

129

2.4 GPU Accelerated Vector Median Filter

GPU Accelerated Vector Median Filter
Rifat Aras & Yuzhong Shen

Department of Modeling, Simulation, and Visualization Engineering
Old Dominion University

rarasOO1@odu.edu yshen@odu.edu

~ct~r r~e:~~~~~n j=a:~~e~a~~~t j~ea~ea~:~=i~ tasks. For t~ee chamel color jmag~, a widely used tecmique is

expensive; for a window size of n x n each ~f the n~ vector: h:: ~=;r~~~·o~~ctor1 me1dla n ~It~ a~~ comp!J:alionally
purp?se computation on graphics Processing urVts (GPUs) is the paradi m of ufliz" r "hi h voc Drs In Istances. General
architectures f?r ~mputalion tasks that are normally handled by CPUs. In this ~rk. NVI~I~~ ec! -::erf~~~fi~~ m.any-cor~ GPU
(C~DA) paradigm IS used to accelerate vector median filtering. which has to the best of our knowted~e neve b d

Vlce ~ctitec~e
pe or~ance?f GPU. accelerated vector median fi lter is com pared 10 that of the CPU and MPI-based ve~· een, °d~ff e or~ . e
and Window Sizes, Initial findings of the stud h ed 100x ' IOns or I erent Image
on GPUs over CPU implementations and fuJ~ro;pe_1ver ., 'mt~~veftment of perform,ance ~f ~ect?r median fi lter implementat ioo

"'" up I expec "'" a er more extenSive optimizations of the GPU algor~hm .

1.0 INTRODUCTION
Eliminating noise effectively is an important
step for most image processing tasks.
Median Filters (1] are one class of effective
non-linear noise removal techniques for
gray scale images thanks to their edge
preserving capability. Another important
property of median fi lters is that the output
Image from the filter does not contain any
synthesized pixels, in other words all of the
?utput pixels can be found in the input
Image. For three channel color image
denoising, one way is to apply median filter
to each channel separately (Marginal
ordering vector median filter) (2-3]" however
this technique results in the loss of no
synthesized pixels property. Another widely
us~d technique is vector median filter (4], in
which color values of pixels are treated as
3-component vectors and the vector median
of a filter kernel is computed to be the one
that has the smallest sum of distances to
other vectors in the kernel. By applying
vector median filter to color images, the no
synthesized pixel property is also satisfied.
Although an effective filtering technique,
median filters are computationally
expensive. For an implementation with a
kernel width of n, each of the n 2 vector has
to be compared to other n2 - 1 vectors in
distances (5]. Each Eudidean distance (L2-
norm) calculation involves 8 floating point
operations and a square root operation. For
a kernel window size 3x3, the total number

of operations is equal to 576 floating point
and 72 square root operations.

General purpose computation on graphics
processing units (GPGPU) can be
described as a paradigm of utilizing high
performance many-core graphics
processing units (GPUs) for computation
tasks that are normally handled by CPUs.
With the transition from fixed to
programmable graphics pipel ine, software
developers gained the ability to use multiple
computational cores on a GPU for non
graphics data without the explicit need of
managing parallel computation elements
such as threads, shared memory, and
message passing interfaces. Initially,
GPGPU applications suffered from
limitations and difficulties arising from using
graphics API elements such as vertex and
pixel shaders (6] to perform non-graphics
computations. To address this issue three
widely accepted solutions have bee~
proposed: the open industry standard Open
Computing language (OpenCl) [7]
framework, Microsoft's DirectCompute, and
NVIDIA's Compute Unified Device
Architecture (CUDA) [81 . CUDA is an
extension to the C programming language
for massively parallel computing using
GPUs. With the introduction of CUDA and
the other architectures, software developers
were able to perform GPGPU without the in-

https://ntrs.nasa.gov/search.jsp?R=20110012130 2019-08-29T18:31:11+00:00Z

130

depth knowledge of programmable graphics
shaders.

In this work, our main contribution is
implementing vector median filter using the
CUDA programming paradigm and applying
CUDA specific optimizations. The
performance of the implemented filter is
compared to the single thread CPU and
multi-processor MPI versions with respect to
different image and kernel sizes.

The remainder of the paper is organized as
follows. Section 2 describes the definition of
vector median filter, previous attempts for
accelerating vector median filters , and
CUDA and MPI implementations. Section 3
compares the different implementations of
the filter in terms of performance. Finally,
Section 4 concludes the paper and
discusses future work.

