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Abstract. The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a
simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several
dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an
impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that
investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a
relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a
real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40° field of view for the lowest level of
fidelity, 120° field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real
airplane. Neurco-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set
(CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task
elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even
for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological
and neuro-cognitive measures can further boost the accuracy of the workload prediction.

INTRODUCTION considered a cornerstone of flight instruction
The earliest development of simulators were and pilot certification. The development of
directed towards familiarizing a student pilot modern simulators has evolved to embrace
with the basics of flight before the “real” the most sophisticated dimensions of flight
instruction began in the aircraft. As the training and mission rehearsal.
sophistication of aircraft and flight

simulators increased, the utility of cockpit In flight simulators, physical fidelity relates
procedure trainers (CPTs) became clear — to the accuracy of the physical layout of the
aircrew could learn the layout and function crew station and how closely the visual,
of the cockpit systems with greater auditory, haptic, vestibular, and flight
efficiency on the ground than in the air. The dynamic stimuli mimic those that will be
incorporation of motion and visual systems experienced in the real aircraft. Functional
allowed students to be introduced to even fidelity primarily relates to how accurately
more sophisticated tasks and maneuvers the simulated crew station equipment acts
prior to attempting them in the air. For like the operational equipment and cognitive
certain tasks, such as delivering special fidelity is a quantification of how closely the
ordinance or dealing with catastrophic human factors effects of the virtual
systems failures, simulators provided the environment track with those that will be
only way to prepare a pilot. This reliance on found when operating in the real aircraft.
increasingly sophisticated simulators led to

a belief that, in general, simulators should Stat.ement of Prpblem _

replicate as many aspects of the real-world Designers of virtual environments for
as possible. For commercial aviation, this mission readiness training are ill-equipped
approach has produced simulators that can to deal with difficult cost-benefit trade-offs
be certified to provide complete initial and that may affect fidelity and training
recurrent aircrew qualification. Today, effectiveness or transfer of training.
commercial aircraft flight simulators are Interaction of different fidelity dimensions
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has an impact on trainee immersion,
presence, and buy-in [1,2]. Flight simulators
heed to he designed to achieve a specific
training objective. If too much simulator
fidelity is specified for the objective, the
simulator will be too expensive to acquire,
operate, and maintain. If a device with too
little fidelity is specified, the training
objectives may not be met which may leave
aircrew ill-prepared to perform the real-
world flying tasks, giving rise to the
possibility of loss of hull and life.
Furthermore, simply specifying a very high
fidelity in a flight simulator does not
guarantee that all training objectives can be
met with such a device.

What is needed is a quantitative method to
characterize and predict the effects of
fidelity on pilot performance. Using this
method, flight simulator designers can then
perform cost-benefit trade-offs and flight
training organizations can adjust the training
tasks to achieve the selected training
objectives with the least amount of
expenditure.

Solution Approach

In this paper, we describe the use of the
Cognitive Avionics Tool Set (CATS) to
quantify the effects of simulator fidelity on
heuro-coghitive and physiclogical patterns
exhibited by pilots. CATS was developed by
the Operator Performance Laboratory (OPL)

under a NASA aviation safety project
entitled “‘Operator State Sensor
Investigations” with additional funding

provided by the Office Of Naval Research
(ONR) and industry [3-5]. Qur hypothesis is
that a simulator of the highest fidelity will
generate a human neuro-cognitive and
physiological response that is
indistinguishable from the one observed in
the real aircraft.

In addition to quantifying the effects of
simulator fidelity itself, we hypothesize that
CATS could be used to design flight
simulator curricula that challenge pilots to
such an extent that their neuro-cognitive
and physiological responses (arousal levels)
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equal the intensity of the responses
observed in the real airplane. We believe
that training effectiveness in flight simulators
depends on arousal levels that equal the
ones observed in the real aircraft.

Apparatus

We developed a flight hardened human
state sensor system for use on pilots flying
real aircraft and flight simulators. We
developed the necessary software to read
the sensor state data, synchronize multiple
channels into one stream of data, remove
artifacts that arise at the sensor level,
perform signal processing to characterize
operator workload, and provide output to
users in realtime and for after action
review. The primary components of the
overall software architecture is called the
Cognitive Avionics Tool Set (CATS)[3, 4, 6].

