CORE Provided by NASA Technical Reports Served

A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

R. S. Nemmen^{1*}, M. Georganopoulos^{2,1}, S. Guiriec¹, E. T. Meyer^{3,5}, N. Gehrels¹, R. M. Sambruna⁴

- 1. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- 2. Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
- 3. Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- 4. Department of Physics and Astronomy, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030, USA
- 5. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

*To whom correspondence should be addressed. E-mail: rodrigo.nemmen@nasa.gov

Published in *Science*, 338, 1445 (2012), DOI: 10.1126/science.1227416. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the γ -ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

Relativistic jets are ubiquitous in the cosmos and have been observed in a diverse range of black hole systems spanning from stellar mass (~ $10M_{\odot}$) to supermassive scales (~ $10^5 - 10^{10}M_{\odot}$), in particular in the bright flashes of gamma-rays known as GRBs (1, 2), the miniature versions of quasars lurking in our galaxy known as "microquasars" (3) and AGNs (4, 5). Despite decades of observations at almost all wavelengths and considerable theoretical efforts, there are still many aspects of black hole jets which remain mysterious: the mechanism(s) responsible for their formation and the nature of their energetics as well as their high-energy radiation (6, 7). Jets and outflows from supermassive black holes have important feedback effects on scales ranging from their host galaxies to groups and clusters of galaxies (8). Hence, a better understanding of the physics of jets is required in order to have a more complete picture of the formation and evolution of large-scale structures in the universe and the coevolution of black holes and galaxies (9).

One outstanding question is how the jet physics scale with mass from stellar to supermassive black holes. Interestingly, there is evidence that jets behave in similar ways in microquasars and radio-loud AGN (10-12). However, a clear connection between AGN and GRBs has not been established yet, although recent work provides encouraging results (13, 14).

As a first step in understanding how the properties of jets vary across the mass scale, we focus on the energetics of jets produced in AGNs and GRBs. Therefore, we searched the literature for published and archival observations that allow us to estimate the jet radiative output and the kinetic power for a sample of black hole systems in which the jet is closely aligned with our line of sight and characterized by a broad range of masses. For this reason, our sample consists of blazars – AGNs with their jets oriented toward Earth (15) – and GRBs, the spectral energy distributions of which are completely dominated by the jet due to beaming effects.

We used as a proxy of the jet bolometric luminosity the observed γ -ray luminosity L^{iso} which is isotropically equivalent. In order to estimate the kinetic power P_{jet} , we use extended radio luminosities for the blazars whereas for the GRBs we relied on the afterglow measurements in radio or X-rays. Therefore, the availability of these observables restricted our sample to 234 blazars (106 BL Lacs and 128 flat-spectrum radio quasars – FSRQs; see Table S1) and 54 GRBs (49 long and 5 short GRBs, all with known redshifts z; see Table S2). For blazars, L^{iso} was estimated from the γ -ray energy flux and the spectral index measured with Fermi Large

Area Telescope (LAT) (16); P_{jet} was estimated using an empirical correlation which relates the Very Large Array (VLA) extended radio emission and the jet kinetic power (17, 18). For GRBs, $L^{\text{iso}} = E^{\text{iso}}(1+z)/t_{90}$ where t_{90} is the burst duration and E^{iso} is the isotropically equivalent energy radiated during the prompt emission phase and measured with different telescopes (21 observed with either BeppoSAX, BATSE, HETE, HETE-2 or Integral, 24 with Swift Burst Alert Telescope – BAT – and 10 with Fermi). P_{jet} was computed as $P_{\text{jet}} = f_b E_k^{\text{iso}}(1+z)/t_{90}$ where E_k^{iso} is the kinetic energy estimated from the radio (VLA) or X-ray (Chandra) luminosity during the afterglow phase using the standard afterglow model (19), $f_b \equiv 1 - \cos \theta$ is the "beaming factor" and θ is the radiation cone half-opening angle which is the same as the jet opening angle estimated from the GRB afterglow lightcurve (20).

We first compared the relative trends of L^{iso} and P_{jet} for the blazar and GRB population separately (Figure 1). The Pearson correlation coefficients of 0.85 and 0.8 obtained for blazars and GRBs respectively, indicate a strong correlation within each group of sources. However, the $L^{iso}-P_{jet}$ trend is different for GRBs and blazars as shown by the fits to the data (Fig. 1).