2.0 BODY

2.1 Vector Median Filters
Non-linear filters such as Bilateral [9] and
Median filters are important image
processing techniques of gray scale and
colored image processing because of their
ability to preserve edge, line, and other
image structures while removing noise
artifacts. Vector median filter performs non
linear filtering by moving a window over a
pixel (Fig. 1) (with RGB channels) and
selects the pixel that has the smallest sum
of distance to the other pixels in the window
as the output [4].

Given a window that contains N = n x n
pixels denoted by W = {XI ,X2' ... ,XN) the
output of vector median filter XVM is
computed by Eq. (1).

N N

L) XVM - xiii:;; l)Xj - xdl ,j = 1, ... ,N, (1)
i=l i=l

where 11·11 denotes the distance metric
between the vectors. In this paper
Euclidean distance (L2-norm) is used to
determine the distance between two
vectors. The Euclidean distance between

two vectors u and v that are in IR,P is given
in Eq. 2.

p

lIu - vII = L (u(') - V(,)2. (2)
k=l

Figure 1. An example 5x5 window. This
window slides over the target pixels and
compute the output according to the 25 pixel
values inside.

Variations of vector median filters have
been developed to address wide variety of

131

problem domain. Weighted vector median
filters [10] fuzzy vector median filters {11]
are two variations of vector median filter that
have been successfully deployed in a
number of applications.

The computational complexity of vector
median f ilter makes it very challenging to be
used for large problems that have stringent
time requirements. To address this issue,
there have been numerous attempts to
accelerate the vector median computation
by different means.

In the work of Boudabous et al . {12] , a
parallel architecture of the vector median
filter was implemented in an embedded
system . The time consuming steps of the
filter were implemented in hardware level,
specifically by programming Field
Programmable Gate Array (FPGA) devices
with VHSIC Hardware Description
Language (VHDL).

Another approach to accelerate the vector
median f ilter was proposed by Barni and
Cappellini [13] . In this work, the
peliormance of the filter is increased by
using the L 1-norm distance metric instead
of the L2-norm. In addition to using the
simplified distance metric, another
simplification the authors adopted is using a
central color for comparisons. In other
words , for a window of pixels, the output
pixel is chosen to be the one that is closest
to the central color that is obtained by
component wise application (marginal) of
median filter to the color channels. These
simplifications increase the performance of
the filter significantly, however at a cost of
decreased quality of the output.

There are other attempts to accelerate
vector median filters by utilizing different
distance metrics. For a list of such work and
their computational complexity, the reader is
encouraged to refer to the work of Barni and
Cappellini [5].

2.2 A Brief CUDA Primer
For more than two decades, the end users
of computer systems with single central

processing units (CPU) enjoyed the
increasing performance of their applications
with each new generation of CPUs. The
equation was simple, as the clock frequency
of the CPUs increased with each
generation; the very same application was
able to run faster on the new architecture.
However, this profile of increasing speeds
has slowed down in 2003 due to the power
consumption and heat dissipation issues
{14]. The responses of CPU manufacturers
to address these limitations were producing
multi-core CPUs having similar clock
frequencies with previous generations. With
this adopted strategy, the expectation of
increased peliormance with new generation
of CPUs vanished especially for the so
called sequential applications that rely on a
single CPU. In order to satisfy the
peliormance demand of the end users,
application developers need to delve into
the art of parallel programming, which is
typically performed on large-scale
expensive parallel computers, such as
clusters.

Since 2003, microprocessor manufacturers
adopted two main strategies for their
processor designs. The multi-core strategy
(CPU designs) provides small number of
large cores (typically 2-4 cores) that try to
maximize the execution speed of sequential
programs with their large control logic
elements and cache structures. On the
other hand, designs that adopt many-core
strategy (GPU designs) try to maximize the
floating point calculation throughput by
devoting more processor area (typically
120-240 cores) to data processing units
instead of flow control logic elements and
large data caches {8]. Because of these
design choices, the recent ratio of
theoretical computation peak of GPUs over
CPUs is roughly 6.5 to 1 (1300 Gflop/s to
200 Gflop/s). When the huge difference
between the two architecture's memory
bandwidth is included in the equation (Fig.
2) , GPUs tum out to be well suited for
massively parallel applications with high
arithmetic intensity, in which the same
instruction is applied to multiple data {a].

132

- -""' -1/,.. - _""" __ _

,-

,. ,.
,. ,. ,.

