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ABSTRACT

In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy
cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled
using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework
atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field
variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive
particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid–structure interactions.
These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and
extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in
FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which
use the Lagrangian entities in fundamentally different ways.
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1. INTRODUCTION

Simulations of astrophysical phenomena are some of the
most challenging multiphysics computations. For example, su-
pernova (SN) simulations primarily rely upon compressible
hydrodynamics for modeling gas, but they also need special-
ized equations of state, elliptic solvers for computing gravita-
tional potentials, source term networks for computing nuclear
reactions, and many other solvers depending upon the specific
target of the simulation. All of the above models work well with
Eulerian discretization; however, explicitly advancing large nu-
clear networks inline is prohibitively expensive because of its
impact on the time step. One alternative is to use tracer par-
ticles to record the thermodynamic history of mass elements
and then post-process the time history to compute the nucle-
osynthetic yield from the simulation. This necessitates support
for Lagrangian entities in the code. A similar requirement for
Lagrangian support arises in cosmological simulations where
there is need to model gas, stars, and dark matter.

Many commonly used codes in the astrophysics community
opt to have a purely particle-based treatment: examples in-
clude Gadget (Springel 2005), Gasoline (Wadsley et al. 2004),
Hydra (Couchman et al. 1995; Pearce & Couchman 1997), and
SEREN (Hubber et al. 2011).6 Other codes have support for
both Eulerian and Lagrangian entities, for example FLASH
(Fryxell et al. 2000; Dubey et al. 2009), COSMOS (Ricker et al.
2000), Enzo (O’Shea et al. 2005a; Norman et al. 2008), RAM-
SES (Teyssier 2002), ART (Kravtsov et al. 1997), NYX (A. S.
Almgren et al. 2012, in preparation), and CHARM (Miniati &
Colella 2007). These two classes of codes have been employed to

4 Computation Institute, University of Chicago and Argonne National
Laboratory, USA.
5 CELS, Argonne National Laboratory, USA.
6 An alternative approach involves “moving-mesh” Lagrangian codes,
AREPO (Springel 2011) being a primary example.

model a variety of physical situations, including the cosmolog-
ical structure formation, the formation of solar system objects,
SN explosions, star formation, and binary collisions of compact
stellar objects, to name only a few of many possible examples.
Many codes of each class focus on one class of applications
and optimize their implementations accordingly. The advantage
is that many simplifying assumptions become possible, thereby
decreasing the complexity of the application infrastructure de-
sign. However, FLASH takes the approach of targeting a wider
community of researchers, ranging from simulations of novae,
SNe, cosmological structure formation, and galaxy clusters to
high energy density physics and fluid–structure interactions.
Each of these communities has its own requirements for the
Lagrangian infrastructure in the code, although some features
are common to all. Because of this, the Lagrangian framework in
FLASH has to be general, flexible, and easily customizable. In
this paper, we describe the design considerations and architec-
ture of FLASH’s Lagrangian framework. We also demonstrate
the usability and effectiveness of the design through its use in
two vastly different applications. The Lagrangian entities are
referred to as particles for convenience from here on.

The framework unifies the general, mostly similar character-
istics of various incarnations of particles in FLASH into a few
flexible, reusable, and well-encapsulated code modules. Exam-
ples of such characteristics include methods of initializing parti-
cle positions and velocities, time advancement schemes, ways of
mapping physical variables to and from the Eulerian mesh, and
movement of data structures that store the particles. It also pro-
vides hooks for those characteristics that are unique to a specific
mode of particle usage, such as communicating the forces ex-
erted by particles on the fluid when used in certain active modes.
In keeping with the overall philosophy of the FLASH architec-
ture, the Lagrangian framework also provides several represen-
tative alternative implementations of relevant code units, while
permitting customization of any of these units by individual
applications. The framework and capabilities described in this
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paper have evolved over several years, therefore many features
are missing from earlier versions of the code. FLASH4-beta has
the complete framework described here, though FLASH3.3 also
has most of the features.

Section 2 describes the different classes of applications that
use the Lagrangian capabilities of FLASH and the demands they
place upon the Lagrangian framework in the code. Section 3
gives a synopsis of the code architecture features necessary
for explaining the framework, followed by a description of
the data structures and relevant code units that constitute the
Lagrangian framework in Section 4. In Section 5, we describe
the features and operation of the framework. Section 6 describes
the use of the Lagrangian framework in simulations of Type Ia
supernovae (SNe Ia) and galaxy cluster mergers, highlighting
the commonalities and the differences in the usage. Finally, we
conclude in Section 7.

2. LAGRANGIAN ENTITIES IN FLASH

The Lagrangian framework gets used in many different
ways in the code. The simplest use is in the form of tracer
particles that are carried along passively with the fluid flows and
sample and record the state of their surrounding fluid elements
(Beaudoin et al. 2007; Fisher et al. 2008; Federrath et al. 2008).
Effectively this provides a Lagrangian view of physics within
a model advanced using Eulerian equations. In terms of code
components, this mode needs support for simple initialization
of particle positions, a time advancement method, and mapping
of mesh quantities to the appropriate particles. The mapping
requires interpolation to particle positions from the cell-centered
or face-centered coordinates of the mesh cells within which
they lie.

