also require caution for fast access. To 
support parallel access, shared memory 
space is divided into equally sized memory 
banks that can be accessed simultaneously 
as long as different threads in a warp 
access different shared memory banks. If 
different threads try to access memory 
addresses that reside in the same bank, a 
bank conflict occurs and the accesses are 
serialized. More information about memory 
access patterns can be found in NVIDIA 
CUDA C Programming Guide [81 · 
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2.3 CUDA Implementation 
To utilize the massively threaded nature of 
CUDA, we followed a divide and conquer 
approach on the input image. The image is 
divided into tiles of size 1 row and N 
columns that are assigned to thread blocks 
for processing (Fig. 6). Each thread 
therefore is responsible for accessing global 
memory, copying the pixel data to shared 
memory space (Fig. 3), and computing the 
median filter output for a single pixel. 

(11.011 TlU 11 .. 1l~I>tW IUOIUS'Zj 
[II[J)IAN RlOIOS'2+1),-
[ROil TILE 11 .. IIEDIAN RJ.DIUS·2j - - -
[!lEDaN IUDIUS'Z+1] ; 

[ROil TILE 11 + UDIW IUDIUS'Z) - - -
[I![DIAN RJ.DIDS·Z+1j, 

Figure 3. Arrays located in shared memory 
space that store color information of pixels. 
The color channels are stored separately in 
order to access the shared memory without 
bank conflicts. 

As median filter works in a window of pixels, 
individual threads are also responsible for 
accessing and copying the neighboring 
pixels. After the pixel data is copied to the 
shared memory by following the coalesced 
global memory access requirements (Fig. 
4) , each thread computes the median vector 
among the vectors in the surrounding 
window. The median vector computation is 
comprised of 4 nested loops (Fig. 5) and 
takes the major part of the running time. 
When the median vector is computed, it is 
written back to the global memory, which is 
finally read back to the CPU. 
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Figure 4. Loading the shared memory arrays 
with pixel color data. The pixels that are in 
MEDIAN_RADIUS neighborhood are also 
loaded. 
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Figure 5. The computation of the median 
vector is comprised of 4 nested loops. 

2.4 MPllmplementation 
To compare the performance results of the 
CUDA implementation, we chose to use 
MPI as the secondary development model. 
The program is executed with varying 
processor numbers. With the number of 
processors being N (1 master and N-1 
slaves), the input image data is divided into 
N blocks and N-1 of these blocks are 
distributed among the accompanying slave 
processors (Fig. 6). After distribution is 
completed, the master and slave processors 
start computing the vector median filter. 
When slaves complete their assigned 
workloads, they send their output image 
data back to the master node. The outputs 
received from slaves are concatenated to 
obtain the final output image. In this parallel 
strategy, the slave processors do not need 
to communicate with each other, thus they 
only receive and send back a portion of the 
whole image. 
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Figure 6. The comparison of parallel strategy 
of CUDA implementation VS. MPI 
implementation. (a) In the parallel strategy 
for CUDA, the input image is divided to equal 
sized tiles and assigned to individual thread 
blocks. (b) In MPI strategy, whole image is 
divided into relatively larger N parts that are 
distributed to accompanying processors. 

3.0 DISCUSSION 
We chose different platforms to compare 
the performance of vector median filter. The 
two GPU platforms are the NVIDIA GeForce 

86DOM GT on a laptop computer and 
NVIDIA Tesla Personal Supercomputer on a 
workstation machine, whose specifications 
are given in Table 1. 

Table 1. 8600M GT and TESLA GPU 
specifications. 

8600M GT TESLA 

# ofSMs 4 30 

# of Cores 32 240 

Global 
256 MB 4 GB Memory 

Memory 
9.25 GB/sec 102 GB/sec Bandwidth 

Clock Rate 0.95 GHz 1.3 GHz 

MPI parallel programming model is used as 
the platform of choice for sequential (single 
processor) and parallel CPU 
implementations. MPI code is run on Old 
Dominion University's High Performance 
Computing Cluster "Zorka" that has a 
number of Quad core 2.693 GHz AMD 
Opteron processors. In our experiments, we 
utilized 1, 2, 4, 8, and 16 processors. 

The performance analysis of vector median 
filter is performed with varying image and 
kernel window radius sizes. Input images 
are 24-bit RGB images at the resolution of 
512 x 512, 1024 x 1024, and 2048 x 2048 
pixels. The applied kernel radius' are 1 (3 x 
3),2 (5 x 5), and 3 (7 x n Figure 7 presents 
the comparison results. Tesla platform 
outperformed MPI implementations in every 
case. We obtained close performance 
results when we utilized 16 MPI processors 
against the S6DDM GT GPU. In other 
processor settings, the 86DDM GT GPU 
outperformed MPI implementations. 
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Figure 7. The running t imes of Vector Median 
Filter (in milliseconds) on different platforms 
with varying image resolut ions. 

4.0 CONCLUSION 
Vector median filter is a long used effective 
noise eliminating filter. In addition to 
removing noise and other artifacts, it is also 
capable of preserving edges and important 
features in an image. One drawback of 
vector median filter is its computational 
inefficiency. In this work, we demonstrated 
the extensive computing power of GPUs 
and harnessed this power to accelerate the 
Vector Median Filter computations with 
NVIDIA's Compute Unified Device 
Architecture (CUDA). For comparison 
purposes, filter was also implemented by 
using Message Passing Interface and run 
on a high performance computing cluster 
with varying processor numbers. 

CUDA implementations were superior in 
most of the cases. The MPI implementation 
was faster than the 86DDM GT laptop GPU 
when it was using 16 processors and 
working on smallest image size (512 x 512) . 
The average speed-ups of Tesla GPU over 
MPI implementations are presented in 
Figure 8 . 
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Figure 8. The average speed-ups of Tes la 
implementation over MPI implementations. 

We have ported the computationally 
intensive Vector Median Filter to massively 
parallel GPU environment by using 
NVIDIA's CUDA. In order to obtain the 
maximum achievable performance, a CUDA 
developer not only has to take into account 
many parameters, but also has to rethink 
the algorithm in a parallel fashion . Although 
we believe that we produced decent results 
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for the vector median filter using CUDA, a 
near-term goal is to further optimize this 
implementation. 
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Thank you ... 

Questions and Comments? 
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