We computed the intrinsic luminosity, L, for GRBs and blazars by correcting L^{iso} for the opening angle or beaming factor, f_b , such that $L = f_b L^{iso}$. For GRBs, the beaming factor is computed from the jet opening angle θ_j as $1 - \cos \theta_j$ (22); for blazars, f_b is estimated as $1 - \cos 1/\Gamma$ where Γ is the bulk Lorentz factor of the flow, since AGNs obey $\theta_j < 1/\Gamma$ (23, 24). While an estimate of θ_j is available for each GRB in the sample, Γ is only available for a subset of 41 blazars. Figure 2 shows an anti correlation between L^{iso} and f_b for both GRBs and blazars with compatible indices when fit with a power law. Because θ is not available for the whole blazar sample, we used the power-law fit of L^{iso} vs f_b as an estimator for f_b .

As with L^{iso} and P_{jet} , L and P_{jet} are strongly correlated within the GRB and AGN samples (Fig. 3). However, they follow the same trend within the narrow uncertainties and the whole GRB and blazar sample can be fit adequately with a power law over 10 orders of magnitude in luminosity. Therefore, the relativistic jets in GRBs and blazars are consistent with obeying the relation $P_{\text{jet}} \approx 4.6 \times 10^{47} (L/10^{47})^{0.98} \text{ erg s}^{-1}$, within the measurement uncertainties. In other words, once "black hole engines" produce relativistic jets, they seem to do so maintaining the same coupling between the total power carried by the jet and power radiated away. This universal scaling for the energetics of jets is maintained across the mass scale regardless of the different environments and accretion flow conditions around the compact object.

Figure 4 indicates that most of the jets in our sample dissipate at least 3% of the power carried by the jet as radiation and overall they can radiate as much 15%. This range of efficiencies is considerably higher than previous estimates for AGNs based on radio to X-rays luminosities (25, 26) but they are in agreement with results obtained from blazar broadband spectral models (27, 28) as well as GRB afterglow studies (29–31). Efficient heating of electrons seems to be a universal property of relativistic magnetized shocks according to numerical simulations (32) which demonstrate that electrons retain $\gtrsim 15\%$ of the pre-shock energy. If most of the post-shock energy is radiated away, these theoretical results could pave the way to an understanding of the high dissipation efficiencies that we find.

Our results suggest that there is a single fundamental mechanism to produce relativistic jets

in the Universe. The analogy known to exist between microquasars and AGNs (3, 10, 11) can be extended to the gamma-ray bursts with the fundamental difference that whereas AGNs and microquasars undergo recurrent activity, GRBs experience only one episode of hyperaccretion.

Figure 1: The relation between the jet kinetic power and the isotropically-equivalent γ -ray luminosity for AGNs and GRBs. Error bars, 1σ . We fitted the two populations separately using a symmetric least-squares method (orthogonal BCES with bootstrapping; 21). The blazar and GRB best-fit models corresponds to the solid and dashed lines, respectively ($\log P_{jet} = A \log L^{iso} + B$). The best-fit parameters obtained for the blazars are $A = 0.51 \pm 0.02$ and $B = 21.2 \pm 1.1$; for the GRBs, $A = 0.74 \pm 0.08$ and $B = 11.8 \pm 4.1$. The scatter about the best-fit is 0.5 dex and 0.8 dex for the blazars and GRBs, respectively. The 2σ confidence band of the fits is shown as the gray shaded regions (barely visible for blazars). The two correlations do not agree at $> 5\sigma$ level. We also include for illustration XRF 020903 and GRB 090423 (yellow circles) as well as the two recent tidal disruption flares (TDFs) detected with Swift which are presumably due to the onset of relativistic jets from the tidal disruption of stars by supermassive black holes (*36*). We do not consider these sources in the statistics since we only have limits on their luminosities

Figure 2: The relation between the apparent γ -ray luminosity and the beaming factor for blazars (left panel) and GRBs (right panel). We find r = -0.53 and -0.56 for blazars and GRBs, respectively, indicating anti correlations significant at the 3.6σ and 4.4σ levels respectively. The solid lines correspond to the best-fit linear models obtained with the symmetric least-squares fit and are given by $f_b \approx 5 \times 10^{-4} (L_{49}^{\rm iso})^{-0.39\pm0.15}$ and $\approx 0.03 (L_{49}^{\rm iso})^{-0.24\pm0.06}$ for blazars and GRBs, respectively. The gray shaded region corresponds to the 1σ confidence band and the blue and yellow regions are the 1σ prediction bands, which quantify the scatter about the best-fits.

Figure 3: The relation between the collimation-corrected γ -ray luminosity $L = f_b L^{\text{iso}}$ and the kinetic power for AGNs and GRBs. The shaded regions display the 2σ confidence band of the fits. The blazar and GRB best-fit models (dashed and dotted lines, respectively) follow correlations which are consistent, within the uncertainties, with the best-fit model obtained from the joint data set (solid line). In other words, using L instead of L^{iso} leads to correlations for AGNs and GRBs which are consistent with each other (compare to Fig. 1). The best-fit parameters obtained from the combined data set are $\alpha = 0.98 \pm 0.02$ and $\beta = 1.6 \pm 0.9$ where $\log P_{\text{jet}} = \alpha \log L + \beta$. The scatter about the best-fit is 0.64 dex. The yellow data points correspond to XRF 020903 and GRB 090423, which we do not take into account in the statistics.

