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Abstract. Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately
model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a
three dimensional deterministic code for space radiation transport is now under development. The new code, GRNTRN, is based on
a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical
approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-
perturbative technique. This work discusses progress made to date and exhibits some computations based on the first two

Neumann series terms.

1.0 INTRODUCTION

A recent National Research Council Report
on the management of space radiation risk
[1] highlights the need for an accurate and
efficient three dimensional radiation
transport code to determine and verify
shielding requirements. According to this
report, predictions derived from radiation
transport calculations need to be tested
using a common code for laboratory and
space measurements that have been
validated with accelerator results. Studies
by Wilson et al. [2,3] have identified Green’s
function techniques as the likely means of
generating efficient high charge and energy
(HZE) shielding codes that are suitable for
space engineering and are capable of being
validated in laboratory experiments. In
consequence, a laboratory code designed
to simulate the transport of heavy ions
through one or more layers of material was
developed at NASA Langley Research
Center [2,4,5,6,7]. It was based on a
Green'’s function model as a perturbation
series with non-perturbative corrections.
This early code used a scale factor to
equate range-energy relations of one
material thickness into an equivalent
amount of another material, and proceeded
to perform the transport calculations in the
new material [8]. This method proved to be
acceptable for use with low-resolution
detectors [6,9], but is unsuited for high-
resolution measurements. Range and
energy straggling, multiple Coulomb
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scattering and energy downshift and
dispersion associated with nuclear events
were also lacking from the prior solutions. In
recent publications [10,11], it has been
shown how these effects can be
incorporated into the multiple fragmentation
perturbation series leading to the
development of a new Green'’s function
code GRNTRN (a GReeN'’s function code
for ion beam TRaNsport). GRNTRN has
accurately modeled the transport of ion
beams through multilayer materials
[9,12,13] and unlike earlier codes it does not
make use of range scaling. It is, however,
deficient in that no account is taken of the
variation of particle flux with angle since the
code is purely one dimensional. The present
paper strives to remove this deficiency by
using generalizations of previous work to
develop a fully three dimensional GRNTRN
code and reports on progress made towards
that end.

2.0 BODY

Consideration is given to the transport of
high charge and energy ions through a
three-dimensional convex region V', that is
bounded by a smooth surface 9V , and is
filled with a target material. It is assumed
that o) is subject to a boundary condition
of the form

0,(x,.Q.E)=F,(x,,Q.E), (1)



where f-}(x,,,Q,E) is a prescribed function,

and X, is a point on the boundary. Itis
required that Q-n(x,)<0, where n(x,) is
the unit outward normal at x, € ¥, and the
index j takes on values from 1to N where
N is the number of ions in the model.
¢9,(x,Q,E) is the flux of j-type ions with
atomic mass 4,, at xe }” moving in the

direction © with energy E in units of
MeV/amu.

2.1 Transport Theory
According to Wilson [14], the flux is given by
the transport integral equation

= P_;(Ej)wp;[x '(x,Q),Q,E,]

¢(x.8.E)= P(E) S(E)

+ij P P'F.(Ell}tg:j(};ll)dpll
&7 P(E)S(E)

0 (QQE"EN, (x, +p"Q.Q.E), (2)

where p=x-Q, x'=x—(p-p")Q is the
point where the ray through x in the
direction @ enters V', S‘J(E) is the stopping
power, P (E) is the nuclear attenuation
function and ¢, (Q,Q",E,£") is the

production cross section for j-type ions with
energy £ and direction ©Q by the collision
of k-type ions with energy £' and direction

Q' In addition EJ and E" are defined by
E,=E(p-p'.E)=R"[R(E)+p-p'], and
E"=E (p-p".E) where R (E) is the usual
range—énergy relation. _

The production cross sections used in this
paper are based on S. R. Blattnig's model,
which is fully described in reference [17].
They are given by the approximation

0,.(Q9Q, EFE,)

=0, (E) (B E) f(QQLE),  (3)
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where

(Ek — Et = )3

P T
/f'(E‘]':J.)= T L ML 1 (4)

(27)* o1,
£(Q.Q,.E)=H[r/2- gLl <50
2no -

_exp( 7fim, sin 6 J 5
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and o, (E,) is the total cross section. In
these equations, m, is the proton rest

mass, ¥ and f are parameters associated

with the Lorentz transformation from the
fragment reference frame to the lab frame,

@ =cos '(Q-Q,) is the lab frame scattering

angle, £_is the lab frame energy shift, and

o the corresponding fragment momentum
width [15,16].