The SN simulations use particles in a slightly more
demanding tracer mode. During a simulation, the particles col-
lect the thermodynamic time history of their associated mass
elements, which is then post-processed to determine the nu-
cleosynthetic yield (Jordan et al. 2008). The aim of this par-
ticle post-processing is to obtain nucleosynthetic abundances
in photospherically significant regions of the final outflow, so
that radiation transport calculations can accurately predict light
curves and spectra. The final spatial distribution of the particles
is of crucial importance, since it affects the accuracy with which
the nucleosynthetic abundance distribution is known. However,
the final particle distribution is not easy to predict or control
based on position initialization. Hence, these simulations add
the requirement of a more sophisticated position initialization
method. Additionally, because particles can congregate in a very
localized section of the domain during evolution, the demands
on memory require that the mesh be able to adaptively refine
based on particle count.

Particles can also operate in an active mode in which they
influence the evolution of the mesh variables. For example,
in many cosmological simulations, mass-endowed particles
represent dark matter that interacts gravitationally with fluids
representing baryonic matter (Efstathiou et al. 1985; Dolag
et al. 2008). In this mode, several additional code capabilities
are needed. Here, in addition to the mapping from the mesh
variables described above, mapping from particles to mesh
“smears” the mass carried by the particles on to a mesh variable.
When used in parallel environments, the smearing may occur in
parts of the domain that are on processor boundaries, thereby
causing communication. Additionally, the forces exerted and
experienced by the particles must be computed. A hybrid

particle-in-cell (PIC) method7 is another example of coupling
between particles and mesh variables for evolution that requires
some of the capabilities mentioned above. Here, electrons are
treated as massless fluid and ions as discrete macroparticles,
where each macroparticle represents a large number of real
particles (Holmström et al. 2012). The method uses mapping
to mesh capabilities to deposit ion charges and currents to the
mesh, which are used in calculation of electrical and magnetic
fields by the mesh.

In many simulations, it is desirable to differentiate between
active particles (e.g., stars and dark matter). Some of these
simulations also need to include tracer particles to track the
Lagrangian characteristics. In some SN simulations, tracer
particles need to be differentiated based upon whether they
follow a mass section or a volume section. This would be
simple if all particle types could use the same initialization,
integration, and mapping methods. In reality, the required
integration methods differ, as do the mapping and initialization
methods. Therefore, the framework needs to allow for maximum
interoperability among various alternatives for initialization,
mapping, integration, and forces for multiple particle types to
exist in one simulation.

3. FLASH ARCHITECTURE

FLASH is a scientific simulation code framework with
a collection of modules featuring adaptive mesh refinement
(AMR), efficient parallelization with good scaling behavior,
and portability. FLASH is not a single application code, but
rather provides modules that can be combined to generate
many different multiphysics simulation applications. At the
core of many FLASH applications are a Grid unit, typically
representing an Eulerian view of a physical domain, and physics
units representing the evolution of physical variables of interest
on this grid. Together, they model a time-dependent solution of
the equations of interest. A detailed description of the current
FLASH architecture is given in Dubey et al. (2009). In this
section, we include a synopsis of the features that are necessary
to follow the discussion in this paper.

FLASH’s functional components are organized in code mod-
ules called units. The units can be infrastructural such as Grid,
I/O, or Multispecies, or they can be solvers for specific physics
such as Hydro, Gravity, or Flame. Each unit publishes its appli-
cation programming interface (API), which is used by all other
units to interact with it. Units can be further organized into sub-
units, such that each sub-unit implements a subset of the parent
unit’s API. The parts of the API implemented in different sub-
units are mutually exclusive, i.e., each API function has one or
more implementations in exactly one sub-unit. The union of all
its sub-units implements the whole API of the unit. A sub-unit
may have many alternative implementations, and each of these
implementations can choose whether or not it can co-exist with
any of the remaining implementations.

The unit architecture defines the scoping of various data
items in use by the unit. Unit scope data items are placed in
a single data module that is available to all functions in the unit,
public or private. Other data items may have a more restricted
scope, for example they may be limited to a sub-unit or to a
specific implementation of a sub-unit. FLASH architecture is
implemented through a combination of directives in FLASH
specific syntax encoded in Config files, a setup script that parses

7 Contributed by Mats Holmström (see Holmström et al. 2012) and the
FLASH User’s Guide for implementation details.
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these files, and a set of naming conventions and inheritance rules
imposed on top of the filesystem directory structure. Config files
can exist at any level in the code. They encode the architectural
and configuration information relevant to the level at which
they appear. For example, a Config file in the UnitMain sub-
unit may specify other required units, suggest some other units
for inclusion, specify units/sub-units with which it is mutually
exclusive, request storage for variables and fluxes, and define
runtime parameters.

The Simulation unit has a special role; it defines individual
applications by specifying the needed code units and provid-
ing other application-specific information such as initial condi-
tions. Each individual application has its own directory in the
Simulation unit where all the relevant data and application im-
plementations are placed. The Simulation unit also provides a
customization mechanism whereby an implementation of any
function anywhere in the source tree of FLASH placed into the
application’s simulation directory replaces the default imple-
mentation during the configuration step. Thus, any section of
the code can be customized without having to modify the base
source tree.

While FLASH can support many different mesh packages,
the common requirement is that they be block structured and
Eulerian. This is because the Grid unit divides the physical
domain into a set of blocks, the union of which covers the
entire domain. The Grid unit presents a single block surrounded
by a halo of guard cells as a self-contained computational
domain to the solvers. Solvers get the list of blocks from the
Grid unit and loop over and process them one at a time. If a
solver needs to perform a global operation on the mesh, then it
temporarily passes control to the Grid unit, which in turn returns
the control back to the solver when it is done. Currently, FLASH
supports PARAMESH (MacNeice et al. 2000), which is an oct-
tree based AMR package as default; a Uniform Grid, which
has uniformly spaced grid cells across the entire domain; and
Chombo (Colella et al. 2009), a patch-based block-structured
AMR package. Chombo is likely to become the default AMR
package in FLASH in the future, but its implementation in
FLASH is not production grade at the time of this writing.