Figure 4: Distribution of the 1σ lower limits on the jet radiative efficiency (the fraction of the total jet power which is converted to γ -rays) $\epsilon_{\rm rad} \equiv L/(L + P_{\rm jet})$ for AGNs and GRBs. The vertical solid lines indicate the median values of the lower limits and the dashed lines represent the median values of $\epsilon_{\rm rad}$ for each sample. Most of the sources are characterized by $\epsilon_{\rm rad} > 3\%$. The median efficiencies correspond to about 15%, keeping in mind that these estimates are affected by $\sim 0.5 - 0.7$ dex uncertainties on average.

References and Notes

- 1. Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. Ann. Rev. Astron. Astrophys. 47, 567 (2009).
- 2. Piran, T. Rev. of Mod. Phys. 76, 1143 (2004).
- 3. Mirabel I. F., & Rodriguez L. F. Annu. Rev. Astron. Astrophys. 37, 409 (1999).
- 4. Rees, M. J. Ann. Rev. Astron. Astrophys. 22, 471 (1984).
- 5. Krolik, J. H. Active galactic nuclei : from the central black hole to the galactic environment (Princeton University Press) (1999).
- 6. Meier, D. L., Koide, S. K., & Uchida, Y. Science 291, 84 (2001).
- 7. Narayan, R., & Quataert, E. Science 307, 77 (2005).
- 8. McNamara, B., & Nulsen, P. E. J. Ann. Rev. Astron. Astrophys. 45, 117 (2007).
- 9. Sijacki, D., Springel, V., & Hernquist, L. Mon. Not. R. Astron. Soc. 380, 877 (2007).
- 10. Marscher, A. P., et al. *Nature* **417**, 625 (2002).
- 11. Merloni, A., Heinz, S., & Di Matteo, T. Mon. Not. R. Astron. Soc. 345, 1057 (2003).
- 12. Falcke, H., Körding, E., & Markoff, S. Astron. Astrophys. 414, 895 (2004).
- 13. Wang, J., & Wei, J. Astrophys. J. 726, L24 (2011).
- 14. Wu, Q., et al. Astrophys. J. 740, L21 (2011).
- 15. Ulrich, M., Maraschi, L., & Urry, C. M. Annu. Rev. Astron. Astrophys. 35, 445 (1997).
- 16. Fermi LAT Collaboration. Astrophys. J. 743, 171 (2011).
- 17. Meyer, E. T., Fossati, G., Georganopoulos, M., & Lister, M. L. Astrophys. J. 740, 98 (2011).
- 18. Cavagnolo, K. W., et al. Astrophys. J. 720, 1066 (2010).
- 19. Freedman, D. L., & Waxman, E. Astrophys. J. 547, 922 (2001).
- 20. See supplementary online material for more details.
- 21. Akritas, M. G., & Siebert, J. Astrophys. J. 470, 706 (1996).
- 22. Frail, D. A., et al. Astrophys. J., 562, L55 (2001).
- 23. Jorstad, S. G., et al. Astrophys. J. 130, 1418 (2005).

- Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L., & Savolainen, T. Astron. Astrophys. 507, L33 (2009).
- 25. Celotti, A., & Fabian, A. Mon. Not. R. Astron. Soc., 264, 228 (1993).
- 26. Yuan, F., Yu, Zhaolong, & Ho, L. C. Astrophys. J., 703, 1034 (2009).
- 27. Celotti, A., & Ghisellini, G. Mon. Not. R. Astron. Soc., 385, 283 (2008). celotti08
- 28. Ghisellini, G., Tavecchio, F., Foschini, L., Ghirlanda, G., Maraschi, L., & Celotti, A. *Mon. Not. R. Astron. Soc.*, **402**, 497 (2010).
- 29. Fan, Y., & Piran, T. Mon. Not. R. Astron. Soc., 369, 197 (2006).
- 30. Zhang, B., et al. Astrophys. J., 655, 989 (2007).
- 31. Racusin, J. L., et al. Astrophys. J. 738, 138 (2011).
- 32. Sironi, L., & Spitkovsky, A. Astrophys. J., 726, 75 (2009).
- 33. Bloom, J. S., et al. *Science* **333**, 203 (2011).
- 34. Burrows, D. N., et al. *Nature* **476**, 421 (2011).
- 35. Cenko, S. B., et al. Astrophys. J. 753, 77 (2012).
- 36. In order to include the TDFs in Figure 1, we used the *Fermi* LAT upper limit (34) observed for Swift J164449.3+573451 and we assumed $L^{iso} \sim L_X$ for Swift J2058.4+0516 (35) where L_X is the observed X-ray luminosity. We assumed $P_{jet} \sim L_{Edd}$ where L_{Edd} is the Eddington luminosity based on the black hole masses estimated by 33–35. These luminosities and powers should be treated as upper limits.