In our experiment, the OPL L-29 research
aircraft (Figure 1) and a matching flight
simulator (Figure 2) provided the task
stimulation at various levels of fidelity to the
pilot who was fitted with a number of neuro-
cognitive and  physiological sensors
including, electroencephalogram (EEG),
electrocardiogram (ECG), respiration, and
eye gaze tracking. As the pilot is performing
a flight mission he/she responds to the
cognitive demands of different mission task
elements with characteristic neuro-cognitive
and physiological patterns that are picked
up by the sensors. The CATS processor
continually reads the stream of data from
the sensors, synchronizes those data into a
unified system state vector, removes sensor
artifacts, and performs signal processing
such as fast Fourier transforms to provide
the CATS operator state classifier with the
data to calculate operator workload in real-
time. This workload estimate is then
transmitted to the plug-in of the instructor
operator station which represents the
primary user interface used by an instructor
to monitor the training progress of a student.
If desired, an instructor can open up CATS
in a separate window to drill down into the
data to investigate readings from individual
sensors.



The experiment was performed on the OPL
instrumented L-29 jet training aircraft
(Figure 1) and a fixed base flight simulator
(Figure 2). The content of the head-up and
head-down displays in the flight simulator
and the jet was identical. The aircraft was
instrumented with an evaluation cockpit in
the rear seat, integrated range
instrumentation pods, a ground support
infrastructure, and an operator monitoring
and evaluation system. The aircraft was
interconnected to a ground station using a
range instrumentation datalink that can
transmit in several formats, including the
Advanced Range Data System (ARDS)
protocol. This data link allowed for remote
control of the experimental apparatus from
our command and control trailer.

Figure 1. OPL’s Instrumented L-29 Jet Trainer
Aircraft

Figure 2. Fixed Base Flight Simulator

The flight simulator featured three channels
of outside visuals, subtending a total of 120°
lateral visual field of view (FOV) or around
40° per channel and a vertical field of view
of 25 degrees. The outside visual (OSV)
channels 2 and 3 were used to manipulate
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the fidelity of the flight simulator with low
fidelity corresponding to the condition where
Q8V 2 and 3 were off and medium fidelity
when O3SV 2 and 3 were on. The high
fidelity level corresponded to runs in the L-
29 jet.

Both the HDD and the HUD in the jet
subtend a lateral field of view of 22°. The
symbology and imagery that was generated
on the HUD was conformal to this field of
view. This means that the HUD was a
conformal window into the real world. From
the crew station in the rear cockpit, the
evaluation pilot had unrestricted visibility of
the real world except for the HUD, which
provided a conformal inset of OS&SV
symbology.

Figure 3 (left) shows the front cockpit of the

L-29 jet where the safety pilot (SP)
operated. The SP  performed all
maneuvering on the ground, take-off,

landing, and repositioning of the aircraft
between runs. The SP used standard
aircraft instruments to navigate in US
airspace under FAR part 91 flight rules. Two
VHF radios were available to allow the SP
to simultaneously communicate with air
traffic control (ATC) and the command and
control ground station on separate
frequencies. A side display touch screen
called the Phase Tagger was available to
the SP to start and stop the recorder, tag
events to check the video data link integrity,
and to check CATS and the integrity of the
eye tracker.

The rear cockpit (Figure 3, right) was the
crew station that the evaluation pilot (EP,
experiment participant) occupied. A daylight
readable 15 inch touch screen display was
installed in the head-down position allowing
presentation of any avionics symbology as
per program requirements. The
symbologies could be driven either with PC
board dedicated avionics graphics
processors. In this experiment, the
symbologies were identical to the ones used
in the simulator and represented an
instrument panel. A daylight readable 15



inch touch screen in the head-up display
(HUD) position provided the same outside
visuals as the center display in the
simulator. The lateral FOV of the HUD
display was 22° which made the imagery
displayed on it conformal with the real
world. Therefore, a pilot in the rear crew

Flight Phase
Tagger

Safety Pilot
Instrument
Panel

Radio and ICS

Figure 3. Front and Aft Cockpit of the L-29

To simplify the deployment of the neuro-
cognitive and physiological sensors on the
pilot we integrated the EEG electrodes in
the liner of a flight helmet. The respiration
belt and ECG electrodes were worn under
the flight suit connecting to the peripheral
electronics that are integrated in a pilot
survival vest as shown in Figure 4. This
level of integration provided for a
ruggedized instrumentation package with a
single point umbilical connection to the
aircraft or flight simulator. The vest was
designed from an ergonomics and flight
safety point of view. The active electrode
sensor cap was worn under the helmet with
an additional soft helmet liner for wearer
comfort. The EEG sensors were powered
with batteries, which eliminated the need for
an isolation transformer to ensure subject
electrical safety.

