Information Technology

Dixed Integer Programming and Heuristic Scheduling for Space Communication

NASA's Jet Propulsion Laboratory, Pasadena, California

Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization.

The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network.

Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

This work was done by Charles H. Lee and Kar-Ming Cheung of Caltech for NASA's Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov.

This software is available for commercial licensing. Please contact Dan Broderick at Daniel.F.Broderick@jpl.nasa.gov. Refer to NPO-48485.

2Video Altimeter and Obstruction Detector for an Aircraft

Lyndon B. Johnson Space Center, Houston, Texas

Video-based altimetric and obstructiondetection systems for aircraft have been partially developed. The hardware of a system of this type includes a downward-looking video camera, a video digitizer, a Global Positioning System receiver or other means of measuring the aircraft velocity relative to the ground, a gyroscopebased or other attitude-determination subsystem, and a computer running altimetric and/or obstruction-detection software.

From the digitized video data, the altimetric software computes the pixel velocity in an appropriate part of the video image and the corresponding angular relative motion of the ground within the field of view of the camera. Then by use of trigonometric relationships among the aircraft velocity, the attitude of the camera, the angular relative motion, and the altitude, the software computes the altitude. The obstruction-detection software performs somewhat similar calculations as part of a larger task in which it uses the pixelvelocity data from the entire video image to compute a depth map, which can be correlated with a terrain map, showing locations of potential obstructions. The depth map can be used as real-time hazard display and/or to update an obstruction database.

This work was done by Frank J. Delgado of Johnson Space Center and Michael F. Abernathy, Janis White, and William R. Dolson of Rapid Imaging Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24246-1/7-1

Control Software for Piezo Stepping Actuators

NASA's Jet Propulsion Laboratory, Pasadena, California

A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of