Acknowledgements: We thank J. Racusin, M. Lister, C. Dermer, A. Pushkarev, J. McEnery, D. Donato, D. Kazanas, T. Nelson and F. Tombesi for crucial discussions. RSN and SG were supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This research has made use of: (i) StatCodes statistical software hosted by Penn State's Center for Astrostatistics; (ii) data obtained from the HETE science team via the website http://space.mit.edu/HETE/Bursts/Data. HETE is an international mission of the NASA Explorer program, run by the Massachusetts Institute of Technology; (iii) NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Supplementary Materials

Data

Table S1 lists the properties of the 234 blazars in our sample (106 BL Lac objects and 128 FSRQs). Our sample includes the well-studied blazars OJ 287, 3C 454.3, 3C 279 and 3C 273. The redshifts were estimated as described in (*17*).

Table S2 lists the corresponding properties of the 54 GRBs (49 long and 5 short). We include in our data the sub-energetic bursts GRB 031203 (37) and GRB 980425 (38). The latter one is associated with the nearby (distance ~ 40 Mpc) supernova 1998bw (39, 40). We also include in our sample the naked-eye GRB 080319B (42). We include in Table S2 the X-ray flash (XRF) 020903 (41) and the most distant cosmic explosion ever detected, GRB 090423 at $z \approx 8.2$ (43, 44) but we do not take these GRBs into account in the statistics, since we have only limits on their collimation-corrected energetics.

Calculation of γ -ray luminosity and jet power

Blazars

 γ -ray luminosity:

In order to calculate the total Fermi γ -ray luminosity, we follow a procedure similar to that of (46) (their equation 1). The procedure to calculate the k-corrected band luminosity depends on the type of model used in the 2FGL analysis (16, 47). In the case of a power law energy model, the total 100 MeV to 100 GeV k-corrected luminosity is calculated from the energy flux (S_{γ}) given in the catalog:

$$L^{\rm iso} = 4\pi d_L^2 \frac{S_\gamma}{(1+z)^{1-\alpha_\gamma}},\tag{1}$$

where d_L is the luminosity distance in cm² and α_{γ} is the (energy) spectral slope over the whole band.

In the 2FGL catalog, some blazars are now modeled with the 'Log Parabolic' form. The k-corrected energy flux in this case must be calculated numerically. The integral form is

$$S'_{\gamma} = \chi \int_{E_1}^{E_2} K\left(\frac{E}{E_0(1+z)}\right)^{-\alpha - \beta \log\left(\frac{E}{E_0(1+z)}\right)} (1+z)^{-2} E \, dE,\tag{2}$$

where $E_1 = 0.1$ GeV and $E_2 = 100$ GeV and we have used the fit given in the 2FGL catalog for each source, with values α (column name 'spectral_index'), β ('beta'), and E_0 ('pivot_energy'), and K ('flux_density'). The constant $\chi = 1.6$ erg MeV GeV⁻² gives the energy flux in final units of erg cm⁻² s⁻¹.

The band luminosity for the Log-Parabolic model case can then be simply calculated from

$$L^{\rm iso} = 4\pi d_L^2 S_{\gamma}^{\prime}.\tag{3}$$

We calculate the uncertainty in L^{iso} propagating the error associated with α_{γ} and S_{γ} quoted in the 2FGL. The average uncertainty in L^{iso} corresponds to 0.05 dex.

In order to estimate the uncertainty affecting the collimation-corrected luminosities L we first evaluate the error in the beaming angle θ or correspondingly Γ . The uncertainty in Γ is dominated by the uncertainty in the variability Doppler factor whereas the uncertainty in the apparent speed does not contribute significantly to the error budget of Γ . The uncertainty in the variability Doppler factor is $\approx 27\%$ (1 s.d.; 48). Therefore, for the blazars with direct estimates of Γ available, the relative uncertainty in Γ is 0.3 (24, 48) which translates to an average uncertainty of 0.26 dex in L for these blazars. For the blazars without direct estimates of Γ , we estimate the uncertainty in L using the prediction band of the $L^{iso} - f_b$ relation shown in Fig. 2. The plotted prediction band corresponds to a relative uncertainty of 0.69 in θ . The resulting average uncertainty affecting L for the blazars without direct estimates of Γ is then 0.6 dex.