Eye Tracker
Illuminator
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station had an essentially unrestricted view
of the surroundings, with the central 22°
being a computer generated photorealistic
inset and the remaining view being the real
world.

HUD
Repeater

Eye Tracker
llluminator

Eye Tracker

Eye Tracker Camera3

Cameral

Eye Tracker

Head Down Camera2

Display

CATS
Computer
and Rating

HOTAS Stick
cards

Figure 4. Sensor Vest



One nice feature of the ActiCap electrode
system is that each electrode has an LED,
indicating the quality of the impedance of
the sensor to skin interface. Before the
experimenters put on the helmet over top of
the sensor cap, a quick check of the LED
status was performed to ensure acceptable
impedance.

Figure 5 shows the overall data collection
and analysis architecture that was used for
this study. The figure illustrates the
connections from the CATS sensor vest to
the CART protocol processor. The CATS
software can be run in real-time mode
during data collection to provide the user
with a detailed view of signal quality.
However, running CATS during real-time is
not necessary for experimental data
collection, provided that the experimenters
ensure that good quality data is being
collected with CART. The CART GUI
(sometimes referred to as the phase tagger)
provides the experimenter with the ability to
start and stop data collection for a particular
run, or to advance the data collection
indexed the next run. The recorded run
index provides the user of CATS with the
ability to query individual maneuvers during
after action review. After the flight, the log
files are extracted from the aircraft using
either the datalink or a hardwired Ethernet
hookup. The experimenter can then use the
CATS output generator to create Google
Earth files in the Keyhole Markup Language
(KML) format of each run, with additional
data overlays. This graphical depiction of
the quality of the flight, including flight
technical accuracy is an excellent way to
perform after action review with students.
For researchers, this tool is also an
excellent way to determine root causes of
strange  performance effects. CATS
generates detailed flight and mission
performance plots and data sets that can be
used for analysis of the accuracy of the
flight. Batch mode processing in CATS
generates summary data of the dependent
variables for each run. This data can then
be imported in additional packages such as
Excel, Minitab, or Eurega for analysis.
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Figure 5 illustrates how we used the Eureqa
data mining tool to generate workload
equations for each of the 15 participants.
These equations can be directly pasted into
the expression parser of the workload
gauges of CATS for subsequent real-time
assessment of individualized workload.

EXPERIMENTAL DESIGN

We collected data in the OPL L 29 fighter jet
trainer that served as the maximum fidelity
upper baseline. Neuro-cognitive and
physiological patterns observed under this
maximum fidelity upper baseline were
compared to the patterns observed in the
flight simulator using a within subjects
repeated measures experimental design.

We selected experimental tasks that
included several flight maneuvers such as a
simple climb, a holding pattern at a fix, a
route with waypoint altitude clearance limits
and speed assignments, and a wing-over
maneuver that included several parameters
such as pull-up point pulldown point, pitch
angles, and bank angles, and an instrument
approach (data not yet analyzed).

We used the number of variables that the
pilot had to control for each maneuver as an
indicator of the difficulty level of that
maneuver as shown in Table 1.

Table 1. Assignment of Maneuver Difficulty to

Task

Assumed
Maneuver Difficulty

Level

Climb 1
Hold 2
Route 4
Wing Over 6
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Figure 5. CART and CATS Data Collection and Analysis System

The dependent measures in CATS
comprised in excess of 380 variables
derived from EEG, ECG, eye movement,
and flight technical performance. The EEG
metrics consisted of power values in
different clinical bands (delta, theta, alpha,
beta, and gamma) for different scalp
topographical regions (EOG, midline,
sensorimotor, occipital), and different
summary statistics (average, minimum,
maximum, RMS, standard deviation). The
ECG metrics consisted of straight heart
rate, the percentage of heartbeats outside
of a 20 ms or 50 ms window, and short-term
heart rate trend. Eye fixation metrics
included the number of fixations in areas of
interest, fixation duration, and distance
between subsequent fixations. There are
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many task specific flight technical measures
that were used including cross track error,
vertical track error, speed error, climb angle
and descent angle.

A total of 15 subjects were used in this
study. This pool of subjects was divided into
three groups of five each. Group 1
consisted of those pilots who flew the
simulator using only one channel of outside
visuals, Group 2 flew the simulator with
three outside visual channels, and Group 3
flew their mission in the real aircraft. Each
pilot participant performed five replications
of each run.



