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In this paper we deal with discontinuous piecewise differential systems formed

by two differential systems separated by a straight line when these two differential

systems are linear centers (which always are isochronous) or quadratic isochronous

centers. It is known that there is a unique family of linear isochronous centers

and four families of quadratic isochronous centers. Combining these five types of

isochronous centers we obtain fifteen classes of discontinuous piecewise differential

systems.

We provide upper bounds for the maximum number of limit cycles that these

fifteen classes of discontinuous piecewise differential systems can exhibit, so we

have solved the 16th Hilbert problem for such differential systems. Moreover

in seven of the classes of these discontinuous piecewise differential systems the

obtained upper bound on the maximum number of limit cycles is reached.
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To solve the 16th Hilbert problem, i.e. to find an upper bound for the

maximum number of limit cycles that a given class of differential systems can

exhibit, is in general an unsolved problem. For the classes of discontinuous

piecewise differential systems here studied we can obtain the solution using

the first integrals of the linear and quadratic isochronous centers.

I. INTRODUCTION AND MAIN RESULTS

We consider planar differential systems of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P (x, y) and Q(x, y) are polynomial functions, and the degree of the systems is the

maximum degree of such polynomials. In particular in this paper we consider discontin-

uous piecewise differential systems of the form

(ẋ, ẏ) = F(x, y) =





F−(x, y) = (f−(x, y), g−(x, y)) if x < 0,

F+(x, y) = (f+(x, y), g+(x, y)) if x > 0,
(1)

being bi-valued on the separation line x = 0. Following9 a point (0, y) is a crossing point

if f−(0, y)f+(0, y) > 0. If there exists a periodic orbit of the discontinuous differential

system (1) having exactly two crossing points, then we call it a crossing periodic orbit. A

crossing limit cycle is an isolated periodic orbit in the set of all crossing periodic orbits

of system (1). In what follows for simplicity we shall say limit cycle instead of crossing

limit cycle.

The analysis of planar continuous piecewise linear systems is well established when the

number of linear zones is small, see33 and the references therein. They frequently appear

in many non-linear engineering devices, which are accurately modelled by piecewise linear

vector fields, see7. They appear also in mathematical biology, see6,30–32. However when

the planar vector field is discontinuous, the adaptation of the 16th Hilbert’s problem

on the maximum number of existing limit cycles, is an open problem. In the last years
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many authors have worked in this problem, trying to determine how many limit cycles can

appear in planar systems separated by a straight line, see for instance1–4,8,10–14,16–18,21–29.

For details on the classical 16th Hilbert problem see for instance15,19,20.

Let p ∈ R2 be a singularity of a differential system in the plane. The singularity p

is a center if there exists an open neighbourhood U of p such that all the solutions in

U \ {p} are periodic. Denote by Tq the period of the periodic orbit through q ∈ U \ {p}.
We say that p is an isochronous center if Tq is constant for all q ∈ U \ {p}.

In this paper we work with the following five types of systems which cover the classes

of a linear system having a center and of all quadratic polynomial differential systems

having an isochronous center. For a proof of the linear system see Lemma 1 of27 and for

a proof of the quadratic systems see page 34 of5.

(I) Any linear differential system having a center can be written as

ẋ = −Ax− (A2 + ω2)y +B, ẏ = x+ Ay + C,

with ω > 0, A,B,C ∈ R and A 6= 0. A first integral of this system is

H1(x, y) = (x+ Ay)2 + 2(Cx−By) + y2ω2.

Of course every linear center is isochronous.

(II) The first family of quadratic isochronous differential systems can be obtained doing

an affine transformation to the system

ẋ = −y + x2 − y2, ẏ = x(1 + 2y),

with first integral

H̃2(x, y) =
x2 + y2

1 + 2y
.

(III) The second family of quadratic isochronous differential systems can be obtained
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doing an affine transformation to the system

ẋ = −y + x2, ẏ = x(1 + y),

whose first integral is

H̃3(x, y) =
x2 + y2

(1 + y)2
.

(IV) The third family of quadratic isochronous differential systems can be obtained

doing an affine transformation to the system

ẋ = −y + 4

3
x2, ẏ = x

(
1− 16

3
y
)
,

with first integral

H̃4(x, y) =
9(x2 + y2)− 24x2y + 16x4

−3 + 16y
.

(V) The fourth family of quadratic isochronous differential systems can be obtained

doing an affine transformation to the system

ẋ = −y + 16

3
x2 − 4

3
y2, ẏ = x

(
1 +

8

3
y
)
,

whose first integral is

H̃5(x, y) =
9(x2 + y2) + 24y3 + 16y4

(3 + 8y)4
.

Our objective is to solve the 16th Hilbert problem for the 15 classes of discontinuous

piecewise differential systems separated by a straight line and formed by two arbitrary

isochronous centers of degree 1 or 2, i.e. we shall provide for all these 15 classes an upper

bound on the maximum number of limit cycles that each class can exhibit. Moreover as

we shall see in many cases the upper bound that we shall provide is reached.

We must mention that, in general it is very difficult (many times for the moment
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impossible) to provide an upper bound for the maximum number of limit cycles that

a class of differential systems in the plane can exhibit, and of course it is even more

difficult to provide the exact upper bound, see for instance15,19,20.

It was proved in Theorem 3 of27, or in Corollary 3 of23 that discontinuous piecewise

differential systems separated by a straight line and formed by two arbitrary linear

centers has no limit cycles. So this case is not considered here.

Our first main result is to provide the maximum number of limit cycles that can exist

for discontinuous piecewise differential systems of the form (1), where in x < 0 there is

an arbitrary linear differential center (I), and for x > 0 there is one of the four quadratic

isochronous differential systems (II), (III), (IV) or (V), after an arbitrary affine change

of variables.

Theorem 1. Consider discontinuous piecewise differential systems separated by the

straight line x = 0 and formed by a linear differential center (I) after an affine change

of variables in x < 0, and by a quadratic isochronous system of type either (II), or (III),

or (IV), or (V) after an affine change of variables in x > 0. The maximum number of

limit cycles of these discontinuous piecewise differential systems are

(a) at most one for systems of type (I)-(II), and there are systems of this type with

exactly one limit cycle, see Figure 1;

(b) at most one for systems of type (I)-(III), and there are systems of this type with

exactly one limit cycle, see Figure 2;

(c) at most two for systems of type (I)-(IV), and there are systems of this type with

exactly one limit cycle, see Figure 3;

(d) at most two for systems of type (I)-(V), and there are systems of this type with

exactly two limit cycles, see Figure 4.

Note that for all systems of type (I)-(k) with k ∈ {II, III, V } the upper bound on the

maximum number of limit cycles is reached.

The proof of Theorem 1 is given in section III.
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Figure 1: The unique limit cycle that exists for system (8)-(9) of class (I)–(II). It is travelled
in counter-clockwise sense.
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Figure 2: The unique limit cycle that exists for system (8)-(11) of class (I)-(III). It is
travelled in counter-clockwise sense.