Kinetic power:

Following (17), we estimate the jet kinetic power by using the correlation between the extended radio emission and the jet power (18, 49). Cavagnolo et al. searched for X-ray cavities in different systems including giant elliptical galaxies and cD galaxies and estimated the jet power required to inflate these cavities or bubbles, obtaining the tight correlation

$$P_{\rm cav} \approx 6 \times 10^{43} \left(\frac{P_{\rm radio}}{10^{40} \,{\rm erg \, s}^{-1}} \right)^{0.7} {\rm erg \, s}^{-1}$$
 (4)

between the "cavity" power and the radio luminosity. Hence, assuming $P_{\text{jet}} = P_{\text{cav}}$ we can estimate the jet kinetic power for the blazars which have extended radio emission observed with the VLA (17).

The uncertainty in P_{jet} is dominated by the scatter in the correlation of (18) and corresponds to 0.7 dex.

GRBs

γ -ray luminosity:

The current scenario for GRBs (50, 51) posits that initially most of the energy produced by the GRB is in kinetic form produced during the short "active" state of the stellar-mass central engine. A certain fraction of initial energy is converted after a few seconds mostly to γ -rays observed during the prompt emission, by means of internal shocks in the jet (52). The ultrarelativistic jet produced in the explosion later on collides with the circumburst medium producing the afterglow. Two crucial quantities which we use in this work are the radiative and kinetic energies released by the GRBs during their short period of activity.

The isotropically equivalent energy radiated in γ -rays E_{γ}^{iso} is directly available from measurements. It was measured for the GRBs using a variety of different telescopes including pre-Swift telescopes (BeppoSAX, BATSE, HETE, HETE-2 and Integral) as well as Swift and

Fermi (see Table S2). We calculate the isotropically-equivalent γ -ray luminosity as

$$L^{\rm iso} = \frac{(1+z)}{t_{90}} E_{\gamma}^{\rm iso}$$
(5)

where t_{90} is the duration containing 90% of the fluence in the observer frame.

The energy range in which the fluence is measured is typically $\sim 10 \text{ keV} - 10 \text{ MeV}$. Most of the radiative energy released in the GRB jet during the prompt emission is contained in this energy range according to the latest GRB SEDs observed (53).

We adopt an uncertainty of 0.2 dex on the values of E_{γ}^{iso} which corresponds to the typical uncertainty affecting the GRBs in the sample studied by (54). Therefore, the resulting uncertainty in the value of L^{iso} corresponds to 0.2 dex.

The collimation-corrected γ -ray luminosity is computed as

$$L = \frac{(1+z)}{t_{90}} f_b E_{\gamma}^{\rm iso} \tag{6}$$

where f_b is the beaming factor ($f_b = 1 - \cos \theta_j$) and θ_j is the jet half-opening angle. This relies on the afterglow lightcurve displaying a jet break which is used to estimate θ (22). $\langle \theta_j \rangle \approx 8^\circ$ for the sample and $\langle f_b \rangle \approx 9 \times 10^{-3}$. We adopt an uncertainty of 0.1 dex on the values of θ_{jet} , which corresponds to the typical uncertainty in the values of θ_j for the sample studied by (54).

We calculated the uncertainty in L using error propagation from the uncertainties in E_{γ}^{iso} and θ , obtaining that the uncertainty in L is ≈ 0.3 dex.

Kinetic energy:

The jet kinetic energy is estimated from the radio or X-ray afterglow lightcurve using the fireball model (19). For most of the GRBs, X-ray data were used to determine this energy (31, 54). In a few cases, radio data were used (35, 37, 41).

The standard fireball afterglow model depends on five model parameters: the explosion kinetic energy E_k^{iso} , the density of the circumburst environment n (with which the jet collides), the spectral index of the electron energy distribution p and the fractions ϵ_e and ϵ_B of shock thermal energy carried by electrons and magnetic field, respectively. The typical values adopted for these parameters are p = 2.2, $n = 1 \text{ cm}^{-3}$, $\epsilon_e = 0.1$ and $\epsilon_B = 0.01$ (e.g., 19, 31). The afterglow model relates the specific flux at a certain frequency and at a specific time after the burst (typically 10 hours in the observed frame) with the kinetic energy.

The measurement of E_k^{iso} can be impacted by the afterglow plateau which possibly corresponds to a late activity of the central engine. Indeed, (30) demonstrated the impact of choosing two different times for the measurement of E_k^{iso} : t_{dec} (deceleration time) or t_b (injection break time). Adopting t_{dec} would lead to an underestimation of E_k^{iso} because this choice of time does not include the plateau.