_ _ <Ou_ _ -_ _ ... _-
-

- '''''(-

-

-

•
•
•
•

---- -0'__ ..
10Dl -. 10M _ *I' _ mat JOIO

Figure 2. The comparison of GPU and CPU
architectures in terms of computation power
and memory bandwidth [8}.

General~purpose programming using
graphics processing units (GPGPU)
became an active research area that
studies the methods and algorithms for a
wide range of problem domain such as
signal and image processing, physically
based simulations, computational finance,
and computational biology [15-16] _ The first
generation of GPGPU applications were
difficult to implement because programmers
had to use interfaces that were primarily
designed for computer graphics
computations such as C for graphics (Cg)
by NVIDIA, High Level Shading Language
(HLSL) by Microsoft, and OpenGL Shading
Language (GLSL) by Khronos Group.
These computer graphics oriented APls
limited the kinds of applications that can
work on GPUs [14).

To address this issue, in 2007 NVIDIA
released Compute Unified Device
Architecture (CUDA) , which is not only an
extension to the C programming language,
but also adding additional hardware to the
chip to facititate the ease of parallel
programming [141. In the CUDA enabled
chips , CUDA programs do not go through
the graphics interface. CUDA requests are
handled by a new general-purpose parallel
programming interface located on the chip.
CUDA relieves GPGPU application
developers the necessity of having in-depth
knowledge of graphics interfaces or
programmable shaders.

CUDA also has significant advantages over
classical parallel programming languages
and models such as Message Passing
Interface (MPI) for scalable cluster
computing and OpenMP for shared-memory
multiprocessor systems. MPI is for cluster
systems, in which data sharing is done by
explicit message passing, in other words
processors in a cluster do not share
memory. Parallel applications written using
M PI model have been known to run on
clusters with more than 100,000 processors.
OpenMP, on the other hand, can support
shared memory interlace. However, it
suffers from scalability issues. Parallel
applications using OpenMP could not be
able to scale beyond a couple hundred
computing nodes mainly because of the
thread management overheads (14] .
Compared to these legacy models, CUDA
provides a shared memory interface among
the cores of a streaming multiprocessor
(SM) along with higher scalability and low
overhead thread management properties.

CUDA enabled GPU architectures consist of
arrays of streaming multiprocessors (SM).
Different generations of GPUs contain
different number of heavily threaded SMs.
Each SM contains a total of 8 streaming
processors (SPs) or in other words cores .
Cores of the same SM share the control
logic, instruction cache and fast access
shared memory. GPUs support up to 4 GBs
of graphics double data rate (GDDR) DRAM

133

that serves as the frame buffer and texture
memory for 3D graphics applications. For
general purpose computations, this memory
space is referred as the global memory that
resides off-chip and has very high
bandwidth. Each SP has a multiply-add
(MAD) unit, an additional multiply unit, and
special function units performing floating
point operations such as square roots.
Because of massively threaded nature of
SPs, thousands of concurrent threads can
be handled for a GPGPU application. The
recent GPUs with GT200 architecture can
support 1024 threads per SM, which roughly
sums up to about 30,000 threads for the
entire chip [8].

In CUDA, fine-grained data parallelism is
achieved by the massively threaded
structure. Kernels are user created
functions that contain statements that are
executed by each individual thread. These
threads are organized into a two-level
hierarchy: 3D blocks consisting of individual
threads and 20 grid consisting of blocks.
The threads in the blocks are further divided
into groups of 32 threads called warps. The
notion of warp is important, because a warp
is the unit of thread scheduling in SMs, i.e.
when a warp is scheduled to run, all of the
accompanying threads run the same single
instruction. CU DA also scales transparently
with the underlying hardware capabilities.
Without changing the underlying code, the
GPGPU application can run on different
GPU hardware that may have different
number of SMs or thread capacities. This
important property of CUDA programs is
achieved by allowing the execution of
blocks in any order (8]. When a kernel is
launched, the threads of the kernel are
distributed among SMs on a block by block
basis. Each 8M can claim at most 8 blocks
at a time. When more blocks are involved
than the maximum number of resident
blocks (# of SMs x 8) in a CUDA
application, the maintained list of blocks that
need to be executed is used and new
blocks are assigned to SMs as they
complete the execution of previously
assigned blocks.