By introducing the field vector

D(x.Q.F)=[9,(x.Q.E)], (6)

the fragmentation operator =

2 @] (x.Q.E)= ij’r diz"LﬁdQ'

0 (QQEEYW(xQ.E), (7)

and the linear transport operator L

[L-f(R,.E)],(x.x".Q.E)
~ IDIJ(L.") S'Ij(b'u)
~B(E) S(E)

the transport integral equation can be
expressed in the operator form

J(Q.E"), (8)

®=G’ F+Q.L-Z-® 9)

where Q represents the integral with
respectto p". Since Eq. (9) is a Volterra



type integral equation, it admits the
Neumann series solution [10]

®=3(QL-E-G F=3G"-F (10)

n=0 =0

where F is the boundary flux vector and for
nzl,

G'=(Q-L-E)-G"". (11)
In this solution, the term G"-F represents
the primary flux vector and the term G” -F
represents the flux of the »” generation of
secondary ions produced.

When the boundary condition (1) takes the
special form

S,
9,(x,.QE)=-"=5(1-2-Q,)
: 2

§(E i EU)S(Xb - xu) (12)

where 3§ is the ‘surface delta function’ on
dV , the solution of Eq. (2) is called the
Green's function and is denoted by the
symbol G, (x.x,.Q.Q,.E E). Once the
Green's function is known, the solution for

an arbitrary boundary condition (1) can be
obtained from the formula

9,(x.Q.E) =[G F] (x,QE)

= i.[ ar dxnj -mdQ” j. !\< dE,

kzj
G (%,%0, .9, E E ) F (x0, Q0. E,) . (13)

The summation is taken over k = j (instead
of k> j) to account for the primary ion
spectrum.

2.2 The Zero Order Green's Function
The zero order Green's function is the first
term in the Neumann series (10) with the
unit boundary condition (12). On taking
account of energy straggling, as described
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in [10] and [11], it can be shown that the
zero order Green's function takes the form

G’ (x.%,. Q.9 E.E,)

= ‘Pm(}‘l ) §'m J(I_Q Q,_])S(x "-x”)

i S

P(E) 2r 2zs, (p-p'.E,)

-cxp{ [E-L,(p-pEy)] } (14)

2“'m(p == )0'-‘ E(J)z
where £ =FE (p—p'.E) and, by definition,
E,=L,(p-p'.E)=R,"[R,(E)-(p-p"]
is the mean energy at depth (p - p') g/cm?

of an m-type ion that entered the transport
material with energy F, MeV/amu, and

s, (p—p'.E,)is the corresponding energy
straggling width.

When the boundary condition takes the
more general form (1), the primary flux is
given by

9 (x, Q. F)=[G’-F| (x.QF)

- .[ ar dx”.[ ar d€2, .[ B 4k,
(}: (x.- xn.- Q.- Qu * !‘:‘ “L:I'l )]1_1,' (x“__ Qi'l £ [":I )r (1 5)

which, in general, needs to be evaluated
numerically. In the accelerator beam model
described below however, Eq. (15) can be
approximated analytically and a closed form
expression obtained for the zero order
primary flux. The result obtained in this case
is called the broad zero order Green'’s
function.

Since ion beam experiments play an
important role in analyzing the shielding
requirements against dangerous space
radiations, there is interest in modeling the
propagation of linear accelerator beams
through potential shielding materials. A
simple model can be constructed by
assuming that the accelerator beam
consists of m-type ions with mean energy
E, MeV/amu and mean direction ,. Itis

further assumed that the beam has



Gaussian profiles in both angle and energy
and that it enters the material at points that
are distributed in a Gaussian manner about
the mean point of entry x,. In order to
accomplish this, it is assumed that the
boundary o¥ is defined by the single-
valued, continuously differentiable
parametric equations

IV ={x:x=x(uv),u,<usu,v,<v<v:} in
which case the element of surface area is
given by dS =|d,x xd x|dudv and the
surface delta function is given by

5‘_‘(x = XU) = |auxll X arx[ll_] 5(“ — u[] )é‘(v = vl]) &
The boundary condition (1) may then be
assumed to take the Gaussian form

g,
F(x,.Q.F)= -
J 4rs,’so5, K Ko |0,x, %x0,x, |

-exp (HE' _uu): +5Vb _vu): exp (E_ E‘E} ):
2s .~ 28"

x “E

-exp{——(l_g'?")_}, (16)
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where x, =x,(1,.v,), 5..5, and s, are the
spreads in space, angle and energy
respectively, and K, , K, are normalization
constants. It should be observed that in the
limitas s_,s,.5, = 0, the boundary
condition (16) reduces to the Green's
function boundary condition (12).