The kinetic energy estimates we used in our analysis were computed at either ~ 10 h or ~ 24 h (cf. Table S2). We verified that these times are usually beyond the "break time" of the plateau reported in (45). Therefore, the measurements of E_k^{iso} used in this paper correspond to

conservative estimates. Moreover, the choice of the time at either ~ 10 h and ~ 24 h affects very little the measurement of E_k^{iso} (31).

The typical uncertainty in E_k^{iso} due to observational errors is $\approx 0.3 \text{ dex } (30, 54)$. The value of E_k^{iso} is also sensitive to the values of parameters which regulate the microphysics of the fireball afterglow model and are poorly constrained. The systematic error affecting E_k^{iso} due to the uncertainties in the parameters ϵ_e and ϵ_B of the fireball afterglow model can be as high as 0.45 dex (29, 30). Therefore, we combined the uncertainty resulting from the observational and systematic sources of errors in quadrature and conservatively adopt an uncertainty of 0.5 dex for E_k^{iso} .

Kinetic power: The jet kinetic power is computed as

$$P_{\rm jet} = \frac{(1+z)}{t_{90}} f_b E_k^{\rm iso}.$$
(7)

 L_{γ}^{iso} and P_{jet} should be thought as the average luminosities over the duration t_{90} of the prompt emission phase, i.e. the average luminosities over the timescale during which the central engine is producing the jet. We calculated the uncertainty in P_{jet} using error propagation from the uncertainties in E_k^{iso} and θ , obtaining that the uncertainty affecting P_{jet} is ≈ 0.54 dex.

Linear regression method

Here we present more details about the linear regression method that we use in the paper.

We fitted the datasets using the BCES (bivariate correlated errors and intrinsic scatter) regression method (21) which takes into account measurement errors in both the "X" and "Y" coordinates and the intrinsic scatter in the data. This method has been widely used in fitting datasets in the astronomical community (70, 71).

It is not clear in the data sets analyzed in this work which quantities should be treated as the dependent variables and which ones should be treated as independent from a physical point of view. There is no a priori reason to expect the luminosity to be the independent variable as opposed to the kinetic power (or beaming factor). For this reason, we treat the variables symmetrically and adopt the BCES orthogonal regression method, which minimizes the squared orthogonal distances. Uncertainties on the parameters derived from the fits are estimated after carrying out 100000 bootstrap resamples of the data.

Partial correlation analysis

When studying correlations between luminosities one should be careful to take into account their common dependence on the distance (11). We performed a partial correlation analysis of the common dependence of L_{γ}^{iso} and P_{jet} on the distance using the partial Kendall's τ correlation test (72).

Objects	Ν	au	σ	$P_{\rm null}$	Signif. rejection null
Blazars	234	0.3	0.04	5×10^{-15}	7.8
GRBs	54	0.4	0.08	1.6×10^{-7}	5.2

Table S3 Results of partial correlation analysis with $X = P_{jet}$, $Y = L^{iso}$ and $Z = \log d_L$. **Notes.** Column (1): subsample. Column (2): Number of sources. Column (3)-(6): results of partial correlation analysis; τ is the partial Kendall's correlation coefficient; σ is the square root of the calculated variance; P_{null} is the probability for accepting the null hypothesis that there is no correlation between X and Y; Column (6) gives the associated significance in standard deviations with which the null hypothesis is rejected.

Objects	Ν	au	σ	$P_{\rm null}$	Signif. rejection null
All objects	288	0.57	0.06	$\ll 10^{-10}$	9.4
Blazars	234	0.24	0.03	2×10^{-12}	7
GRBs	54	0.47	0.08	10^{-9}	6.1

Table S4 Same as Table S3 with $X = P_{jet}$, Y = L and $Z = \log d_L$.

We applied this test to our data considering $X = P_{jet}$, $Y = L^{iso}$ and $Z = \log d_L$. Table S3 lists the results of the partial correlation analysis. This test demonstrates that the *p*-value of the null hypothesis (i.e. no correlation between X and Y) is 1.2×10^{-7} when considering the GRB subsample and $< 10^{-10}$ when considering the blazar subsample or the combined blazar-GRB sample. Therefore, the $L^{iso} - P_{jet}$ correlation is strong and not a distance-driven artifact.

We then applied the partial correlation test to the data considering $X = P_{\text{jet}}$, Y = L and $Z = \log d_L$, i.e. we replaced the isotropically-equivalent luminosity in Y with the collimationcorrected one. Table S4 lists the results of the analysis. This test demonstrates that the p-value of the null hypothesis is $\ll 10^{-10}$, $\approx 10^{-12}$ and 10^{-9} when considering the combined blazar-GRB sample, the blazars and the GRB, respectively. Hence, the $L - P_{\text{jet}}$ correlation remains very strong after correcting for beaming.