The second main result of the paper is to give the maximum number of limit cycles

that can appear in discontinuous piecewise differential systems of the form (1) such that

in a half-plane there is a general quadratic isochronous differential system of type (II),
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Figure 3: The existing limit cycle for system (13)–(14) of class (I)-(IV). It is travelled in
counter-clockwise sense.
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Figure 4: The pair of limit cycles that exist for system (16)-(17) of class (I)-(V). They are
travelled in counter-clockwise sense.

and in the other one there is a general quadratic isochronous differential system of type
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(II), (III), (IV) or (V) after an arbitrary affine change of variables.

Theorem 2. Consider discontinuous piecewise differential systems separated by the

straight line x = 0 and formed by a quadratic isochronous center of type (II) after an

affine change of variables in x < 0, and by a quadratic isochronous system of type either

(II), or (III), or (IV), or (V) after an affine change of variables in x > 0. The maximum

number of limit cycles of these discontinuous piecewise differential systems are

(a) at most one for systems of type (II)-(II), and there are systems of this type with

exactly one limit cycle, see Figure 5;

(b) at most one for systems of type (II)-(III), and there are systems of this type with

exactly one limit cycle, see Figure 6;

(c) at most three for systems of type (II)-(IV), and there are systems of this type with

exactly two limit cycles, see Figure 7;

(d) at most three for systems of type (II)-(V), and there are systems of this type with

exactly two limit cycles, see Figure 8.

Note that for systems of type (II)-(II) and (II)–(III) after an affine change of variables

the upper bound on the maximum number of limit cycles is reached.

The proof of Theorem 2 is given in section IV.

The third main result of the paper is to give the maximum number of limit cycles

that can appear in discontinuous piecewise differential systems of the form (1) such that

in a half-plane there is a general quadratic isochronous differential system of type (III),

and in the other one a general quadratic isochronous differential system of type (III),

(IV) or (V) after an arbitrary affine change of variables.

Theorem 3. Consider discontinuous piecewise differential systems separated by the

straight line x = 0 and formed by a quadratic isochronous center of type (III) after

an affine change of variables in x < 0, and by a quadratic isochronous system of type

either (III), or (IV), or (V) after an affine change of variables in x > 0. The maximum

number of limit cycles of these discontinuous piecewise differential systems are
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Figure 5: The unique limit cycle that exists for system (20)-(21) of type (II)-(II). It is
travelled in counter-clockwise sense.
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Figure 6: The unique limit cycle that exists for system (20)-(23) of type (II)-(III). It is
travelled in counter-clockwise sense.

(a) at most one for systems of type (III)-(III), and there are systems of this type with

exactly one limit cycle, see Figure 9;
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Figure 7: The two limit cycles that exist for system (25)-(26) of type (II)-(IV). They are
travelled in counter-clockwise sense.
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Figure 8: The two limit cycles existing for system (29)-(30) of type (II)-(V). They are
travelled in counter-clockwise sense.

(b) at most three for systems of type (III)-(IV), and there are systems of this type with

exactly two limit cycles, see Figure 10;
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(c) at most three for systems of type (III)-(V), and there are systems of this type with

exactly two limit cycles, see Figure 9;

Note that for systems of type (III)-(III) after an affine change of variables the upper

bound on the maximum number of limit cycles is reached.

The proof of Theorem 3 is given in section V.
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Figure 9: The unique limit cycle that exists for system (23)-(34) of type (III)-(III). It is
travelled in counter-clockwise sense.

The following result gives the maximum number of limit cycles that can appear in

discontinuous piecewise differential systems of the form (1) such that in a half-plane there

is a general quadratic isochronous differential system of type (IV), and in the other one

a general quadratic isochronous differential system of type (IV) or (V) after an arbitrary

affine change of variables.

Theorem 4. Consider discontinuous piecewise differential systems separated by the

straight line x = 0 and formed by a quadratic isochronous center of type (IV) after

an affine change of variables in x < 0, and by a quadratic isochronous system of type

either (IV), or (V) after an affine change of variables in x > 0. The maximum number

of limit cycles of these discontinuous piecewise differential systems are
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Figure 10: The pair of limit cycles that exists for system (36)-(26) of type (III)-(IV). They
are travelled in counter-clockwise sense.
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Figure 11: The two limit cycles existing for system (38)-(30) of type (III)-(V). They are
travelled in counter-clockwise sense.

(a) at most three for systems of type (IV)-(IV), and there are systems of this type with
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exactly two limit cycles, see Figure 12;

(b) at most three for systems of type (IV)-(V), and there are systems of this type with

exactly two limit cycle, see Figure 13.

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2

-1

1

2

3

Figure 12: The pair of limit cycles that exists for system (41)-(43) of type (IV)-(IV). They
are travelled in counter-clockwise sense.

The proof of Theorem 4 is given in section VI.

The last main result gives the maximum number of limit cycles that can appear in

discontinuous piecewise differential systems of the form (1) such that in both half-planes

there is a quadratic isochronous differential system of type (V) after an affine change of

variables.

Theorem 5. The maximum number of limit cycles for discontinuous piecewise isochronous

quadratic differential systems formed by two systems of type (V) separated by the straight

line x = 0 after an affine change of variables is at most twelve, and there are systems of

this type with exactly two limit cycles, see Figure 14.
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Figure 13: The two limit cycles existing for system (41)-(45) of type (IV)-(V). They are
travelled in counter-clockwise sense.
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Figure 14: The two limit cycles existing for system (48)-(49) of type (V)-(V). They are
travelled in counter-clockwise sense.

The proof of Theorem 5 is given in section VII. See the remark at the end of the

proof of Theorem 5 related with this theorem.
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II. THE QUADRATIC ISOCHRONOUS DIFFERENTIAL SYSTEMS

(II), (III), (IV) AND (V) AFTER AN AFFINE CHANGE OF VARIABLES

In this section we show the expressions for the quadratic isochronous systems (II),

(III), (IV) and (V) and their first integrals, after doing the general affine change of

variables of the form

(x, y)→ (ax+ by + c, αx+ βy + γ), (2)

with bα − aβ 6= 0. Thus the differential system (II) after this affine change of variables

becomes

ẋ =
1

bα− aβ
(
βγ2 + 2bγc+ bc+ βγ − βc2 + (2abγ + 2αβγ + ab+ αβ

−2aβc+ 2αbc)x+ (2γ + 1)(b2 + β2)y + (−a2β + α2β + 2αab)x2

+2α(b2 + β2)xy + β(b2 + β2)y2
)
,

ẏ =
1

bα− aβ
(
−αγ2 − 2aγc− ac− αγ + αc2 − (2γ + 1)(a2 + α2)x

+(−2abγ − 2αβγ − ab− αβ − 2aβc+ 2αbc)y − α(a2 + α2)x2

−2β(a2 + α2)xy − (αβ2 + 2aβb− αb2)y2
)
,

(3)

whose first integral is

H2(x, y) =
(c+ ax+ by)2 + (xα + yβ + γ)2

1 + 2(xα + yβ + γ)
.