RESULTS
Effect of Fidelity on Selected
Variables
In this paper we will focus on the

individualized operator state models. Only a
small selection of physiological data is
discussed herein. Additional results can be
found in [2]. Figure 6 shows the effect of
simulator fidelity on heart rate using a
cumulative histogram. The leftmost trace
indicates a heart rate distribution for those
pilots who flew their mission in the simulator
using three channels of outside visuals with
no motion. The three outside visual
channels provided the pilot with sufficient
lateral  visual information to  allow
performance of the maneuvering tasks with
relative ease. This is reflected in a lower
heart rate. With no change other than
turning off the two peripheral outside visual
displays and flying the mission with only one
channel of outside visuals, the heart rate
increased statistically significantly. This is a
clear indication that the pilots had to
compensate for the lack of field of view
during the maneuvering tasks using
additional cognitive resources in the
process. The increase in simulator fidelity
reduced the level of cognitive loading
because more of the necessary information
is available in the three channel simulator
condition.

One could argue that the flights performed
in the real aircraft should result in even less
cognitive workload and arousal as the visual
display is volumetric and 360° at real-world
resolution. However, this is not what we
found. Instead, we found that the heart rate
was significantly higher in the real aircraft
when compared to both simulator
conditions. This, of course, makes complete
sense as not only the visuals change, but
also the motion dynamics, acoustics, and
the knowledge that one is in fact in a real
airplane flying at high speeds and high
altitudes. Pilots flying in the fixed base
simulator did not feel the effects of
acceleration, whereas pilots in the aircraft
did. We saw many more turn overshoots in
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the aircraft when compared to the simulator.
The pilots who were participated in this
study had not flown nimble acrobatic jet
aircraft before. These participants were
therefore highly aroused in anticipation of
the mission on hand. Flying the aircraft also
provided additional stimulation in the
olfactory, auditory, and proprioceptive
stimulus dimensions. Therefore, we feel that
the heart rate increase observed for the
aircraft sorties in Figure 6 are consistent
with our expectations. A similar effect was
found in EEG (Figure 7).

Curmalative Percentage

T T T T T T T T T T
50 60 70 20 o 100 1o bl 130 40

Beats Per Minute
WN=15 participants at 5 replications. ANOVA:
Fy,42=269.06, p<0.001. Pairwise T: Level 1 vs.
Level 2 T=-5.395, p=0.00001, Level 1 vs.
Level 3 T=17.354, p=0.00001, Level 2 vs.
Level 3 T=22.44, p<0.00001

Figure 6. Beats per Minute Effect for

Simulator Fidelity Levels
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W
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=15 participants at 5 replications. ANOVA:

F. 4:=49.35, p<0.0001. Pairwise T: Level 1 wvs.
Level 2 T=-3.442, p=0.0017, Level 1 wvs.
Level 3 T=5.123, p=0.00001, Level 2 wvs.

Level 3 T=9%.891, p<0.00001

Figure 7. Log of EEG Power in EOG Area for
Fidelity



Personalized Workload Models
We used the study data to build
individualized workload equations,
separately for each participant. We used
replications 1,24, and 5 to build the
workload model and we validated the
resulting equations against data from
replication 3. This sequence was chosen
because we believe that replications 1 and
2 were in the steep part of the learning
curve and replications 4 and 5 were in the
flat part of the learning curve. Combined,
this training data set represented a fairly
neutral learning condition. The Replication 3
validation data point was thought to be in
the neutral region between the steep and
flat part of the learning curve. A total of 15
equations (Table 3) were generated using
Eurega and entered into Excel for validation
against the third application data set. The
resulting predicted task difficulty level was
then plotted against the actual task difficulty
level as shown in Figure 8. The correlation
between the actual and predicted data set
was 0.888. We feel this is a fairly
respectable result in terms of accuracy of
prediction.