Equation (16) may now be substituted into
Eg. (15) and the resulting integrals
approximated by the mean value theorem
and saddle point techniques discussed in
[10]. The primary flux, which in this case is
called the broad zero order Green's function

G’ (x,x,.Q.Q, E. E,), is then given by the

gm

expression
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P,(E,)
P(E)

m

5, H[-Q n(x")]

Jm

47K Ko |0,x %9 x5 sosh (p— pEy)
'B,\'p{— (” - ”“)2 +1(V'_ vu)z }

G (%X, Q. Q. . Ey) =

2.5. 2

[[1-2.9)]

255

_cxp{_w—ﬁ'ﬂ,(p—p:&,n‘} a7

-exp

25, (p-p\E,)’*
where

sn(p=pLE) =5,(p=p E)

S, E]

2.3 The First Order Green's Function
The first order Green's function is given by
the second term of the Neumann series (10)
with the unit boundary condition (12). Since
boundary condition (12) is a special case of
the boundary condition (16), only the latter
will be discussed. It may be recalled that
the first generation fragment flux is
determined by the formula
G'=(Q-L-Z)-G". Therefore, on replacing
G" by the broad zero order Green's

function G® and expanding the result, it is
found that the broad first order Green's
function is given by the expression

Gl (XX, Q.9 E.I,) =

[ d dezlj dQ,
o TP B)S (k) e e
H[-Q, n(x,)|o, (Q.Q,.E"E)

fm

b

|ar-'x1 5<a\'xl I S‘r:su‘s‘m ()ol s !ol I-‘ EO)




R “—m (L "-p ' E)I expd — ("= uy)* + ("= v,)’
K KD E] 2

expl- L= La(0 "= L E)]
2'5‘:}:()0] _)01 -‘EO)‘

expd L~ R)
8 23:22 i

(19)
where p,"=x"Q,, x,"'=x"-(p,"-p,)Q, is
the point where the ray through x", in the

direction @, enters V. E =E (p,"-p,".E).

f?m =ﬁ,,,(,|.cvl "—p,'E,) is the mean energy at
depth (p,"-p,") glcm? of an m-type ion that
entered the transport material with energy
E, MeV/amu, and s’ (p,"-p,.E,) is the
corresponding energy width.

The expression in Eq. (19) can be evaluated
by numerical quadrature, but this is
computationally expensive and therefore it
is desirable to construct an analytical
approximation. This can be done by making
use of Taylor's theorem, the mean value
theorem, and saddle point techniques as
described in [10], and yields the result

G (%%, R0, E, Ep) =— -2 0]
’ (2;[)2 KxKQSx"SQ
(=) +(v=v,)
ex =
|0,x%0 x| \p{ 25

1-Q.Q )
_exp{_%}q;,(p,pzﬁ,ﬂ._o, (20)

0
where

C,.(p%)
2g'..(p%)

gm(P) gm(P)
. ]'f R —— - I'F i ————
{c [ﬁﬁ,(ﬂ*)} ’ (Jis},,(p*)}

Gy P E.Ey) {

}
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C ',}'m (p* )Sr]rr (fo*)
V278", (0%’

T N N - )
{“’[m—)"] - { 25 (P M e

p* is the root of the equation g, (p")=0,

gm(P"V=E, (p"- p.E)~E||E,(p"- p.E,)]
-E(p-p",E), (22)

st (p*) =st(p*-p.E) +0%y,
E (p-p*. EDBLE, (p—p*.E))*, (23)

and

S IE (p-p".E)NP,(E,)

C.(p"= SI,-(E)R:'(E)

PIE (p-p".L)]
)D:Jw[Erlr(p_ p"‘ F:U)]

ok, (p—p"E,))]. (24)

3.0 DISCUSSION

To illustrate some of the theory presented
above, the case in which the boundary flux
consists of the m™ component of the
Galactic Cosmic Ray (GCR) spectrum is
discussed. Since the GCR is isotropic and
spatially uniform, boundary condition (1)
takes the special form

0,(x,.Q.E) =5, F, (E), (25)

where the spectra F (£) are broad
functions of energy. These have been
modeled by Badhwar and O'Neil (1995)
and made available in tabular form at a

number of solar maxima and minima
between the years1958 and 1989.