4. CODE UNITS

The code sections relevant to the Lagrangian framework are
distributed among three FLASH units. The Particles unit is the
primary code unit that houses the bulk of the implementation.
In addition, the Grid unit (the unit that manages the discretized
Eulerian mesh) has a sub-unit, GridParticles, where all particles
related functions that need knowledge of the Eulerian mesh
reside. Similarly, the IO unit has a sub-unit, IOParticles, that
handles all the I/O (checkpoint and analysis) for the Particles
data structures.

The Particles unit is organized into four sub-units:
ParticlesMain, ParticlesInitialization, ParticlesForces, and
ParticlesMapping. As their names suggest, the division into sub-
units reflects four broad categories into which particle capabil-
ities can be organized. ParticlesMain contains implementations
for time advancement of particles during simulation evolution.
It also contains a unit-scope data module which has the base
particle data structure, scratch space needed for processing, and
other unit-scope data items, such as a processor’s particle count.
The data module is also made available to all other sub-units.

The ParticlesInitialization sub-unit contains several imple-
mentations for initial placement of discrete particles in the
physical domain. In addition to the lattice and density based

distribution described earlier, there is an example implementa-
tion for reading the initial positions from a file. The hybrid PIC
method initializes particle positions from a uniform distribution
and initial particle velocities from a Maxwellian distribution.
The ParticlesMapping sub-unit provides interpolation functions
to map physical quantities such as velocities from the Eulerian
mesh to the particles. When used in active mode, it also pro-
vides means for mapping particle attributes to the appropriate
mesh variables. Finally, the ParticlesForces sub-unit includes
functions that communicate forces back and forth between the
particles and the mesh.

The Particles sub-units need access to grid-specific informa-
tion in order to function properly. In order to maintain unit
encapsulation, this information is not available to the Parti-
cles unit directly. The Grid unit infrastructure has to provide
needed information and services to all the Particles sub-units
in a way that is independent of specific mesh implementa-
tions. The latter requirement arises from the presence of mul-
tiple mesh packages in the code. The GridParticles sub-unit
addresses this challenge by further classifying the services pro-
vided into GridParticlesMove, GridParticlesMapToMesh, and
GridParticlesMapFromMesh sub-units. These sub-units have
common as well as mesh-specific implementations of the uni-
form interface through which the Particles sub-units receive
service from the Grid unit. Services are provided by temporar-
ily transferring control to the appropriate Grid sub-unit, passing
Particles data structure as an argument, and returning the control
back to the requesting Particles sub-unit when done.

The IOParticles sub-unit hides the details of both I/O libraries
and the process of restarting from a checkpoint file from the
Particles unit. For efficiency reasons, unlike other units in
FLASH, the IO unit is given access to other units’ internal data
structures. Thus, the IOParticles sub-unit can directly access
the particle data structure for the purpose of checkpointing.
Otherwise, the Particles unit has very limited direct interaction
with the IOParticles sub-unit. Moreover, in this instance, the
Particles unit provides some services to the IOParticles sub-unit
just as IOParticles sub-unit provides services to the Particles
unit. More details of the IOParticles sub-unit can be found in
the FLASH User’s Guide.

4.1. Data Structures

Particles are organized in a two-dimensional array of double-
precision floating-point numbers. This simplified choice of data
structure facilitates easy movement both between code units for
particles’ evolution, and between blocks and processors when
operating in a parallel environment. Additionally, the simple
data structure enables multiple particle types to co-exist in a
simulation.

One of the necessary particle properties is a permanent tag
value which uniquely identifies a particle within a simulation.
Though this property is not important during the simulation it-
self, it is critical in post-processing and analysis. Additional
identifier properties include the block identification number
(blockID) and processor number (procID) for the finest reso-
lution block containing a particle. Since time advancement of
particles depends upon interpolating relevant physical quan-
tities from the closest mesh cell to the particle position (see
Section 5.3 for details), for reasons of efficiency it is desir-
able to attach each particle to its overlapping block and have
the particle reside on the same processor where its block is lo-
cated. The GridParticlesMove sub-unit uses the combination of
blockID and procID for migrating the particle’s data structure
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Figure 1. Schematic of the Particles unit.

(A color version of this figure is available in the online journal.)

Figure 2. Schematic of the GridParticles sub-unit that manages all particle-related functions that need access to Grid owned data.

(A color version of this figure is available in the online journal.)

to the appropriate processor/block combination as its physical
position changes with time evolution (Dubey et al. 2011).

The particle coordinates are represented by another three
(for three-dimensional simulations) properties. Usually, there
are also properties that store velocities and, for some time ad-
vancement schemes, additional sets of previous, estimated, or
predicted coordinates and/or velocities. Other properties de-
pend on the physics being modeled. Active particles interacting
via gravity usually carry a mass property. Particles in hybrid
PIC mode carry charge and several electrical and magnetic field
properties. Passive particles carry additional properties for the
fluid variables they are intended to trace. All the needed proper-
ties can be specified in appropriately placed Config files. When

multiple particle types are used in a simulation, each particle
carries a union of all properties requested by individual parti-
cle types. While this is not the most efficient storage choice, it
precludes the necessity of multiple data structures which might
lead to possible code duplication and parallel inefficiency. This
choice also prevents proliferation of conditional branches in
treating particle attributes. Branches are known to be error prone
and in general add significant complexity in code verification.

5. FRAMEWORK

From the description above, it is clear that the constituent
features of the Lagrangian framework are a data structure that
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Figure 3. Schematic of control flow between Particles and Grid units during a simulation. Single line arrows indicate a routine that follows, while double line arrows
represent a routine that is invoked.