The differential system (III) becomes

ẋ =
1

αb− aβ
(
−bγc− bc− βγ + βc2 + (−abγ − ab− αβ + 2aβc

−αbc)x− (b2γ + b2 + β2 + βbc)y + a(aβ − αb)x2

−b(αb− aβ)xy
)
,

ẏ =
1

αb− aβ
(
−aγc− ac− αγ + αc2 − (a2γ + a2 + α2 − αac)x

+(−abγ − ab− αβ − aβc+ 2αbc)y − a(aβ − αb)xy
+b(αb− aβ)y2

)

(4)
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whose first integral is

H3(x, y) =
(ax+ by + c)2 + (γ + αx+ βy)2

(γ + αx+ βy + 1)2
.

The differential system (IV) becomes,

ẋ =
1

3(αb− aβ)
(
−16bγc+ 3bc+ 3βγ + 4βc2 + (−16abγ + 3ab

+3αβ + 8aβc− 16αbc)x+ (−16b2γ + 3b2 + 3β2 − 8βbc)y

+4a(aβ − 4αb)x2 − 8b(aβ + 2αb)xy − 12b2βy2
)
,

ẏ =
1

3(αb− aβ)
(
16aγc− 3ac− 3αγ − 4αc2 + (16a2γ − 3a2

−3α2 + 8αac)x+ (16abγ − 3ab− 3αβ + 16aβc− 8αbc)y

+12a2αx2 + 8a(2aβ + αb)xy − 4b(αb− 4aβ)y2
)

(5)

whose first integral is

H4(x, y) =
1

16(γ + αx+ βy)− 3

(
−24(ax+ by + c)2(γ + αx+ βy)

+9 ((ax+ by + c)2 + (γ + αx+ βy)2) + 16(ax+ by + c)4
)
.

Finally the differential system (V) after the change of variables (2) becomes

ẋ =
1

3(αb− aβ)
(
4βγ2 + 8bγc+ 3bc+ 3βγ − 16βc2 + (8abγ + 8αβγ

+3ab+ 3αβ − 32aβc+ 8αbc)x+ (8b2γ + 8β2γ + 3b2 + 3β2

−24βbc)y + 4(α2β − 4a2β + 2αab)x2 + 8(αβ2 − 3aβb+ αb2)xy

−4βy2(2b2 − β2)y2
)
,

ẏ =
1

3(αb− aβ)
(
16αc2 − 4αγ2 − 8aγc− 3ac− 3αγ − (8a2γ + 8α2γ

+3a2 + 3α2 − 24αac)x− (8abγ + 8αβγ + 3ab+ 3αβ + 8aβc

−32αbc)y + 4α(2a2 − α2)x2 + 8(a2(−β)− α2β + 3αab)xy

−4(αβ2 + 2aβb− 4αb2)y2
)

(6)

16



whose first integral is

H5(x, y) =
1

(8(γ + αx+ βy) + 3)4
(
9 ((ax+ by + c)2 + (γ + αx+ βy)2)

+16(γ + αx+ βy)4 + 24(γ + αx+ βy)3
)
.

III. PROOF OF THEOREM 1

A. Proof of Theorem 1 for system (I)–(II)

We consider the planar linear differential system (I) with first integral H1(x, y) in

the half-plane x < 0 and the quadratic polynomial differential system (3) with first

integral H2(x, y) in the half-plane x > 0. If there exists a limit cycle of the discontinuous

piecewise differential systems (I)-(3) it must intersect the discontinuity line x = 0 in two

different points (0, y) and (0, Y ). Clearly these two points must satisfy the system

H1(0, y)−H1(0, Y ) = (Y − y) (−4A2y − 4A2Y + 8B − yω2 − ω2Y )

= (Y − y)P1(y, Y ) = 0,

H2(0, y)−H2(0, Y ) =
(Y − y)Q2(y, Y )

[1 + 2(βy + γ)][1 + 2(βY + γ)]
= 0,

(7)

where P1 and Q2 are polynomials of degrees one and two, respectively. Since the points

(0, y) and (0, Y ) are different, from P1(y, Y ) = 0, we get Y as a function of y, that is,

Y = f(y). Substituting this expression in equation Q2(y, Y ) = 0 we obtain a quadratic

equation in the variable y. Then the maximum number of solutions of (7) is two, namely

(y1, Y1) and (y2, Y2), but in fact, these two solutions represent the same limit cycle because

Y1 = y2 and Y2 = y1. So for the discontinuous piecewise differential system (I)–(3), there

exists at most one limit cycle.

Now we give an example of a discontinuous piecewise differential system (I)–(3) having

one limit cycle. On x > 0 we consider the linear differential system

ẋ = 1− x− 5

4
y, ẏ = x+ y, (8)
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whose first integral is

H1(x, y) = −8y + y2 + 4(x+ y)2,

and on x > 0 we consider the quadratic isochronous differential system of type (3)

ẋ = −4− 5x− 6y − x2 − 4xy − 2y2, ẏ = 1 + 3x+ y + x2 + 2xy, (9)

whose first integral is

H2(x, y) =
(x+ y + 1)2 + (y + 1)2

2(x+ y + 1) + 1
.

We can take, without loss of generality, the solution of (7) satisfying y < Y , and so the

pair (y, Y ) =

(
1

5
(4− 3

√
14),

1

5
(4 + 3

√
14)

)
provides the limit cycle that exists for the

discontinuous differential piecewise system (8)-(9) shown in Figure 1.

B. Proof of Theorem 1 for system (I)–(III)

We consider the linear differential system (I) with first integral H1(x, y) on the half-

plane x < 0, and on the half-plane x > 0, we take the quadratic isochronous differential

system (4) with its first integral H3(x, y). Then if there exists some limit cycle for the

discontinuous differential system (I)–(4), it must intersect the discontinuity line x = 0

at two different points (0, y) and (0, Y ), satisfying the equations

H1(0, y)−H1(0, Y ) = (Y − y)P1(y, Y ) = 0,

H3(0, y)−H3(0, Y ) =
(Y − y)Q3(y, Y )

(1 + βy + γ)2(1 + βY + γ)2
= 0.

(10)

In (10) P1 and Q3 are polynomials of degrees one and two, respectively. By following the

same procedure as for the proof of system (I)–(II), we solve the equation P1(y, Y ) = 0

obtaining the variable Y as a function of y, that is Y = f(y). By replacing Y in the

equation Q3(y, Y ) = 0, we obtain again a quadratic polynomial equation in the variable

y, so that the equation has at most two different solutions. As in the proof for system

(I)–(II), these two solutions represent, if they exist, the same limit cycle. Therefore

system (10) has only one solution with y < Y , and then the discontinuous piecewise
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differential system (I)–(4) has at most one limit cycle.

Next we give a specific discontinuous piecewise differential system (I)–(4) having one

limit cycle. On the half-plane x < 0 we consider the linear differential system (8), and

on the half-plane x > 0 we consider the quadratic isochronous differential system of type

(4)

ẋ = −2− 2y + x2 + xy, ẏ = 2 + 2x+ 3y + xy + y2, (11)

with first integral

H3(x, y) =
(x+ y + 1)2 + (y + 1)2

(y + 2)2
.

In this case, the unique solution for system (10) with y < Y is

(y, Y ) =

(
1

5
(4− 3

√
14),

1

5
(4 + 3

√
14)

)
,

and the corresponding limit cycle of the discontinuous piecewise differential system (8)-

(11) associated to this solution is shown in Figure 2.