In these circumstances, Eq. (15) for the
primary flux takes the form



9’ (x.Q.E)=[G’ -F] (x.Q.E)
j 5_JMF;N(EI)
#Nms, (p-p )

-cxp{—[E_E’”(p_p:El)]-}dE], (26)

O oy
ﬁH —ﬂ- } ] m
[-Q-n(x") 05

2Sna(p_p'?E])2

and, with the help of Taylor's theorem and
the mean value theorem, may be further
approximated as

9/ (x, Q.E) =3, H[-Q n(x")]

_Pm(Em)S'm(Em)!; (E ) (27)
PABYS(E) ™ ™

The first generation fragment flux also
simplifies and is approximated by the
expression

9/ (x. QE)=[G'-F| (x.Q.E)
=H|-Q-n(x")]

[ "G (p.p E.E)F,(E)IE, (28)

where G_‘;;"(p, p'.E.E,)is the special case of
G (p.p'.E.E,) for which 5, =0.

3.1 GCR on a Half-Space

In the first example to be considered, the
target is an aluminum solid that occupies
the half-space V' = {(x.y.z) : z= 0} whose
boundary oV is the xy— plane . The
Cartesian components of the vector Q are
given by Q =(sin ycose.sin ysin.cosy) and
are therefore completely determined by the
polar angles ¥ and . The measured GCR

 Fe flux associated with the 1977 solar
minimum [18] provides the boundary
condition (25). The primary flux (27) then
takes the form

¢’ (x.Q,E)=4d,, H[cos 7]

: R}:(Eﬂ ) S:m (Em) ]j

. A (29)
F(E) S,(E)

(E,),
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where E, =FE (z/cosy.E) and 0<y<m/2.

Since the field is axisymmetric about any
line parallel to the z—axis , the fluxes of
interest are functions of z.y,and £ only.
Figures 1 and 2 show the variation of the
*Fe primary flux with 7 and £ at the
points (0,0,0) and (0,0,5) respectively.
Figure 3 provides a similar illustration for the
first generation '°0O fragments at the point
(0,0,5).

“Fa P Flux
(Hoixw mﬂ‘.-ay-u-llowlmul

“Fe Primary Flux
(1oixe Wgnq-my-v-llo\mm}

Fig 2.

"0 Fragment Flux
(10" X # ionsiem’.sec-sr-MeViamu)




3.2 GCR on a Circular Cylinder

In the second example to be considered,
the target is the solid aluminum cylinder
¥’ +3? <167, 0<z<36 and again the
boundary condition is provided by the
measured GCR *Fe flux associated with
the 1977 solar minimum.

Figures 4 and 5 show the variation of the
* Fe primary flux with ¥ and E at the
points (0,0,0) and (0,0,18) respectively,
where the field is axisymmetric. Similar

results for the first generation '°O fragment

flux are shown in Figs. 6 and 7.

The remaining figures deal with the flux at

the point (14,0,9) where the field is no

longer axisymmetric. Figures 8 and 9 show
how the **Fe primary flux varies with ¥ and

E when o=0°and a=90°respectively.
Figures 10 and 11 provide a similar
illustration of the '°O fragment flux.

“Fo Primary Flux
(1ot xe mm':."'.ay.uu eViamu)

*Fo P

Flux
(10'xe wé.'.."".?‘. yosr-MeViamu)

346

Fragment Flux

"0 Fragment Flux
{10 X # ionsiem’-sec-sr-MeV/amu)

"0 Fragment Flux
(10* X # lonsiem’-sec-sr-MeViamu)

-
Fe Primary Flux
{107 X # jonsicm’ -day-sr-MoV/amu)

“Fe Primary Flux
(10 x# mu:?—nu.n-mw-mup



0 Fragment Flux
(10" X # lonsicm’-soc-sr-MeV/amu)

"0 Fragment Flux
(10" X # lons/cm’-sec-sr-MeViamu)

4.0 CONCLUSION(S)

In this work, some progress toward the
development of a fully three dimensional
deterministic code for space radiation
transport was discussed. Approximations

were obtained for the first two terms of the

Neumann series solution of the transport
integral equation. The results were then

illustrated by exhibiting the primary flux and

the first generation '®O fragment flux in a

half-space, and in a circular cylinder, due to

the *Fe component of the GCR.