(A color version of this figure is available in the online journal.)

encodes identifiers and properties into a single entity and a
collection of code units that between them initialize, integrate,
move, and map the particles and their attendant forces if appli-
cable. In this section, we describe how these constituent features
come together to provide a versatile Lagrangian framework atop
an Eulerian mesh.

Figures 1 and 2 show the organization of the Particles unit and
the particles related Grid sub-units, respectively. The schematic
of the Particles unit does not show exhaustive implementations.
Many time-integration schemes and the implementations related
to charged particles are not included for the sake of clarity.
Figure 3 shows an example of the control flow back and
forth between the Particles unit and the GridParticles subunit
during initialization and evolution. In the following sections, we
describe these features and interactions in detail. The algorithms
used in the GridParticlesMove and GridParticlesMapToMesh
sub-units are described in detail in Dubey et al. (2011).

5.1. Initialization

In general, a particle comes into existence in the simulation
environment during the initialization phase of a FLASH simu-
lation. Particles can be created later in the simulation, though
an explicit implementation of that ability is not included in the
distribution. In order to add a new particle during a simulation,
it is necessary to provision for extra space in the particle data
structure, which is statically allocated at initialization. Once
that is done, a particle can be added any time during a simu-
lation by providing it with a new and unique tag number and
populating all the necessary attributes such as position, veloc-
ity, block number, etc., as needed. Some methods of position
initialization are local to the Particles unit, while some oth-
ers require interaction with the Grid. The lattice-based method
is an example of the former. An example of the latter is the
method which reads in particle information from a file. There
is no a priori knowledge about positions, and therefore block
and processor association, when particle positions are read in.

At a minimum, this method requires a redistribution of particles
among blocks and processors after they are read in, invoking the
GridParticlesMove sub-unit to migrate the particles to their des-
tinations. In a more complex scenario, the particles may be
congregated close together in the physical domain, overwhelm-
ing the memory of the processor during the read unless the mesh
is refined. FLASH provides a particle-based refinement trigger
that allows an interleaving of mesh and particles initialization
similar to the following pseudocode:

Grid_initDomain {
create initial blocks in mesh
expand mesh :

refine(on mesh criterion)
apply initial conditions(all blocks)

until (highest refinement level reached)}
Particles_initPositions(done)
while(not done)

expand mesh:
refine(on particles count)
apply initial conditions(all blocks)
Particles_initPositions(done)}

Particles_initPositions (done){
get (maxLocalCount)
for upto maxLocalCount

read particle from file
done = EOF(file)}.

The methods of particle position initialization included in the
FLASH distribution are by no means exhaustive, and they can
be easily customized by the user.

5.2. Integration

The Particles unit provides four methods for time advance-
ment of tracer particles, and three methods for that of active
particles in the massive and/or cosmology mode. The hybrid
PIC method does not directly advance particles in time. The
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trajectories of ions are computed from Lorentz forces which
are then used to update the particle positions. The method im-
plements a predictor-corrector leapfrog method with subcycling
for the field update. All passive and massive particle time ad-
vancement implementations are standard first- or second-order
time integration methods for solving ordinary differential equa-
tions. An interesting finding from our various implementations
is that some predictor-corrector type second-order methods are
not suitable when Δt varies between time steps. The difficulty
arises when the integration method predicts the velocities and
positions for tn+1 at time tn based on the current Δt , but the time
step limiters in the simulation change Δt between the two steps.
When this happens, the predicted values are no longer valid,
and integration must revert to the first-order Euler method. This
can be especially bad in simulations with frequent changes in Δt
where the time integration becomes closer to first order than sec-
ond order. The implementations of other second-order methods,
such as mid-point and Runge–Kutta, included in the FLASH
distribution, do not have this problem.

5.3. Mapping

The Eulerian mesh in FLASH is discretized in the form
of cells which combine together to form a block. The mesh
variables are either cell centered or face centered, while particles
can be located anywhere in a cell. Therefore, the Particles unit
provides interpolation functions to map quantities from the
coordinates of the overlapping cell to each particle’s position.
The two available methods are the quadratic interpolation and
cloud-in-cell methods. Because the blocks have surrounding
guard cells, this operation is completely local to a block.
However, the interpolation methods need a lot of mesh-specific
information, such as the cell widths Δx, Δy, Δz, and the physical
coordinate bounds of the relevant block, which is most readily
available in the Grid unit. Additionally, for efficiency, the
particles are sorted on their blockID before processing. Here,
sorting and gathering of block specific information is done
in the GridParticlesMapFromMesh sub-unit, and then control
is transferred to the ParticlesMapping sub-unit to apply the
interpolation method.

When particles are used in active mode as massive particles,
their contribution to the gravitational potential is computed by
mapping the mass onto a mesh variable as an add-on density
component. The mapping is achieved by smearing the mass
of the particle onto the overlapping cell and some of the cells
surrounding the overlapping cell. Other quantities of interest,
depending on the problem, may be mapped to the mesh as well.
Unlike mapping from the mesh, the mapping to mesh operation
is not localized to a block. When a particle is close to a block
boundary, some of the surrounding cells could be guard cells,
and that information must be conveyed back to the neighboring
block which has the corresponding interior cells. This is in effect
a subset of an inverse guard-cell fill operation, and therefore
it invokes additional coupling between the Particles and Grid
units through the GridParticlesMapToMesh sub-unit. Reverse
guard cell fill is not native to the mesh packages, and it is
non-trivial for AMR meshes. The parallel algorithm has to find
the destination while accounting for the fine-coarse boundary
between blocks where applicable. FLASH includes two parallel
algorithms, Sieve and Point-To-Point, for this purpose. Both
the algorithms build upon similar algorithms used for moving
the particle data structures between blocks and processors (see
Dubey et al. 2011) and are described below.