C. Proof of Theorem 1 for system (I)–(IV)

We consider again on the half-plane x < 0 the linear differential system (I) with its

first integral H1(x, y), and on x > 0 we take the quadratic isochronous differential system

(5) with its first integral H4(x, y). Then if the discontinuous differential system (I)–(5)

has a limit cycle, it must intersect the discontinuity line x = 0 at two different points

(0, y) and (0, Y ). These points must satisfy the equations

H1(0, y)−H1(0, Y ) = (Y − y)P1(y, Y ) = 0,

H4(0, y)−H4(0, Y ) =
(Y − y)Q4(y, Y )

(−3 + 16yβ + 16γ)(−3 + 16Y β + 16γ)
= 0,

(12)

where P1 and Q4 are polynomials of degrees one and four, respectively. We solve the

equation P1(y, Y ) = 0 obtaining the variable Y as a function of y, that is Y = f(y). If we

substitute Y = f(y) in the equation Q4(y, Y ) = 0, we obtain a polynomial equation of

degree four in the variable y, and so system (12) has at most four real solutions. Taking

19



into account the symmetry between these solutions, as in the previous statements there

can be only two different solutions (y, Y ) of (12) satisfying y < Y .

Now, we show a concrete discontinuous piecewise differential system (I)-(5) having a

unique limit cycle. On the half-plane x < 0 we consider the linear differential system

ẋ = 1− x− 2y, ẏ = x+ y, (13)

with first integral

H1(x, y) = −2y + y2 + (x+ y)2,

and on the half-plane x > 0 we consider the quadratic isochronous differential system of

type (4) given by

ẋ = −8.98889− 17.5383x− 20.7447y − 2.21606x2 − 9.76545xy − 7.54939y2,

ẏ = 14.6779 + 21.205x+ 25.5383y + 3.54939x2 + 12.4321xy + 8.88273y2,
(14)

with first integral

H4(x, y) =
1

16x+ 0.0318943(1067y + 2091)
(16(1 + x+ y)4

−24(1 + x+ y)2(4.35569 + x+ 2.12695y) + 9((1 + x+ y)2

+(4.35569 + x+ 2.12695y)2)) .

In this case the solution for system (12) with y < Y is

(y1, Y1) = (−1.898651543493539, 2.898651543493539),

and the corresponding limit cycle of the discontinuous piecewise differential system (13)–

(14) associated to these solutions are shown in Figure 3.

Remark. For all these discontinuous piecewise differential systems it is possible that the

upper bound found for the maximum number of limit cycles cannot be reached. This is

due to the fact that the solutions (y, Y ) do not need to correspond necessarily to periodic

solutions of the discontinuous piecewise differential systems.
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D. Proof of Theorem 1 for system (I)–(V)

We take again the linear differential system (I) with its first integral H1(x, y) on the

half-plane x < 0, and on x > 0 we consider the quadratic isochronous differential system

(6) with its first integral H5(x, y). Thus if the discontinuous differential system (I)–(6)

has a limit cycle, it must intersect the discontinuity line x = 0 at two different points

(0, y) and (0, Y ). These points must satisfy the equations

H1(0, y)−H1(0, Y ) = (Y − y)P1(y, Y ) = 0,

H5(0, y)−H5(0, Y ) =
(Y − y)Q5(y, Y )

(3 + 8yβ + 8γ)4(3 + 8Y β + 8γ)4
= 0,

(15)

where P1 and Q5 are polynomials of degrees one and five, respectively. We solve again

the equation P1(y, Y ) = 0 obtaining the variable Y as a function of y, that is Y = f(y).

If we substitute Y = f(y) in the equation Q5(y, Y ) = 0, we obtain a polynomial equation

of degree 4 in the variable y, and so system (12) has at most four real solutions. Taking

into account the symmetry between these solutions, as in the previous statements, there

can be only two different solutions (y, Y ) of (15) satisfying y < Y .

Finally we show a discontinuous piecewise differential system (I)–(6) having two limit

cycles. On the half-plane x < 0 we consider the linear differential system

ẋ = 1 + x− 2y, ẏ = x− y, (16)

with first integral

H1(x, y) = −2y + x2 − 2xy + 2y2,

and on the half-plane x > 0 we consider the quadratic isochronous differential system of

type (6)

ẋ = 0.00134583 + 7.88817x+ 0.03269y − 5.33333x2 + 5.81077xy − 0.0735418y2,

ẏ = 3.82531− 3.82531x+ 5.44516y − 2.66667xy + 1.93692y2,
(17)
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with first integral

H5(x, y) =
1

(8(−1y − 1.80949) + 3)4
(9 ((−1x+ 0.726346y + 1)2 + (−1y − 1.80949)2)

+16(−1y − 1.80949)4 + 24.(−1y − 1.80949)3) .

For this case, the two solutions for system (15) with y < Y are

(y1, Y1) = (0, 1), (y2, Y2) =

(
1

5
,
4

5

)

and the corresponding limit cycles of the discontinuous piecewise differential system

(8)–(17) associated to this solution is shown in Figure 4.

IV. PROOF OF THEOREM 2

A. Proof of statement (a) of Theorem 2.

We consider the quadratic polynomial differential system (3) with first integral

H2(x, y) in the half-plane x < 0. By changing the parameters (a, α, b, β, c, γ) to

(a1, α1, b1, β1, c1, γ1) in system (3) and in its first integral, we obtain a second isochronous

quadratic differential system of type (3) with the first integral H̃2(x, y), namely

ẋ =
1

b1α1 − a1β1
(
β1γ

2
1 + 2b1γ1c1 + b1c1 + β1γ1 − β1c21 + (2a1b1γ1 + 2α1β1γ1

+a1b1 + α1β1 − 2a1β1c1 + 2α1b1c1)x+ (2γ1 + 1)(b21 + β2
1)y + (−a21β1 + α2

1β1

+2α1a1b1)x
2 + 2α1(b

2
1 + β2

1)xy + β1(b
2
1 + β2

1)y
2
)
,

ẏ =
1

b1α1 − a1β1
(
−α1γ

2
1 − 2a1γ1c1 − a1c1 − α1γ1 + α1c

2
1 − (2γ1 + 1)(a21 + α2

1)x

+(−2a1b1γ1 − 2α1β1γ1 − a1b1 − α1β1 − 2a1β1c1 + 2α1b1c1)y − α1(a
2
1 + α2

1)x
2

−2β1(a21 + α2
1)xy − (α1β

2
1 + 2a1β1b1 − α1b

2
1)y

2
)
,

(18)

whose first integral is

H̃2(x, y) =
(c1 + a1x+ b1y)

2 + (xα1 + yβ1 + γ1)
2

1 + 2(xα1 + yβ1 + γ1)
.
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If a limit cycle of the discontinuous piecewise differential system (3)-(18) has two

different intersection points (0, y) and (0, Y ) with the line x = 0, then they must satisfy

the system

H2(0, y)−H2(0, Y ) =
(Y − y)P2(y, Y )

(2γ + 2βy + 1)(2γ + 2βY + 1)
= 0,

H̃2(0, y)− H̃2(0, Y ) =
(Y − y)Q2(y, Y )

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

(19)

where both polynomials P2 and Q2 are of degree two. From the equation Q2(y, Y ) = 0,

we get Y as a function of y, that is, Y = f(y), and substituting this expression in the

equation P2(y, Y ) = 0, we obtain a quadratic polynomial equation in the variable y.