Predicted Task Difficulty Level

1 2 4 [
Actal Task Difficulty Level

Correlation between actual and predicted data is 0.888

Figure 8. Predicted vs. Actual Task Difficulty
Level using Neurocognitive and
Physiological Measures

The workload models shown in Table 3
were developed by using Euregqa to
determine the significant variables to
construct a nonlinear regression model for
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each participant. An explanation of the
variable names is given in Table 2

Table 2. Main Variables used in Workload
Prediction Models

Variable Meaning

PERCLOBPM [ Percent difference of
task heartbeat
compared to rest

LPNN20 Log percentage  of
heartbeats falling
outside of a 20 ms inter-
beat interval

LBLM Log beta low midline
EEG power

LBO Log beta occipital EEG
power

LDS Log delta sensory motor
EEG power

LDM Log delta midline EEG
power

HUDFIXDIST | Distance between
subsequent eye
fixations to the HUD

HUDFDMEAN [ Mean duration of eye
fixations made to the
HUD

DISCUSSION

Four flight tasks of increasing levels of
difficulty were used in 15 pilots to elicit a
range of workload responses. Neuro-
coghitive and physiological measures were
collected for three levels of simulator fidelity
(low, medium, high) using the Cognitive
Avionics Tool Set (CATS). Nonlinear closed
form models for workload prediction were
generated based on these data for the
various mission task elements

Our data indicate that there is a significant
difference in the neuro-cognitive and
physiological patterns obtained from pilots
flying a fixed base flight simulator when
compared to flying the real aircraft. We also
found that the real aircraft provided
considerably more cognitive arousal to the
pilots used in our experiment when



compared to the level of arousal that was
provided by the flight simulator. We
discovered that factors such as the extent of
the field of view of the outside visuals in a
flight simulator can considerably affect
neuro-cognitive and physiological patterns
which can be discriminated with the
algorithms integrated in CATS.

Based on our results, it seems that simple
heart rate is a relatively good predictor of
cognitive workload, even for short tasks with
dynamic changes in cognitive loading.
Additionally, we found that models which
use a wide range of physiological and
neuro-coghitive measures can further boost
the accuracy of the workload prediction. By
comparing the physiological and neuro-
cognitive response of pilots in a simulated
environment with the corresponding
response in real aircraft, it was possible to
generate measures of performance that
track with the fidelity of a virtual
environment.

Based on our data, we can conclude with
confidence that pilots flying the aircraft
struggled more and generated larger flight
technical errors when compared to pilots
flying the simulator. However, the
percentage of improvement from the first to
the fifth replication was much larger in the
aircraft than it was in the flight simulator. We
believe that the multisensory stimulation in
the aircraft aids pilots in improving flight
control inputs from one replication to the
next. Operators of fixed base training flight
simulators should consider increasing task
difficulty beyond what is expected in the real
aircraft. This increase in task difficulty will
increase the trainee’s arousal level thereby
generating heuro-cognitive and
physiological engagement levels
approaching those observed in the real
aircraft.

This study is limited to one incarnation of a
fixed base flight simulator and a study with a
relatively small sample size. Without
performing a study in a high-end motion
base simulator, we simply cannot
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hypothesize on the performance that one
would observe in a high-end simulation
device. However, it appears that the
multisensory stimulation experienced in the
real aircraft aids the pilot in refining their
sensorimotor skills throughout about five
replications.
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Table 3. Task Difficulty Prediction Models for CAS Task

Subject

Task Difficulty=f{Dependent Variables)

Fithess

1.3184637*cos{PERCLOBPM + 1.3555878*LBLM) + 0.12370914*PERCLOBPM +
0.51329815*LBLM + 1.6968185*sin{221.40964* LBLM) -
1.1071174*sin{2.0060091*PERCLOBP M) - 0.059559464

0.991

0.059

1.0827115 +(3.3491788* LPNN20 + 0.28201574*PERCLOBP M +5in{69.19706*LB0O) + 2.353423

0.96

0.149

0.84847742 + (0.16712549*PERCLOBPM*PERCLOBPM + -0.91743886™*HUDFIXDIST *cos(-
9.3917542 *PERCLOBP M) *cos(-9.3917542* PERCLOBP M) /HUDFDMEAN - 25.426651* cos({-
9.3917542*PERCLOBP M) *ros(-9.3917542* PERCLOBP M) *cos{ PERCLOBPM -
1.4302194*HUDFDMEAN))/HUDFIXDIST

0.99

0.061

1.564743 + HUDFDMEAN +0.34546053*PERCLOBP M + 1.2832386* cos{LDM*LBLM) +
0.37645277* cos{1.1469964* PERCLOBPM) *cos (1.4169006*PERCLOBPM*PERCLOBP M) +
2.9303737*HUDFDMEAN *cos{1.1469964* PERCLOBP M) -

0.46708772* cos{1.4169006* PERCLOBPM* PERCLOBP M)

0.996

0.045

2.7095852 + cos{ PERCLOBP M) *cos{ PERCLOBPM - 4.4980625e-5)/{0.11290019 +
1.5396878/(PERCLOBPM - 4.4980625e-5)} + 0.91720986*cos{PERCLOBP M) -