5.3.1. Parallel Algorithms in Mapping

A particle’s mass is deposited in the cells on the source block.
When a guard-cell region (the halo of guard cells described in
Section 3) has non-zero mass, its data are sent to the block
containing the corresponding interior cells. Before sending,
the source block makes use of locally available metadata to
determine if the destination block is at a different refinement
level. If so, then the appropriate restriction/interpolation is also
performed at the source block. The destination blocks collect all
applicable contributions from the source blocks and accumulate
them in the appropriate interior cells. The destination blocks
may or may not be off-processor.

Both the algorithms begin by identifying guard-cell regions
that are off-processor. Where they differ is the communication
pattern used to send the cells to their destinations. The sieve
algorithm places all the cells along with their metadata into a
sieve. The metadata includes the identity of the destination block
and the location of the cells within that block. The “sieve” is
rotated among processors until it is emptied. The specifics for
creating sieves and the mechanics for rotating the sieves among
processors efficiently are described in more detail in Dubey et al.
(2011). The process of emptying the sieves involves finding a
matching BlockID for the cells contained in the sieve. Every
time a match is found, the corresponding cells are “dropped”
from the sieve. The process terminates when all sieves have
zero cells left. This method is relatively easy to understand and
implement, and it is quite general. It does not rely upon the mesh
package metadata for generating the communication pattern.
For efficiency, it uses the mesh package specific information
to encode the identity of the destination block at the source,
though that encoding is not necessary for correct operation.
However, it is not always very efficient. At best, its performance
is comparable to that of the point-to-point algorithm, although
in general, it is much less efficient.

The point-to-point algorithm exploits the knowledge of the
mesh package’s own communication pattern to deliver better
performance. The disadvantage is that its implementation is
tied to a specific mesh package. This algorithm identifies the
neighboring processors that have the cells corresponding to the
non-local guard-cell regions of any of the local blocks that have
non-zero mass. A global operation lets each processor know the
number of messages it should expect to receive. Each guard-cell
region destined for an off-processor neighboring block is sent
in a separate message, so that there are many small messages.
Our strategy involves executing a busy-wait loop until sending
and receiving criteria are satisfied. A process sends messages
until it has visited each node in its send linked list, and a process
receives messages until the count of messages received equals
the number it received in the global operation. More details of
the communication pattern and the busy-wait loop based parallel
algorithm are described in Dubey et al. (2011) and Daley et al.
(2012).

Figure 4 shows an example of the communication steps
involved in the two algorithms through a two-dimensional setup
with two different positions of a particle near a block boundary.
The first column in the figure shows two locations of the particle
with different regions of influence. The location at the top
influences four blocks, while the one at the bottom influences
only two blocks. The second column shows the communication
steps in the sieve algorithm with the incoming sieve contents
showing on every processor, while the third column shows
communication in the point-to-point algorithm. The bold lines
are the processor boundaries, and the gray area represents all
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Figure 4. Mapping a particle to the surrounding cells in the mesh. The gray area represents the cells that are affected by the particle. The bold lines represent processor
boundaries. The bold lines around the gray area enclose the region of influence.

the cells in the mesh that are affected by the particle. For the
sieve algorithm, we may assume without any loss of generality
that the order of rotation of the sieve is p2→p3→p4→p1. For
clarity, only the sieve associated with p2 is shown in the figure.
In general, the sequence of sieve rotation steps follows a fixed
pattern, and does not depend on the actual destinations. We
choose this particular order to illustrate the potential inefficiency
of the sieve algorithm. The sieve algorithm has the three
communication steps for both positions of the particle, even
though the particle does not affect p3 and p4 in the bottom
panel. In contrast, the point-to-point algorithm has each message
being directly sent to their predetermined destinations. Here, the
bottom panel has only one send–receive step.

5.4. Forces

The Particles unit provides for two broad categories
of forces on active particles, “short-range” forces and
“long-range” forces, which are split into the subunits
ParticlesForces/shortRange and ParticlesForces/longRange, re-
spectively. The division arises from algorithmic considerations;
long-range forces (gravity, the electric force, etc.) arise from the
matter distribution as a whole and are usually interpolated from
the grid to the particle positions, whereas short-range forces
(collisions, etc.) are between pairs of particles that come within
close contact. The magnitude of the force on an individual par-
ticle is typically dependent on other properties of the particle,
such as its mass, charge, cross-section, etc., depending on the
force and the particle type in question.

In many cases of interest, the particles both exert and respond
to forces from the grid. For example, in self-gravitating systems
the particles serve as a source for the gravitational potential
and then experience the gravitational force that is produced
by the potential. In cases such as these, in order to ensure that
particles do not experience a “self-force” and to locally preserve
Newton’s third law of motion, the same mapping scheme must
be used to map particle properties between particle positions and
mesh cell in both directions (Hockney & Eastwood 1988). Note

that this only eliminates self-forces, and only for particles whose
clouds do not overlap a refinement boundary. It does not address
the violation of Newton’s third law that comes about because
of the different force truncation errors experienced by particle
pairs in which each member is on a different refinement level. It
also does not address the self-force that arises if a particle cloud
overlaps a refinement boundary. In general though, the particle
count is large enough that the mean field dominates these small
errors. We will address methods for eliminating these errors in
a future paper.