Then the maximum number of solutions of (19) is two, namely (y1, Y1) and (y2, Y2), but

in fact, these two solutions represent the same limit cycle because they are symmetric

in the sense of the proof of Theorem 1. Thus system (3)-(3) has at most one limit cycle.

Now we give an example of a discontinuous piecewise differential system of type (3)-

(3) having one limit cycle. On x < 0 we consider the quadratic isochronous differential

system

ẋ = −4− x− 6y + x2 − 2y2, ẏ = 3 + 3x+ 5y + 2xy + 2y2, (20)

with a first integral

H2(x, y) =
(1 + y)2 + (1 + x+ y)2

1 + 2(1 + y)
,

and on x > 0 we consider the quadratic isochronous differential system of type (3)

ẋ = −2 + x− 6y + x2 − 4xy + 2y2, ẏ = 1 + 3x− 5y + x2 − 2xy, (21)

whose first integral is

H̃2(x, y) =
(1 + x− y)2 + (1 + y)2

1 + 2(1 + x− y) .

The solution of (19) satisfying y < Y is (y, Y ) =

(
1

2
(−1−

√
3),

1

2
(−1 +

√
3)

)
, which

provides the limit cycle for the discontinuous differential piecewise system (20)-(21)

shown in Figure 5.
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B. Proof of statement (b) of Theorem 2.

We consider again the quadratic polynomial differential system (18) with first integral

H̃2(x, y) in the half-plane x < 0 and for x > 0 we take the isochronous differential system

(4) whose first integral is H3(x, y).

If there exists a limit cycle of the discontinuous piecewise differential system (18)-(4),

then it has two different intersection points (0, y) and (0, Y ) with the line x = 0, which

satisfy the system

H̃2(0, y)− H̃2(0, Y ) =
(Y − y)P2(y, Y )

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

H3(0, y)−H3(0, Y ) =
(Y − y)Q2(y, Y )

(γ2 + β2y + 1)2(γ2 + β2Y + 1)2
= 0,

(22)

where both polynomials P2 and Q2 have degree two. From the equation P2(y, Y ) = 0,

we get Y as a function of y, that is, Y = f(y), and substituting this expression in the

equation Q2(y, Y ) = 0, we obtain a polynomial equation of degree two in the variable y.

Then the maximum number of solutions of (22) is two. But due to the symmetry of the

solutions, the system (3)-(4) has at most one limit cycle.

Now we write an example of a discontinuous piecewise differential system having a

unique limit cycle. On x < 0 we consider the quadratic isochronous differential system

(20), and on x > 0 we consider the quadratic isochronous differential system of type (4)

ẋ = −2− 4y − xy, ẏ = x− 3y − y2, (23)

whose first integral is

H3(x, y) =
(x− y + 1)2 + (y + 1)2

(x− y + 2)2
.

Then, the obtained solution of system (22) satisfying y < Y is (y, Y ) =

(
−4

3
, 0

)
.

This pair, provides the limit cycle that exists for the discontinuous differential piecewise

system (20)-(23) shown in Figure 6.
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C. Proof of statement (c) of Theorem 2.

We take the quadratic polynomial differential system (18) with the first integral

H̃2(x, y) in the half-plane x < 0 and for x > 0 we take the isochronous differential

system (5) with the first integral H4(x, y).

If there exists a limit cycle of the discontinuous piecewise differential system (18)-(5),

then it has two different intersection points (0, y) and (0, Y ) with the separation line

x = 0, satisfying the system

H̃2(0, y)− H̃2(0, Y ) =
(Y − y)P2(y, Y )

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

H4(0, y)−H4(0, Y ) =
(Y − y)Q4(y, Y )

(−3 + 16yβ + 16γ)(−3 + 16Y β + 16γ)
= 0,

(24)

where both polynomials P2 and Q4 are of degree two and four respectively. From the

equation P2(y, Y ) = 0, we obtain Y as a function of y, that is, Y = f(y), and if we put

this expression in the second equation Q4(y, Y ) = 0, we obtain a polynomial equation of

degree six in the variable y. Then, the maximum number of solutions of (22) is six, but

due to the symmetry, there are at most three solutions of system (24) satisfying y < Y .

Thus system (3)-(5) has at most three limit cycles.

Next we give an example of discontinuous piecewise differential system of type (3)-(5)

having two limit cycles. On x < 0 we consider the quadratic isochronous differential

system

ẋ = −0.427384− 0.457523x− 4.27384y + 1.9317x2 + 6.83814xy − 0.427384y2,

ẏ = 0.116463 + 0.68296x+ 1.87174y − 0.546368x2 + 0.136592xy + 3.652y2,
(25)

with the first integral

H̃2(x, y) =
9 + 128x2 + 9y(18 + 89y)− 16x(1− 2

√
2 + y − 20

√
2y)

16(5− 8x+ y)
,
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and on x > 0 we consider the quadratic isochronous differential system of type (5)

ẋ = −0.593985− 6.89377x− 6.77032y + 3.03414x2 + 0.667964xy − 1.89916y2,

ẏ = 4.77286 + 7.53417x+ 9.75481y − 1.87138x2 + 1.93171xy + 3.30143y2,
(26)

whose first integral is

H4(x, y) =
1

54.173− 16x+ 19.6577y
(16(−0.35763− x− 0.908852y)4

−24(−0.35763− x− 0.908852y)2(3.57331− x+ 1.22861y)

+9((−0.35763− x− 0.908852y)2 + (3.57331− x+ 1.22861y)2)) .

(27)

The solutions of (24) satisfying y < Y are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

which provide the two limit cycles for the discontinuous differential piecewise system

(25)-(26) shown in Figure 7.

D. Proof of statement (d) of Theorem 2.

We consider the quadratic polynomial differential system (18) with the first integral

H̃2(x, y) in the half-plane x < 0, and for x > 0 we take the isochronous differential

system (6) whose first integral is H5(x, y).