0.75311863* cos{PERCLOBP M - 4.4980625e-5)*cos(2.763207*PERCLOBPM*PERCLOBP M) -
0.045648079/5in{PERCLOBPM)] - 3.929251*HUDFDIMEAN

0.991

0.049

Simulator, 1 C hannel of OSV

5.8512836 + 2.6331587*cos{ 10.289939*PERCLOBP M) /(PERCLOBPM - 3.6436858) +
(2.5140517*HUDF IXDIST*sin{sin{14.251 148*30)) -

72.866884*sin(sin{ 14.251148*LB0})}/{cos(PERCLOBPM - 3.6436858/PERCLOBPM) +
PERCLOBPM - 4.1335578)

0.995

0.041

2.609494 + 5in{0.20168348*PERCLOBP M) +

0.20168348* PERCLOBPM *HUDFDIMEA N *sin{0.20168348*PERCLOBP M) *sin(-
3.2543337*LBLM/LPNN20) *sin(-3.2543337*LBLM/LPNN20) +
11.91309*HUDFDMEAN*HUDFDMEAN*HUDFDMEAN *sin{-3.2543337*LBLM/LPNN20) +

0.975

0.081

0.27726284 + 5.3854728* cos{LTS) + 5.3854728* HUDFDMEAN *cos(HUDFDMEAN) +
0.64272124*sin(-2959.6062* B0} + 1.5181508*sin({-0.17662553* HUDF I XDIST)/ {sin{-
626.79443*BO) - 0.965011)

0.997

0.036

2.8691647 +5in(4.32651*LDS + 2.6206877*PERCLOBPM*LDS) +
2.6206877*LDS *cos{LDS*LDM) + 9.831584*cos{LDS*LDM) -
3.0779896* og(PERCLOBP M) *cos(LDS *LDM) - 0.58662623/LDS - 0.14015104*PERCLOBP M

0.97

0.104

10

3.2809136 + 1578.9419/{-1252.537* LG M) + 2.6978884*cos{ 106.14892*LDM) +
0.68518925* cos{-1252.537* LDV +3.3517282*5in(108.99526* LOV) -
1.4094001 *cos{196.23761 *LDM) *cos{ 106.14892* LD M)

0.993

Simulator, 3 C hannels of 05V

11

3.2083549 + 0.31052729* cos{ 231.55759* HUDFIXDIST) + 2.2928617*cos{ -
10.254387*HUDFIXDIST) + 0.22617097 *HUDFIXDIST* cos({-18.568399* L DM) *cos(-
10.222954*HUDFIXDIST*HUDFIXDIST) +(3.2083549 +

0.31052729* cos{231.55759*HUDFIXDIST) + 2.2928617 *cos{-10.254387*HUDF IXDIST) +

0.998

0.024

12

4.3274031 + 2.0209646*sin{0.13923776*PERCLOBP M) +
2.3252544*sin(0.12731959* FERCLOBP M}*sin(2.7443035*P ERCLOBP M) -
1.5827621*sin(0.12731959* PERCLOBP M)*sin(2.2408776* PERCLOBP M) *sin(2.7443035*PER
CLOBPM) - sin{2.2408776* PERCLOBPM)* cos{sin(0.13923776*P ERCLOBP M)}

0.058

13

1.2922051%sin{103.67542/LPNN20) + 0.13030657*PERCLOBPM +

0.026240172*PERCLOBP M/LPNN20 + cos{sin(103.67542/LPNN20}] -
1.7087533%s5in{56.959488/1 PNN20)*cos(0.13030657 *PERCLOBP M +
1.2922051/{0.13030657*PERCLOBP M + 0.026240172* PERCLOBPM/LPNN20)) - 0.72068655

0.994

0.058

14

(-2.6239846* PERCLOBPM - 217.39574)/{ LDEOG *cos{-386.85562* PERCLOBP M) +
3.2971733*LDEOG - 1.7448196%cos{-587.14429*PERCLOBP M) - 0.57358128*HUDLFIXDIST -
11.827497) - 8.500103

0.068

15

0.0022779282*PERCLOBPM*PERCLOBPM +3.7092943* 55 + 2.5593133*HULFD MEAN -
7.2671909*.TS -
1.4026718*0g(0.0019029471* PERCLOBP M*PERCLOBP M) *sin{4.73683174* PERCLOBPM*PER

CLOBP M) - 23.494602

0.988

0.072

Aircraft
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