5.5. Multiple Particle Types

FLASH can support multiple particle types in a simulation
through a combination of a unified data structure, layered sort-
ing, enhanced configuration features, and interoperability of var-
ious alternative implementations of code sections in the unit. The
only place where there is operational and performance trade-off
in this approach is in the unified data structure. The choice of
a two-dimensional double-precision array representation where
the first dimension is the union of attributes from all particle
types could, in theory, bloat the storage of particles. In practice,
this is rarely true. The majority of attributes, such as identi-
fiers, positions, velocities, etc., are common to all particles.
The relatively small percentage increase in the storage due to
non-common attributes is compensated by the ability to use the
optimized single particle type infrastructure for the majority of
operations. We keep the data structure sorted first by particle
types, and within particle types by the associated block ID. We
also maintain the starting and ending pointers for each particle
type. Thus, a contiguous section of the particle data structure
can be handed over for processing to each method without ad-
ditional overhead. Ample scratch space is maintained by the
GridParticlesMove sub-unit for communication; the same space
can be recycled for out-of-place O(n) sorting by letting the Grid-
Particles sub-unit do it.

The second part of enabling multiple particle type capability
is to allow for different mechanisms for initialization, mapping,
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Figure 5. Volume renderings of active particles from FLASH galaxy cluster merger simulations.

(A color version of this figure is available in the online journal.)

and integration among different particle types. We opted to
identify and attach the methods for each of the above-mentioned
processing steps to particle types at the application configuration
step rather than at runtime. The primary consideration for this
choice is to prevent proliferation of switches in the code, which
reduces the flexibility and maintainability of the code. The
Config file syntax was augmented with directives to specify
the desired methods, which are used to generate a map that can
be queried by the Particles unit as needed at runtime.

6. APPLICATIONS

6.1. Example: Galaxy Cluster Mergers

A common use of the FLASH code has been to perform
numerical studies of galaxy clusters. Galaxy clusters are the
largest objects to have formed from gravitational collapse since
the big bang, and as such provide excellent representations of the
matter content of the universe as a whole. Besides the galaxies
themselves, a cluster is filled with a diffuse, hot, magnetized,
X-ray emitting plasma that is the dominant baryonic component
(Sarazin 1988). The bulk of the cluster’s mass is in the form of
dark matter. Galaxy clusters are not only important objects of
study in their own right, but they are being used to constrain
cosmological models as well (e.g., Voit 2005; Vikhlinin et al.
2009). For this latter purpose, it is important to model accurately
the physics of the clusters’ gas and dark matter components.

FLASH’s Eulerian grid framework, coupled with its suite of
hydrodynamics solvers, is well suited to solve for the evolu-
tion of the gas in galaxy clusters. Dark matter is believed to be
collisionless, and as such is modeled poorly by the Euler equa-
tions of hydrodynamics, which best represent collisional sys-
tems. The evolution of collisionless matter under gravitational
interactions is best represented by the collisionless Boltzmann
equation (CBE):

0 = df

dt
= ∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f

∂v
, (1)

where f (x, v, t) is the single-particle distribution function of
the dark matter in phase space {x, v} and Φ is the gravitational
potential. Unfortunately, the direct numerical simulation of this
equation on the FLASH grid is not feasible. First, the CBE is a

nonlinear partial differential equation in seven dimensions with
a vast phase space, and it is typically very inhomogeneous.
Second, f develops strong gradients as it evolves, due to
fluctuations in the field becoming mixed, leading to extremely
thin layers of phase-space density. These issues are described in
more detail in Binney & Tremaine (1987).

Since the above approach is not computationally feasible at
this time given the currently available hardware capabilities,
essentially all codes that model dark matter and other types
of collisionless material in two and three spatial dimensions
have chosen an alternative route. This approach, implemented
by the Lagrangian particle framework in the FLASH code, is to
model f in a Monte Carlo fashion by an ensemble of N randomly
chosen phase-space points {xi , vi}, i = 1 . . . N with weights mi
corresponding to the particle masses (for a more comprehensive
theoretical treatment of this representation of the distribution
function, see the recent review by Dehnen & Read 2011). In this
context, the Lagrangian mass entities are commonly referred
to as “dark matter particles,” but it is crucial to understand
that the particles themselves do not represent physical dark
matter particles or structures per se but act as discrete samples
of the underlying dark matter distribution function f in phase
space. Using a large number of massive particles per cluster
(typically ∼ 105–107), we may follow the evolution of the dark
matter distributions of the clusters with sufficient accuracy to
understand how their properties change during the merger as
well as the effects on the gas of the clusters.

This model for the dark matter was used in a particular setup
for the FLASH code in a number of works to simulate high-
resolution binary mergers of galaxy clusters. ZuHone et al.
(2009a) simulated a high-speed, head-on collision between two
galaxy clusters to determine if such collisions could result in the
creation of rings of dark matter particles as suggested by a recent
observation (Jee et al. 2007). ZuHone et al. (2009b) re-simulated
the same collision with gas included to estimate the masses of
the clusters from the gas properties and compare them to the
actual masses measured during the simulation. ZuHone et al.
(2010) performed a number of simulations of mergers of clusters
with small subclusters to show how gravitational perturbations
initiate “sloshing” of gas in the cores of clusters and the heating
of the cluster core. ZuHone (2011) presented a parameter space
exploration of galaxy cluster mergers, examining the mixing
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Figure 6. Weak scaling behavior of the galaxy cluster application on the ANL
ALCF resource BlueGene/P “Intrepid,” with the individual scaling performance
of several code units plotted.