If a limit cycle exists for the discontinuous piecewise differential system (18)-(6), then

it has two different intersection points (0, y) and (0, Y ) with the line x = 0, satisfying

the closing equations

H̃2(0, y)− H̃2(0, Y ) =
(Y − y)P2(y, Y )

(2γ1 + 2β1y + 1)(2γ1 + 2β1Y + 1)
= 0,

H5(0, y)−H5(0, Y ) =
(Y − y)Q5(y, Y )

(8γ + 8βy + 3)(8γ + 8βY + 3)
= 0,

(28)

where both polynomials P2 and Q5 are of degree two and five respectively. From the

equation P2(y, Y ) = 0, we get Y as a function of y, that is, Y = f(y), and substituting
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this expression in the equation Q5(y, Y ) = 0, we obtain an equation of order six in the

variable y. Then, the maximum number of solutions of (28) is six, but because of the

symmetry property as in the previous statements, system (3)-(6) has three limit cycle

at most. Next, we give an example of discontinuous piecewise differential system of

type (3)-(6) having two limit cycles. On x < 0 we consider the quadratic isochronous

differential system

ẋ = −4.24371 + 0.170949x+ 6.25388y + 3.65748x2 − 12.5078xy + 8.04071y2,

ẏ = −2.20072− 1.28915x+ 5.48591y + 1.28915x2 − 3.31496xy + 0.579633y2,
(29)

with the first integral

H̃2(x, y) =
14(1.5 + x2 + x(0.414214− 4.12284y) + y(−2.72659 + 4.85117y))

−7 + 14x− 18y
,

and on x > 0 we consider the quadratic isochronous differential system of type (6)

ẋ = 0.550125 + 9.00984x− 1.24812y + 6.05959x2 − 0.600689xy − 0.03414y2,

ẏ = 3.90588 + 49.7765x− 6.63534y + 17.3476x2 + 1.21415xy − 0.491153y2,
(30)

whose first integral is

H5(x, y) =
0.000244141

(−0.450206 + x− 0.195584y)4)
(9((−0.825206 + x− 0.195584y)2

+(0.178088 + x− 0.118725y)2) + 24(−0.825206 + x− 0.195584y)3

+16(−0.825206 + x− 0.195584y)4) .

(31)

The solutions of (28) satisfying y < Y which provide the two limit cycles for the discon-

tinuous differential piecewise system (29)-(30) are

(y1, Y1) = (0.1., 1.), (y2, Y2) = (0.166666, 0.833335),

shown in Figure 8.
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V. PROOF OF THEOREM 3

A. Proof of statement (a) of Theorem 3.

We consider the quadratic polynomial differential system (4) with first integral

H3(x, y) in the half-plane x < 0. By changing the parameters (a, α, b, β, c, γ) to

(a1, α1, b1, β1, c1, γ1) in system (4) and in its first integral, we obtain a second isochronous

quadratic differential system of type (4) with the first integral H̃3(x, y), namely

ẋ =
1

b1α1 − a1β1
(b21y(1 + xα1 + γ1) + b1(c1 + a1x)(1 + xα1 − yβ1 + γ1)

+β1(−c21 − 2a1c1x− a21x2 + xα1 + yβ1 + γ1))

ẏ =
1

b1α1 − a1β1
(α1(c

2
1 + 2b1c1y + b21y

2 − xα1 − yβ1 − γ1)− a21x(1 + yβ1 + γ1)

−a1(c1 + b1y)(1− xα1 + yβ1 + γ1)) ,

(32)

whose first integral is

H̃3(x, y) =
(c1 + a1x+ b1y)

2 + (xα1 + yβ1 + γ1)
2

(1 + xα1 + yβ1 + γ1)2
.

If a limit cycle of the discontinuous piecewise differential system (4)-(32) has two

different intersection points (0, y) and (0, Y ) with the line x = 0, then they must satisfy

the system

H3(0, y)−H3(0, Y ) =
(Y − y)P2(y, Y )

(1 + yβ + γ)2(1 + Y β + γ)2
= 0,

H̃3(0, y)− H̃3(0, Y ) =
(Y − y)Q2(y, Y )

(1 + yβ1 + γ1)2(1 + Y β1 + γ1)2
= 0,

(33)

where both polynomials P2 and Q2 are of degree two. From the equation Q2(y, Y ) = 0,

we get Y as a function of y, that is, Y = f(y), and after substituting this expression in

the equation P2(y, Y ) = 0, we obtain a quadratic polynomial equation in the variable y.

Then the maximum number of solutions of (33) is two, namely (y1, Y1) and (y2, Y2), but

in fact, these two solutions represent the same limit cycle because they are symmetric

as usual. Thus system (4)-(4) has at most one limit cycle.
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Now we give an example of a discontinuous piecewise differential system of type (4)-

(4) having one limit cycle. On x < 0 we consider the quadratic isochronous differential

system (23) and on x > 0 we take the quadratic isochronous differential system of type

(4)

ẋ = −2− 2y + x2 + xy, ẏ = 2 + 2x+ 3y + xy + y2, (34)

with a first integral

H3(x, y) =
(1 + y)2 + (1 + x+ y)2

(2 + y)2
.

The solution of (33) satisfying y < Y is (y, Y ) =

(
−4

3
, 0

)
, which provides the limit

cycle for the discontinuous differential piecewise system (23)-(34) shown in Figure 9.

B. Proof of statement (b) of Theorem 3.

We consider again the quadratic polynomial differential system (32) with first integral

H̃3(x, y) in the half-plane x < 0 and for x > 0 we take the isochronous differential system

(5) whose first integral is H4(x, y).

If there exists a limit cycle of the discontinuous piecewise differential system (32)-(5),

then it has two different intersection points (0, y) and (0, Y ) with the line x = 0, which

satisfy the system

H̃3(0, y)− H̃3(0, Y ) =
(Y − y)P2(y, Y )

(1 + yβ1 + γ1)2(1 + Y β1 + γ1)2)
= 0,

H4(0, y)−H4(0, Y ) =
(Y − y)Q4(y, Y )

(−3 + 16yβ + 16γ)(−3 + 16Y β + 16γ)
= 0,

(35)

where the polynomials P2 and Q4 have degree two and four, respectively. From the

equation P2(y, Y ) = 0, we get Y as a function of y, that is, Y = f(y), and substituting

this expression in the equation Q4(y, Y ) = 0, we obtain a polynomial equation of degree

six in the variable y. Then, the maximum number of solutions of (35) is six. But due to

the symmetry of the solutions, the system (4)-(5) has at most three limit cycles.

Now, we show an example of discontinuous piecewise differential system of type (4)-

(5) having two limit cycles. On x < 0 we consider the quadratic isochronous differential
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system
ẋ = −5.92592− 47.9127x− 58.6606y + x2 − 0.101841xy,

ẏ = −246.99 + 9.5224x− 26.911y + xy − 0.101841y2,
(36)

with the first integral

H̃3(x, y) =
(24.9412− x+ 0.101841y)2 + (602.838− x+ 61y)2

(603.838− x+ 61y)2
,

and on x > 0 we consider the quadratic isochronous differential system (26) of type (5)

whose first integral is 27. The solutions of (35) satisfying y < Y which provide the two

limit cycles for the discontinuous differential piecewise system (36)-(26) are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

shown in Figure 10.

C. Proof of statement (c) of Theorem 3.

We take the quadratic polynomial differential system (32) with the first integral

H̃3(x, y) in the half-plane x < 0 and for x > 0 we take the isochronous differential

system (6) with the first integral H5(x, y).