In future work an approximation for the third

Neumann series term will be obtained and
the Neumann series remainder estimated

by a non-perturbative technique. Predictions

made by the code will then be compared
with the results of laboratory beam
experiments and measured space data.
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Introduction /Motivation

Radiation in Space

3 Main Types of Radiation:
o Galactic Cosmic Rays (GCR)

o energetic charged particles
e penetrating power

@ Solar Particle Events (SPE)
o energetic protons and alpha
particles
o not likely to fragment

@ Particles Trapped in Radiation
Belts Figure: Earth's magnetosphere
and its interaction with the sun.

( NASA )

3/25

Introduction /Motivation

Damage from Radiation

Figure: DNA Damage due to heavy ions.( yasa )

Consequently, steps must be taken to ensure astronaut safety by providing
adequate shielding.
4/25
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Transport Theory

Future Space Programs

@ Require accurate and efficient
methods for radiation transport -
o Determine and verify shielding
requirements
@ National Research Council Report -
o Predictions need to be validated
o Use a common code for lab and
space measurements
o Capable of being validated with
accelerator results

@ Green's function techniques -

Figure: Solar Particle Events. o Likely means for space engineering
( NASA ) and lab experiments

5/25

Transport Theory

Transport Geometry

V' Convex region

JV Boundary of V

n(xb)
x, X, Position vectors of arbitrary
points in V and 9V
b respectively
| 2
0 oV

n(xp) Unit outward normal at x,

Q Arbitrary unit vector at x

6/25
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Transport Thecry

Volterra Integral Equation

Transport Integral Equation

: _ PENSE) - [ PE"S(E")dp"
UHE) = ) §f(E)ﬁ(x(x’Q)'g’E’)+§! P/(E)S;(E)

"

-
: f dE’ / IV (., E" EY) - u(xa + "ULXE) (1)
4

where

€ = Direction of propagation
gj(E) — Energy lost per unit path length per unit mass
a;(E) = Macroscopic absorption cross section
&x(x, U, E"Yy = Flux of k-type ions
ox(Q,Q,E,E"Y = Double differential production cross section
P;(E) = Nuclear survival probability

Transport Thecry

Green’s Function

Figure: Flux of particles through a material.

The Solution: Green’s Function

7/25

G_,'m[xa X0, Q) QO} E'J EO]

(2)
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Transport Theory

Neumann Series Solution

This Neumann series can be expressed as

®=[G°+G'+G*>+G*>+..]F (3)

Figure: Atmospheric air shower.( pierre Auger Observatory Team )

9/25

Primary Flux

The primary flux can be obtained by

M(x,2,E) = [G° F]i(x,Q E)

o0
f dXQ / dﬁo[ dEo
aVv 4 5

'Gj?(x'sxO?Q}QO}Ea EU)FJ(XO"QO‘EO)’ (4)

which needs to be evaluated numerically for some situations.
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Zero Order Green's Function

Ton Beam Erxperiment and the Broad Zero O J ’s Function

Figure: lon Beam Experiment.( gy giiss )

Definition

The Broad Zero Order Green's Function assumes that the beam has Gaussian
profiles in both angle and energy and that it enters the material at points that
are distributed in a Gaussian manner about the mean point of entry.
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First Order Green's Function

First Order Green’s Function

®=[G°+G'+G?>+G>+..]F

Figure: Unit Boundary Condition.
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Results

Galactic Cosmic Rays (GCR)

Figure: Galactic Cosmic Ray Distribution. yasa)

(.,'")j(xb, Q, E) = ()-ijm(E)

where the spectra F,,(E) are broad functions of energy.
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Results

GCR on a Half-Space
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Figure: Coordinate variables.
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Results

l:rcl . ) Wesuils ) p ) ) N .
GCR *°Fe Primary flux for the 1977 solar min
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Results

GCR on a Circular Cylinder
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Figure: Circular Cylinder
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Results

GCR *°Fe Primary flux for the 1977 solar min
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Figure: The ®Fe primary ion flux at ~ Figure: The %°Fe primary ion flux at
(0.0,0). (0.,0,18).
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GCR O Fragment flux for the 1977 solar min
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Results

GCR 0O Fragment flux showing antisymmetry

i3 R}

g% £3

3 °k
Figure: The 190 fragment flux at Figure: The 190 fragment flux at
(14,0,9) when alpha=0 Deg. (14,0,9) when alpha=90 Deg.
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Cenclusions and Future Work

Conclusions

© Volterra Integral Equation
@ Solved using a Neumann Series

solution.
o X < x __ o Green's functions
T AL - o Closed form approximations
___apuv for G® and G
pAGNENG o Showed results for the GCR

boundary condition.

@ Future Work

Figure: Depiction of solar radiation.
(NASA)
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