In order to obtain the maximum
performance out of the CUDA capable
GPUs, the memory hierarchy of CUDA has
to be examined carefully. Global memory
and constant memory are located at the
bottom. Global memory (or device memory)
supports high-bandwidth read-write access
that has relatively higher access latency
compared to system's RAM. Because of this
relatively higher latency, it should be used
wisely not to cause performance
degradation. Constant memory supports
Short-latency high-bandwidth read-only
cached access by the device. Shared
memory is an on-chip memory that is
allocated to thread blocks. Shared memory
is a very fast parallel access enabled
memory space, which is often used by the
threads of the same block to cooperate by
sharing their input data and intermediate
results. Registers are at the top of the
hierarchy. They are allocated privately for
each thread and typically used to hold
frequently accessed variables other than
arrays. Besides these basic memory
structures, CUOA also provides a texture
memory space that resides in global
memory but cached in texture cache. The
texture cache makes use of 20 spatial
locality, i.e. if threads of the same warp
access texture addresses that are close in
2D space, they can achieve fast access
rates {S, 14]. Special care has to be taken
when accessing these memory spaces.
Because of the underlying DRAM structure
of global memory, it is used most efficiently
when threads of the same warp access it in
a certain pattern. Shared memory accesses
also require caution for fast access. To
support parallel access, shared memory
space is divided into equally sized memory
banks that can be accessed simultaneously
as long as different threads in a warp
access different shared memory banks. If
different threads try to access memory
addresses that reside in the same bank, a
bank conflict occurs and the accesses are
serialized. More information about memory
access patterns can be found in NVIDIA
CUDA C Programming Guide [81 ·

134

2.3 CUDA Implementation
To utilize the massively threaded nature of
CUDA, we followed a divide and conquer
approach on the input image. The image is
divided into tiles of size 1 row and N
columns that are assigned to thread blocks
for processing (Fig. 6). Each thread
therefore is responsible for accessing global
memory, copying the pixel data to shared
memory space (Fig. 3), and computing the
median filter output for a single pixel.

(11.011 TlU 11 .. 1l~I>tW IUOIUS'Zj
[II[J)IAN RlOIOS'2+1),-
[ROil TILE 11 .. IIEDIAN RJ.DIUS·2j - - -
[!lEDaN IUDIUS'Z+1] ;

[ROil TILE 11 + UDIW IUDIUS'Z) - - -
[I![DIAN RJ.DIDS·Z+1j,

Figure 3. Arrays located in shared memory
space that store color information of pixels.
The color channels are stored separately in
order to access the shared memory without
bank conflicts.

As median filter works in a window of pixels,
individual threads are also responsible for
accessing and copying the neighboring
pixels. After the pixel data is copied to the
shared memory by following the coalesced
global memory access requirements (Fig.
4) , each thread computes the median vector
among the vectors in the surrounding
window. The median vector computation is
comprised of 4 nested loops (Fig. 5) and
takes the major part of the running time.
When the median vector is computed, it is
written back to the global memory, which is
finally read back to the CPU.

<10<.'[_0.)["".""'-""""".·1 . .. ". ,< .. 1_. ,.-.,. • 0 ~1"" y • roo • 0."). "
.... .G(_oa)("" ... ,,_ , , •

, . x:> ,<o,,-. 1.-.,. • 0 .• <. ~1""" "" ' Y • roo • O.Si)."

<10<"[_.0) [""."'''-"'''''''' •• 1 .
, " .. '-. 10.4100 • 0 ~1"" Y • ro •• 0.'"."

Figure 4. Loading the shared memory arrays
with pixel color data. The pixels that are in
MEDIAN_RADIUS neighborhood are also
loaded.

1/(7<:10 '"".UO'O , •• hit .. o,ll(Ioo. ourr •• "",,,,, (x, ~) , ... 1
t or ('.') - -XtnUII_'U>IUI' J <- ItOI.lll]""I .. ,) _ 1

<O' (.M • - -1LIl~U"_'''''IUI' • <_ "'n'.1I/_ I""" ._)

• • .-r ••• t""". _ 0,
'or , 'ot . __ UO • .1I/ "" , • <_ 1LIb1111 'US, _'J

'.r)<., • __ li;;,.11/ ,"", • <, U;;'1II ,"", ."1
• .-rD .. '.....,. ,: wc,"".rnl -

"'<kIl(_.")1 (... n'AII_ ' ,.
"'<&<;1_.")1 (... n'AII_ ').
~"' .. I_O ..)I (.. n' ... _"U>' I.
..... 1':1_0 1 I •• nl"'_''''''',,"n) •
... '&<;1_""0) 1 •• DllII_RlDI\I!5 • •), ... ' _0._' If"DU"'_aU>IUS • •)

"
,, (• .-r01O'."". < ••• 0 "".)
• .''''''Ot."". _ • .-rD.,.""".,

e1r% _ ... t (_ • • • '1 (-""D'ON] ''''' ..],
,,1<T _ d.t.G[-.. • • ,] (-"".'ON_'U''''' ••],
cl •• _ ... , .. [_""" • • ,] (I I.'ON_"U'US,!],

Figure 5. The computation of the median
vector is comprised of 4 nested loops.