If there exists a limit cycle of the discontinuous piecewise differential system (32)-(6),

then it has two different intersection points (0, y) and (0, Y ) with the separation line

x = 0, satisfying the system

H̃3(0, y)− H̃3(0, Y ) =
(Y − y)P2(y, Y )

(1 + yβ1 + γ1)2(1 + Y β1 + γ1)2)
= 0,

H5(0, y)−H5(0, Y ) =
(Y − y)Q5(y, Y )

(3 + 8yβ + 8γ)4(3 + 8Y β + 8γ)4
= 0,

(37)

where the polynomials P2 and Q5 are of degree two and five, respectively. From the

equation P2(y, Y ) = 0, we obtain Y as a function of y, that is, Y = f(y), and putting

this expression in the second equation Q5(y, Y ) = 0, we obtain a polynomial equation of

degree six in the variable y. Then, the maximum number of solutions of (37) is six, but
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due to the symmetry, there are at most three solutions of system (37) satisfying y < Y .

Thus, system (4)-(6) has at most three limit cycles.

Next, we give an example of discontinuous piecewise differential system of type (4)-

(6) having two limit cycles. On x < 0 we consider the quadratic isochronous differential

system
ẋ = 6781.71 + 363.957x− 15585.4y + x2 − 45.2674xy,

ẏ = 140.782 + 7.24945x− 308.767y + xy − 45.2674y2,
(38)

with the first integral

H̃3(x, y) =
(−70.4328 + x− 57.2448y)2 + (18.3967 + x− 45.2674y)2

(−69.4328 + x− 57.2448y)2
,

and on x > 0 we consider the quadratic isochronous differential system (30) of type (6)

whose first integral is 31. The solutions of (37) satisfying y < Y which provide the two

limit cycles for the discontinuous differential piecewise system (38)-(30) are

(y1, Y1) = (0.1, 1), (y2, Y2) = (0.166666, 0.833335),

shown in Figure 11.

VI. PROOF OF THEOREM 4

A. Proof of Theorem 4 for system (IV)-(IV)

We consider the quadratic polynomial differential system (5) with the first inte-

gral H4(x, y) in the half-plane x < 0. By changing the parameters (a, α, b, β, c, γ) to

(a1, α1, b1, β1, c1, γ1) in system (5) and its first integral, we obtain a second isochronous

31



quadratic differential system of type (5) with the first integral H̃4(x, y), namely

ẋ =
1

3a1β1 − 3b1α1

(b1(c1 + a1x)(−3 + 16xα1 + 8yβ1 + 16γ1) + b21y(−3 + 16xα1 + 12yβ1 + 16γ1)

−β1(4c21 + 8a1c1x+ 4a21x
2 + 3(xα1 + yβ1 + γ1)) ,

ẏ =
1

3b1α1 − 3a1β1
a1(c1 + b1y) (−3 + 8xα1 + 16yβ1 + 16γ1) + a21x(−3 + 12xα1 + 16yβ1 + 16γ1)

−α1(4c
2
1 + 8b1c1y + 4b21y

2 + 3(xα1 + yβ1 + γ1)) ,

(39)

whose first integral is

H̃4(x, y) =
1

16(γ1 + α1x+ β1y)− 3

(
−24(a1x+ b1y + c1)

2(γ1 + α1x+ β1y)

+9 ((a1x+ b1y + c1)
2 + (γ1 + α1x+ β1y)

2) + 16(a1x+ b1y + c1)
4
)
.

If there exists a limit cycle of the discontinuous piecewise differential system (5)-(39),

then it has two different intersection points (0, y) and (0, Y ) with the separation line

x = 0, satisfying the system

H̃4(0, y)− H̃4(0, Y ) =
(Y − y)P4(y, Y )

(−3 + 16yβ1 + 16γ1)(−3 + 16Y β1 + 16γ1)
= 0,

H4(0, y)−H4(0, Y ) =
(Y − y)Q4(y, Y )

(−3 + 16yβ + 16γ)(−3 + 16Y β + 16γ)
= 0,

(40)

where both polynomials P4 and Q4 are of degree four. From the equation P4(y, Y ) = 0,

we obtain Y as a function of y, that is, Y = f(y), and substituting it in the second

equation Q4(y, Y ) = 0, we obtain a polynomial equation of degree six in the variable y.

Then, the maximum number of solutions of (40) is six, but due to the symmetry, there

are at most three solutions of system (40) satisfying y < Y . Thus, system (5)-(5) has at

most three crossing limit cycles.

Next, we give an example of discontinuous piecewise differential system of type (5)-

(5) having two limit cycles. On x < 0 we consider the quadratic isochronous differential
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system

ẋ = −0.593985 + 6.89377x− 6.77032y + 3.03414x2 − 0.667964xy − 1.89916y2,

ẏ = −4.77286 + 7.53417x− 9.75481y + 1.87138x2 + 1.93171xy − 3.30143y2,
(41)

with the first integral

H̃4(x, y) =
1

−3 + 16(3.57331 + x+ 1.22861y)
(16(−0.35763 + x− 0.908852y)4

−24(−0.35763 + x− 0.908852y)2(3.57331 + x+ 1.22861y)

+9((−0.35763 + x− 0.908852y)2 + (3.57331 + x+ 1.22861y)2)) ,

(42)

and on x > 0 we consider the quadratic isochronous differential system

ẋ = −4.35274 + 17.666x− 44.1167y + 1.65212x2 − 2.11558xy − 4.00174y2,

ẏ = 279.554 + 16.3982x+ 89.6236y − 0.305758x2 + 4.69575xy + 5.2283y2,
(43)

with the first integral

H4(x, y) =
1

−3 + 16(47.304− x+ 12.0396y)
(16(−13.4112− x− 1.04263y)4

−24(−13.4112− x− 1.04263y)2(47.304− x+ 12.0396y)

+9((−13.4112− x− 1.04263y)2 + (47.304− x+ 12.0396y)2)) .

The solutions of (40) satisfying y < Y which provide the two limit cycles for the discon-

tinuous differential piecewise system (41)-(43) are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

shown in Figure 12.

B. Proof Theorem 4 for system (IV)-(V)

We take the quadratic polynomial differential system (39) with the first integral

H̃4(x, y) in the half-plane x < 0 and for x > 0 we take the isochronous differential
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system (6) with the first integral H5(x, y).

If there exists a limit cycle of the discontinuous piecewise differential system (39)-(6),

then there exist two different intersection points (0, y) and (0, Y ) with the separation

line x = 0, satisfying the system

H̃4(0, y)− H̃4(0, Y ) =
(Y − y)P4(y, Y )

(−3 + 16yβ1 + 16γ1)(−3 + 16Y β1 + 16γ1)
= 0,

H5(0, y)−H5(0, Y ) =
(Y − y)Q5(y, Y )

(3 + 8yβ + 8γ)4(3 + 8Y β + 8γ)4
= 0,

(44)

where the polynomials P4 and Q5 are of degree four and five, respectively. Again, we

obtain Y as a function of y, that is, Y = f(y), from the equation P4(y, Y ) = 0, and

putting this expression in the second equation Q5(y, Y ) = 0, we obtain a polynomial

equation of degree seven in the variable y. Then, the maximum number of solutions of

(44) is seven, but due to the symmetry, there are at most three solutions of system (44)

which satisfy the condition y < Y . Then, system (5)-(6) has at most three limit cycles.