(A color version of this figure is available in the online journal.)

and thermal properties of the gas (example volume renderings
of the particles from two galaxy clusters undergoing mergers
are shown in Figure 5). Finally, Molnar et al. (2012) used the
FLASH code to investigate the separation between the X-ray
and Sunyaev–Zel’dovich peaks during galaxy cluster mergers.
The setup used for all of these works relies crucially on the
combination of the Lagrangian particle framework and the
Eulerian grid framework in the FLASH code.

Some of these recent calculations were performed on
“Intrepid,” a BlueGene/P at the Argonne Leadership Comput-
ing Facility (ALCF) at Argonne National Laboratory (ANL).
Figure 6 shows the weak scaling performance of the main code
units on Intrepid, including those involving active particles.
The particle units not only scale well with increasing problem
size, but also represent a small fraction of the computational
time when compared with the hydrodynamics unit, which is the
most fundamental physics unit of the code. This fact allows the
user to include a large number of particles in the simulation
without taking a significant performance hit or using up the
memory on the compute nodes.

A number of recent works have demonstrated that grid-based
and particle-based hydrodynamic codes produce very different
results in physical situations involving fluid instabilities and tur-
bulence (e.g., Dolag et al. 2005; O’Shea et al. 2005b; Agertz
et al. 2007; Wadsley et al. 2008; Mitchell et al. 2009; Bauer &
Springel 2011; Scannapieco et al. 2011). Specifically, in high
Reynolds number situations, the codes based on smoothed par-
ticle hydrodynamics (SPH) fail to reproduce fluid instabilities,
mixing, and small-scale turbulent motions. It is for this reason
that for many applications grid-based methods are preferred.
However, though the Eulerian approach to hydrodynamics may
reproduce the properties of shocks, fluid instabilities, and tur-
bulence better than SPH codes, it lacks the ability to trace the
histories of individual gas parcels. A number of questions arise
in the context of galaxy cluster mergers that require a Lagrangian
representation of the fluid in order to obtain accurate answers.
For example, mergers disrupt and heat the cool cores of relaxed
galaxy clusters (Burns et al. 2008; ZuHone et al. 2010; ZuHone

2011) via shock heating and mixing of the cool gas from the
core with hotter gas from the cluster outskirts. Eulerian methods
represent the shock heating and gas mixing well, but they cannot
give any information about the history of the gas that originally
resided in the cluster centers. What happened to this gas? How
have its thermodynamic properties changed as a result of the
merger? Where does this gas end up in the cluster? How exactly
did the metal-rich gas originating in the cluster cores get spread
around by the merger event?

These are questions answered best by the use of passive
tracer particles, which represent individual gas parcels that can
be tracked during the course of a simulation (see Vazza et al.
2010, for an example using tracer particles in the Enzo code).
The particle framework in FLASH allows for the inclusion of
both active particles to represent the dark matter and passive
tracer particles to represent the gas. In certain situations, these
particles are analogous to the gas particles in SPH methods.
This functionality of the FLASH code offers a “best of both
worlds” approach, providing both the advantages of the Eulerian
approach to hydrodynamics and the ability to track the histories
of individual gas parcels, the latter being normally offered only
by SPH methods.

Ongoing simulation work with the FLASH code in the area
of galaxy cluster mergers demonstrates the versatility of passive
tracer particles. Beyond merely using the passive tracers to
investigate the properties of the fluid parcels they represent
over time, it is also possible to perform detailed post-processing
calculations of other physical phenomena not represented by
the physics modeled by the FLASH code. One such application
is the use of the galaxy cluster merger setup to simulate
turbulent reacceleration of cosmic-ray electrons in merging
galaxy clusters. Cosmic-ray electrons are relativistic particles
that produce synchrotron radio emission as they spiral around
magnetic field lines. In a number of galaxy clusters, large-scale,
diffuse radio emission is produced by these particles, which
are believed to be continuously reaccelerated to the necessary
energies by magnetohydrodynamic turbulence (Mazzotta &
Giacintucci 2008; Cassano et al. 2010). It is necessary to
take into account the energy gains and losses of the cosmic-
ray electrons over time in order to determine their energies at
the observed epoch. By associating populations of relativistic
electrons with individual tracer particles, it is possible to
determine the evolution of the electrons’ energies as they are
reaccelerated by turbulence and decelerated by energy losses
from interactions with magnetic fields, background photons,
and thermal electrons. The complete characterization of the
gas properties along the trajectories followed by the tracer
particles makes carrying out such a calculation possible. The first
calculations of this kind using the FLASH code are presented
in ZuHone et al. (2012).

6.2. Example: Type Ia Supernova Explosions

Another important application of the FLASH code has been
the computation of explosion models of SNe Ia. Interest in
modeling of SNe Ia has been stimulated by the discovery of the
accelerating expansion of the universe using SNe Ia as standard-
candle cosmographic markers (Riess et al. 1998; Perlmutter et al.
1999). The goal of using SNe Ia as probes of the equation of
state of dark energy (and its evolution with redshift) awaits a
reduction in the systematic errors in the distance determination
to individual SN Ia from the current level of about 15% to
about 1% (Kim et al. 2004; DETF 2006). The best hope for
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improvements in distance modulus accuracy is more accurate
modeling of SN Ia explosions.

The leading mechanism for SN Ia explosions is the single-
degenerate model in which a progenitor white dwarf accretes
material from a non-degenerate companion star (Whelan & Iben
1973; Nomoto 1982). In this model, an accreting white dwarf
star, with a mass near the Chandrasekhar limit, manages to
release enough nuclear energy by the fusing of carbon and
oxygen into radioactive nickel and other lighter elements in
the time span of a few seconds or less (Nomoto et al. 1984).
This rapid fusion process deposits approximately 1051 erg of
energy, unbinding the star and accelerating the stellar material
to speeds of thousands of kilometers per second (Branch et al.
1982). This rapid fusion process must proceed in two phases
(Röpke et al. 2007). The first phase begins with the initiation of
a subsonic nuclear burning front (referred to as a deflagration
or flame). The second phase consists of a supersonic burning
front—a detonation—that consumes the remainder of the white
dwarf.