2.4 MPllmplementation
To compare the performance results of the
CUDA implementation, we chose to use
MPI as the secondary development model.
The program is executed with varying
processor numbers. With the number of
processors being N (1 master and N-1
slaves), the input image data is divided into
N blocks and N-1 of these blocks are
distributed among the accompanying slave
processors (Fig. 6). After distribution is
completed, the master and slave processors
start computing the vector median filter.
When slaves complete their assigned
workloads, they send their output image
data back to the master node. The outputs
received from slaves are concatenated to
obtain the final output image. In this parallel
strategy, the slave processors do not need
to communicate with each other, thus they
only receive and send back a portion of the
whole image.

135

•
•
•
•

" _______ c

(a)

•
•
•

(b)

Figure 6. The comparison of parallel strategy
of CUDA implementation VS. MPI
implementation. (a) In the parallel strategy
for CUDA, the input image is divided to equal
sized tiles and assigned to individual thread
blocks. (b) In MPI strategy, whole image is
divided into relatively larger N parts that are
distributed to accompanying processors.

3.0 DISCUSSION
We chose different platforms to compare
the performance of vector median filter. The
two GPU platforms are the NVIDIA GeForce

86DOM GT on a laptop computer and
NVIDIA Tesla Personal Supercomputer on a
workstation machine, whose specifications
are given in Table 1.

Table 1. 8600M GT and TESLA GPU
specifications.

8600M GT TESLA

ofSMs 4 30

of Cores 32 240

Global
256 MB 4 GB Memory

Memory
9.25 GB/sec 102 GB/sec Bandwidth

Clock Rate 0.95 GHz 1.3 GHz

MPI parallel programming model is used as
the platform of choice for sequential (single
processor) and parallel CPU
implementations. MPI code is run on Old
Dominion University's High Performance
Computing Cluster "Zorka" that has a
number of Quad core 2.693 GHz AMD
Opteron processors. In our experiments, we
utilized 1, 2, 4, 8, and 16 processors.

The performance analysis of vector median
filter is performed with varying image and
kernel window radius sizes. Input images
are 24-bit RGB images at the resolution of
512 x 512, 1024 x 1024, and 2048 x 2048
pixels. The applied kernel radius' are 1 (3 x
3),2 (5 x 5), and 3 (7 x n Figure 7 presents
the comparison results. Tesla platform
outperformed MPI implementations in every
case. We obtained close performance
results when we utilized 16 MPI processors
against the S6DDM GT GPU. In other
processor settings, the 86DDM GT GPU
outperformed MPI implementations.

136

VMF - Radiusl
,~

,~

,~ . MI'I. ,

i
. MI'I·I - .MI'I.~

I ~ • MI'I"

. MPH6
~ . utIOMGI

~ ~
.,---~'hlll ,010. , 010 --

(a)

VMF - Radius 2 ,-,-
l 1 ,--I - . MI'I. , - ·1 - ~ -~1I.s1l ,010, ,01_ -.-,., "".tOI" ,~* ,-- ,.

. _·1 ~ liJI_ ".~ . utIOM~T .-.. III ,.,11 H!.loIA _lil9 .,-._.,
,OUllU .. /,-, ,UI __ ,.,

. -" ~H,"ll 109J.009' 'O~ OK

._~T iU,," lH-"" '1,164 .,- 9.1»01 JU9691 " 1_5,6

(b)

VMF - Radius 3 --- .""'.,

i
. _· 1 - , - .-.. . _ 15 - . -"G' ,- .,-

(c)

Figure 7. The running t imes of Vector Median
Filter (in milliseconds) on different platforms
with varying image resolut ions.