Now, we show an example of discontinuous piecewise differential system of type (5)-(6)

having two limit cycles. On x < 0 we consider again the quadratic isochronous differ-

ential system (41) whose first integral is (42), and on x > 0 we consider the quadratic

isochronous differential system

ẋ = −0.0135199 + 6.44812x− 0.134872y + 4.00057x2 + 0.155285xy − 0.00453093y2,

ẏ = 15.1375 + 132.575x− 1.28187y + 22.8872x2 + 5.3322xy − 0.0778083y2,

(45)

with the first integral

H5(x, y) =
1

(3 + 8(−1.24193 + x− 0.0582816y))4
(9((−1.24193 + x− 0.0582816y)2

+(0.387469 + x− 0.0000248632y)2) + 24(−1.24193 + x− 0.0582816y)3

+16(−1.24193 + x− 0.0582816y)4) .

The solutions of (44) satisfying y < Y which provide the two limit cycles for the discon-
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tinuous differential piecewise system (41)-(45) are

(y1, Y1) = (−1, 1), (y2, Y2) = (−2, 3),

shown in Figure 13.

VII. PROOF OF THEOREM 5

We consider the quadratic polynomial differential system (6) with the first inte-

gral H5(x, y) in the half-plane x < 0. If we change the parameters (a, α, b, β, c, γ) to

(a1, α1, b1, β1, c1, γ1) in system (6) and its first integral, we obtain a second isochronous

quadratic differential system of type (6) with the first integral H̃5(x, y), namely

ẋ =
1

3(α1b1 − a1β1)
(
4β1γ

2
1 + 8b1γ1c1 + 3b1c1 + 3β1γ1 − 16β1c

2
1 + (8a1b1γ1 + 8α1β1γ1

+3a1b1 + 3α1β1 − 32a1β1c1 + 8α1b1c1)x+ (8b21γ1 + 8β2
1γ1 + 3b21 + 3β2

1

−24β1b1c1)y + 4(α2
1β1 − 4a21β1 + 2α1a1b1)x

2 + 8(α1β
2
1 − 3a1β1b1 + α1b

2
1)xy

−4β1y2(2b21 − β2
1)y

2
)
,

ẏ =
1

3(α1b1 − a1β1)
(
16α1c

2
1 − 4α1γ

2
1 − 8a1γ1c1 − 3a1c1 − 3α1γ1 − (8a21γ1 + 8α2

1γ1

+3a21 + 3α2
1 − 24α1a1c1)x− (8a1b1γ1 + 8α1β1γ1 + 3a1b1 + 3α1β1 + 8a1β1c1

−32α1b1c1)y + 4α1(2a
2
1 − α2

1)x
2 + 8(a21(−β1)− α2

1β1 + 3α1a1b1)xy

−4(α1β
2
1 + 2a1β1b1 − 4α1b

2
1)y

2
)

(46)

whose first integral is

H5(x, y) =
1

(8(γ1 + α1x+ β1y) + 3)4
(
9 ((a1x+ b1y + c1)

2 + (γ1 + α1x+ β1y)
2)

+16(γ1 + α1x+ β1y)
4 + 24(γ1 + α1x+ β1y)

3
)
.

If there exists a limit cycle of the discontinuous piecewise differential system (6)-(46),

then it has two different intersection points (0, y) and (0, Y ) with the separation line
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x = 0, satisfying the system

H̃5(0, y)− H̃5(0, Y ) =
(Y − y)P5(y, Y )

(3 + 8yβ1 + 8γ1)4(3 + 8Y β1 + 8γ1)4
= 0,

H5(0, y)−H5(0, Y ) =
(Y − y)Q5(y, Y )

(3 + 8yβ + 8γ)4(3 + 8Y β + 8γ)4
= 0,

(47)

where both polynomials P5 and Q5 are of degree five. Then, by Bézout Theorem, the

maximum number of solutions (y, Y ) ∈ C of equation (47) is 25. Since our solutions

appear in pairs because of the symmetry, the maximum number of solutions satisfying

y < Y is twelve.

Next, we give an example of discontinuous piecewise differential system of type (6)-

(46) having two limit cycles.

On x < 0 we consider the quadratic isochronous differential system (48)

ẋ = 0.103814 + 0.0255717x− 0.0978649y − 0.0368897x2 + 0.218646xy − 0.322863y2,

ẏ = 0.03051 + 0.0170376x− 0.0573298y − 0.0153809x2 + 0.0905173xy − 0.132811y2,

(48)

with the first integral

H̃5(x, y) =
1

(3 + 8(−4.15332 + x− 2.61606y))4
(9((−3.79477 + 2x− 5.613y)2

+(−4.15332 + x− 2.61606y)2) + 24(−4.15332 + x− 2.61606y)3

+16(−4.15332 + x− 2.61606y)4) ,

and on x > 0 we consider the quadratic isochronous differential system

ẋ = 0.0000696792 + 0.00114119x− 0.000158087y + 0.000767513x2 − 0.0000760837xy

−0.0000043242y2,
ẏ = 0.000494721 + 0.00630472x− 0.000840437y + 0.00219727x2 + 0.000153785xy

−0.0000622098y2,
(49)
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with the first integral

H5(x, y) =
1

(3 + 8(−0.825206 + x− 0.195584y))4
(9((−0.825206 + x− 0.195584y)2

+(0.178088 + x− 0.118725y)2) + 24(−0.825206 + x− 0.195584y)3

+16(−0.825206 + x− 0.195584y)4) .

The solutions of (47) satisfying y < Y which provide the two limit cycles for the discon-

tinuous differential piecewise system (48)-(49) are

(y1, Y1) = (0.1, 1), (y2, Y2) = (0.166666, 0.833335),

shown in Figure 14.

Remark. Equations (47) can have at most 12 solutions using Bézout Theorem, but

numerical evidences obtained given arbitrary values to the parameters of the class of

discontinuous piecewise differential systems of type (V)-(V), we could only find at most

8 real solutions, but these solutions in general do not provide crossing limit cycles. In

all the particular piecewise differential systems studied numerically we could only find at

most 2 crossing limit cycles.

VIII. CONCLUSIONS

There is a unique family of linear isochronous centers and four families of quadratic

isochronous centers. Considering all the possibilities of choosing two pairs of these

isochronous centers, eventually repeated, we obtain fifteen pairs. Therefore we have

fifteen classes of discontinuous piecewise differential systems formed by two differen-

tial systems separated by a straight line when these two differential systems are linear

isochronous centers or quadratic isochronous centers.

For these fifteen classes of discontinuous piecewise differential systems we provide an

upper bound for the maximum number of limit cycles that they can exhibit, i.e. for

these classes of differential systems we have solved the 16th Hilbert problem. Moreover

for seven of these fifteen classes of discontinuous piecewise differential systems the upper
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bound on the maximum number obtained is reached.

More precisely, it was known that discontinuous piecewise differential systems formed

by two linear isochronous centers separated by a straight line cannot have limit cycles,

see27. If one of the systems is a linear isochronous center and the other is a quadratic

isochronous center then their maximum number of limit cycles is studied in Theorem 1.

While if the two systems are quadratic isochronous centers then their maximum number

of limit cycles are studied in Theorems 2, 3, 4 and 5.
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