The explosion itself is not detectable, since most of the
nuclear energy evolved by the fusion reactions is converted
to kinetic energy of the cooling and expanding nebula. The
nebula starts to heat up and glow soon thereafter, however,
due to radioactive decay of the unstable iron-group isotopes
(mainly 56Ni) produced by nuclear burning during the explosion.
Prediction of observable multi-color light curves and spectra
therefore requires radiation transport calculations of the light
emitted by the inhomogeneously heated, inhomogeneously
composed nebula. An accurate composition distribution of the
ejecta is therefore required, in addition to the mass and velocity
profiles.

A true, high-fidelity simulation of an SN Ia explosion would
couple the hydrodynamic evolution of the degenerate plasma to
a nuclear reaction network, in order to simultaneously obtain
the correct energy release (and hence the correct flow prop-
erties) and the correct isotopic abundances. However, the ex-
pense of such a computation has proven prohibitive in three di-
mensions. The FLASH simulations of SN Ia explosions model
the nuclear flame using a flame-capturing Advection-Diffusion-
Reaction scheme (Khokhlov 1995), powered by a simplified,
three-stage burning model representing carbon burning, oxygen
burning, and relaxation to nuclear statistical equilibrium (Calder
et al. 2007; Townsley et al. 2007). This model is calibrated to
produce accurate energy release, but gives inadequate (and in-
accurate) estimates of nucleosynthetic abundances. To compen-
sate, passive scalar particles are used to record thermal history
and are post-processed through a nuclear network to compute
the final abundances (Brown et al. 2005). Those abundances are
then placed on the grid together with the hydrodynamic outflow
data for processing by radiation transport codes.

It seems natural to choose an initial particle distribution that
is proportional to mass density in this application, since such a
distribution has the desirable property of having a predictable
evolution: passive advection necessarily preserves the mass-
tracing property of such a particle distribution. This property
may seem more desirable inasmuch as one might expect that
most of the action of interest takes place at the locations where
most of the mass is. However, this appearance is deceptive
from the point of view of the radiation transport. In fact, the
consequence of a mass-tracing particle placement strategy is that
far too many particles take up residence in regions of the outflow
that are “boring,” in the sense that they are either too uniform in
composition to justify high particle sampling or are too optically

thick to contribute to the observed light. Furthermore, line-
forming processes of crucial importance to the SN Ia spectrum
often occur in (relatively) low-density regions of the outflow,
and hence are severely undersampled by a mass-tracing particle
distribution. As a result of these mismatches, we are forced
to evolve many more particles than are strictly required to
sample the outflow composition, in order to obtain adequate
numbers in regions of interest from the perspective of radiation
transport.

We address this problem by a combination of strategies. The
simplest approach is to superpose two distributions of particles,
one mass tracing, the other uniform in volume (over the ini-
tial stellar interior), keeping track of which parent distribution
generated each particle. After a few pilot runs, we can estimate
from the desired sampling rates in (photospherically) “inter-
esting” regions the relative fractions of particles required from
the two populations in a statistically optimal sense. The ability
to customize particle location initialization in FLASH is obvi-
ously a necessity here, as is the ability to simultaneously evolve
multiple particle types.

A more sophisticated strategy, currently under exploration,
is as follows: take the final particle configuration from one
of the above pilot simulations or perhaps of a cheaper, two-
dimensional simulation of the same initial conditions. Break up
the outflow itself into regions (e.g., radial shells, wedges, etc.)
and estimate the local final particle density ffinal(x) required
to sample each region optimally. Suppose a particle started
the simulation at position xinitial with density ρinitial(xinitial),
and ended it at position xfinal with density ρfinal(xfinal) (the
densities ρ are recorded as part of each particle’s thermal
history). One can then obtain the required sampling density
of the initial particle distribution finitial(xinitial) corresponding
to the desired final distribution by the equation finitial(xinitial) =
[ρinitial(xinitial)/ρfinal(xfinal)] × ffinal(xfinal), which follows from
the advection of both the particles and the mass density. That
point sampling of the initial distribution can then be interpolated
to the initial grid, and the interpolated distribution sampled to
produce a particle population of moderate size targeting the
desired final distribution. This necessarily irregular particle
distribution mandates the sort of flexible particle location
initialization facilities available in FLASH.

7. CONCLUSIONS

We have successfully superimposed a fairly comprehensive
Lagrangian framework on top of the FLASH code’s primary
Eulerian framework. The Lagrangian framework has all the
modularity, extensibility, and customizability of the Eulerian
framework. Also, because the data structures associated with
the particles are independent of the physical quantities being
represented, they have multiple different uses in different appli-
cations. Some of the more unorthodox uses of the Lagrangian
framework include fluid–structure interaction and laser ray trac-
ing. At the time of this writing, these are still works in progress,
and therefore the details are not included in the discussion here.
However, they both exploit the most important general con-
tribution of the Lagrangian framework to the FLASH code: it
provides a mechanism to support parallel data structures that are
not native or known to the underlying mesh package, but need
to interact with it.

The code described in this work was in part developed by
the NNSA-DOE supported Flash Center under grant B523820,
and NSF Peta-apps grant 5-27429 at the University of Chicago.
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The PIC capabilities described in the paper are contributed and
maintained by Mats Holmström.
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