4.0 CONCLUSION
Vector median filter is a long used effective
noise eliminating filter. In addition to
removing noise and other artifacts, it is also
capable of preserving edges and important
features in an image. One drawback of
vector median filter is its computational
inefficiency. In this work, we demonstrated
the extensive computing power of GPUs
and harnessed this power to accelerate the
Vector Median Filter computations with
NVIDIA's Compute Unified Device
Architecture (CUDA). For comparison
purposes, filter was also implemented by
using Message Passing Interface and run
on a high performance computing cluster
with varying processor numbers.

CUDA implementations were superior in
most of the cases. The MPI implementation
was faster than the 86DDM GT laptop GPU
when it was using 16 processors and
working on smallest image size (512 x 512) .
The average speed-ups of Tesla GPU over
MPI implementations are presented in
Figure 8 .

~

,~

,~

• , ,. • ,~
~

Average Speed Up of Tesla I MPI

L -,
. '<>1o_M/>I· 1

. r<>1o_ MPl 1

• I""'"" MPl·'
. 1,"", __ ,'

. ' ___ ·16

Figure 8. The average speed-ups of Tes la
implementation over MPI implementations.

We have ported the computationally
intensive Vector Median Filter to massively
parallel GPU environment by using
NVIDIA's CUDA. In order to obtain the
maximum achievable performance, a CUDA
developer not only has to take into account
many parameters, but also has to rethink
the algorithm in a parallel fashion . Although
we believe that we produced decent results

137

for the vector median filter using CUDA, a
near-term goal is to further optimize this
implementation.

5,0 REFERENCES
[1] T. Sun and Y. Neuvo, "Detail

preserving median based filters in
image processing," Pattern
Recognition Letters, vol. 15, pp. 341-
347, 1994,

[2] V, Barnett, "The ordering of
multivariate data," Journal of the
Royal Statistical Society. Series A,
vol, 139, pp, 318-355, 1976,

[3] t. Pitas and P. Tsakalides,
"Multivariate ordering in color image
filtering," Circuits and Systems for
Video Technology, IEEE
Transactions on, vol. 1, pp. 247-259,
295-6, 1991 ,

[4] J , Astola, p , Haavisto, and y,
Neuva, "Vector median fil ters ,"
Proceedings of the IEEE, vol. 78, pp.
678-689, 1990.

[5] M. Barni and V. Cappellini, "On the
computational complexity of
multivariate median fi lters ," Signal
Processing, vol. 71 , pp. 45-54, 1998.

[6] R. J. Rost, OpenGL(R) Shading
Language (2nd Edition): Addison
Wesley Professional , 2005.

[7] Khronos Group, The OpenCL
Specification Version 1. O. Khronos
Group, 2009.

[8] NVIDIA, "NVIDIA CUDA C
Programming Guide," 2010.

[9] C . Tomasi and R. Manduchi ,
"Bilateral filtering for gray and color
images," in ICCV '98: Proceedings
of the Sixth International Conference
on Computer Vision, Washington,
DC, USA, 1998, p. 839.

[10] K. Oistamo, Q . Liu, M. Grundstrom,
and Y. Neuvo, ''Weighted vector
median operation for filtering
multispectral data," in Systems
Engineering, 1992., IEEE
International Conference on , 1992,
pp. 16-19.

[1 1] Y . Shen and K. E. Barner, "Fuzzy
vector median-based surface

smoothing," Visualization and
Computer Graphics, IEEE
Transactions on, vol . 10, pp. 252-
265, 2004,

[12] A. Boudabous, L. Khrij i, A. B.
Atitatlah, P. Kadionik, and N.
Masmoudi, "Efficient architecture
and implementation of vector
median filter in co-design context,"
Radio Engineering, vol. 16, pp. 113-
119, 2007.

[13] M. Bami and V. Cappetlini, "A
computationally efficient
implementation of the Ll vector
median filter," in Digital Signal
Processing Proceedings, 1997. DSP
97., 1997 13th International
Conference on, 1997, pp. 283-286
vot.1.

[14] D. B. Kirk and W-m. W Hwu ,
Programming Massively Parallel
Processors, 1 ed.: Elsevier, 2010.

[15] M. Pharr and R. Fernando, Gpu
Gems 2: Programming techniques
for high-performance graphics and
general-purpose computation:
Addison-Wesley Professional , 2005.

[16] K. Fatahalian and M. Houston,
"GPUs: A closer look," Queue, vol.
6 , pp. 18-28, 2008.

138

139

140

141

142

143

144

145

146

147

148

149

150

151

f7jM005IM WOIlO
M~·~~

Thank you ...

Questions and Comments?

"