Blazar luminosity estimates: Impact of the synchrotron peak

We discuss in this section the impact of the lower energy synchrotron peak – observed in the spectral energy distribution of blazars (74, 75) – in estimating the jet radiative luminosity.

A subset of 131 blazars – roughly half of the original AGN sample – have adequate sampling of their multiwavelength spectral energy distributions which allow us to quantify the impact of the synchrotron peak in the estimate of the jet radiative luminosity. We estimated the bolometric luminosity as $L_{bol}^{iso} = L^{iso} + L_{syn}^{iso}$ where L_{syn}^{iso} is the isotropically-equivalent luminosity of the synchrotron peak. We obtained that the values of L_{bol}^{iso} for the quasars are not much different from L^{iso} (on average by a factor of ≈ 1.7), whereas the values of L_{bol}^{iso} for the BL Lacs are somewhat different (on average by a factor of ≈ 2.8). We computed the intrinsic bolometric luminosity as $L_{bol} = f_b L_{bol}^{iso}$, correcting L_{bol}^{iso} for the opening angle or beaming factor. As previously discussed, estimates of f_b for blazars rely on measurements of Γ which are not available for all the blazars in our sample. For this reason, we use the anti correlation between L_{bol}^{iso} and f_b as an estimator of f_b for the blazars without measurements of Γ .

We show in Figure S1 the resulting relation between $L_{\rm bol}$ and $P_{\rm jet}$ compared to the $L - P_{\rm jet}$ fit derived before (cf. Fig. 3). Figure S1 illustrates that the $L_{\rm bol} - P_{\rm jet}$ and $L - P_{\rm jet}$ best-fits are characterized by very similar slopes. However, the fit based on $L_{\rm bol}$ is characterized by slightly higher radiative efficiencies: for a given jet power, the jet luminosity is higher on average by a factor of ≈ 2 compared to the fit based on L. Therefore, the results based on $L_{\rm bol}$ strengthen our conclusion that AGN jets have high radiative efficiencies while still being in qualitative agreement with the GRB result.

Figure S1 The relation between the collimation-corrected bolometric luminosity $L_{\rm bol}$ and the kinetic power for the 131 blazars with measurements of synchrotron peak luminosity. The solid line in this figure corresponds to the fit based on $L_{\rm bol}$ whereas the dashed line is the fit based on L. The shaded regions display the 2σ confidence band of the fits. Error bars, 1σ .

References and Notes

- 1. Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. Ann. Rev. Astron. Astrophys. 47, 567 (2009).
- 2. Piran, T. Rev. of Mod. Phys. 76, 1143 (2004).
- 3. Mirabel I. F., & Rodriguez L. F. Annu. Rev. Astron. Astrophys. 37, 409 (1999).
- 4. Rees, M. J. Ann. Rev. Astron. Astrophys. 22, 471 (1984).
- 5. Krolik, J. H. Active galactic nuclei : from the central black hole to the galactic environment (Princeton University Press) (1999).
- 6. Meier, D. L., Koide, S. K., & Uchida, Y. Science 291, 84 (2001).
- 7. Narayan, R., & Quataert, E. Science 307, 77 (2005).
- 8. McNamara, B., & Nulsen, P. E. J. Ann. Rev. Astron. Astrophys. 45, 117 (2007).
- 9. Sijacki, D., Springel, V., & Hernquist, L. Mon. Not. R. Astron. Soc. 380, 877 (2007).
- 10. Marscher, A. P., et al. *Nature* **417**, 625 (2002).
- 11. Merloni, A., Heinz, S., & Di Matteo, T. Mon. Not. R. Astron. Soc. 345, 1057 (2003).
- 12. Falcke, H., Körding, E., & Markoff, S. Astron. Astrophys. 414, 895 (2004).
- 13. Wang, J., & Wei, J. Astrophys. J. 726, L24 (2011).
- 14. Wu, Q., et al. Astrophys. J. 740, L21 (2011).
- 15. Ulrich, M., Maraschi, L., & Urry, C. M. Annu. Rev. Astron. Astrophys. 35, 445 (1997).
- 16. Fermi LAT Collaboration. Astrophys. J. 743, 171 (2011).
- 17. Meyer, E. T., Fossati, G., Georganopoulos, M., & Lister, M. L. Astrophys. J. 740, 98 (2011).
- 18. Cavagnolo, K. W., et al. Astrophys. J. 720, 1066 (2010).
- 19. Freedman, D. L., & Waxman, E. Astrophys. J. 547, 922 (2001).
- 20. See supplementary online material for more details.
- 21. Akritas, M. G., & Siebert, J. Astrophys. J. 470, 706 (1996).
- 22. Frail, D. A., et al. Astrophys. J., 562, L55 (2001).
- 23. Jorstad, S. G., et al. Astrophys. J. 130, 1418 (2005).

- Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L., & Savolainen, T. Astron. Astrophys. 507, L33 (2009).
- 25. Celotti, A., & Fabian, A. Mon. Not. R. Astron. Soc., 264, 228 (1993).
- 26. Yuan, F., Yu, Zhaolong, & Ho, L. C. Astrophys. J., 703, 1034 (2009).
- 27. Celotti, A., & Ghisellini, G. Mon. Not. R. Astron. Soc., 385, 283 (2008).
- Ghisellini, G., Tavecchio, F., Foschini, L., Ghirlanda, G., Maraschi, L., & Celotti, A. Mon. Not. R. Astron. Soc. , 402, 497 (2010).
- 29. Fan, Y., & Piran, T. Mon. Not. R. Astron. Soc., 369, 197 (2006).
- 30. Zhang, B., et al. Astrophys. J., 655, 989 (2007).
- 31. Racusin, J. L., et al. Astrophys. J. 738, 138 (2011).
- 32. Sironi, L., & Spitkovsky, A. Astrophys. J., 726, 75 (2009).
- 33. Bloom, J. S., et al. Science 333, 203 (2011).
- 34. Burrows, D. N., et al. *Nature* **476**, 421 (2011).
- 35. Cenko, S. B., et al. Astrophys. J. 753, 77 (2012).
- 36. In order to include the TDFs in Figure 1, we used the *Fermi* LAT upper limit (34) observed for Swift J164449.3+573451 and we assumed L_γ ~ L_X for Swift J2058.4+0516 (35) where L_X is the X-ray luminosity. We assumed P_{jet} ~ L_{Edd} where L_{Edd} is the Eddington luminosity based on the black hole masses estimated by 33–35. These luminosities and powers should be treated as upper limits.
- 37. Soderberg, A. N., et al. *Nature* **430**, 648 (2004).
- 38. Pain, E., et al. Astrophys. J. 536, 778 (2000).
- 39. Galama, T. J., et al. *Nature* **395**, 670 (1998).
- 40. Kulkarni, S. R., et al. *Nature* **395**, 663 (1998).
- 41. Soderberg, A. M., et al. Astrophys. J. 606, 994 (2004b).
- 42. Racusin, J., et al. Nature 455, 183 (2008).
- 43. Tanvir, N. R., et al. Nature 461, 1255 (2009).
- 44. Chandra, P. Astrophys. J., 712, L31 (2010).

- 45. Dainotti, M. G., et al. Astrophys. J., 722, L215 (2010).
- 46. Ghisellini, G., Maraschi, L., & Tavecchio, F. Mon. Not. R. Astron. Soc., 396, L105 (2009).
- 47. Fermi LAT Collaboration. Astrophys. J. Suppl. Ser. 199, 31 (2012).
- 48. Hovatta, T., Valtaoja, E., Tornikoski, M., & Lähteenmäki, A. Astron. Astrophys. **494**, 527 (2009).
- 49. O'Sullivan, E.; Giacintucci, S.; David, L. P.; Gitti, M.; Vrtilek, J. M.; Raychaudhury, S.; Ponman, T. J. Astrophys. J., **735**, 11 (2011).
- 50. Mészáros, P. Annu. Rev. Astron. Astrophys. , 40, 137 (2002).
- 51. Nakar, E. Proc. of the The Shocking Universe meeting (arXiv:1009.4648) (2010).
- 52. Piran, T. Phys. Rep., **314**, 575 (1999).
- 53. Fermi LAT Collaboration. Astrophys. J. 729, 114 (2011).
- 54. Lloyd-Ronning, N. M., & Zhang, B. Astrophys. J., 613, 477 (2004).
- 55. Ghisellini, G., et al. Mon. Not. R. Astron. Soc., 372, 1699 (2006).
- 56. Berger, E.; Kulkarni, S. R.; & Frail, D. A. Astrophys. J., 590, 379 (2003)
- 57. Sakamoto, T., et al. Astrophys. J., 602, 875 (2004)
- 58. Vanderspek, R., et al. Astrophys. J., 617, 1251 (2004)
- 59. Villasenor, J. S., et al. *Nature*, **437**, 855 (2005)
- 60. Cenko, S. B., et al. Astrophys. J., 711, 641 (2010)
- 61. Cenko, S. B., et al. Astrophys. J., 652, 490 (2006)
- 62. Kawai, N., et al. Nature , 440, 184 (2006)
- Racusin, J. L.; Cummings, J.; Marshall, F. E.; Burrows, D. N.; Krimm, H.; & Sato, G. GCNR, 28, 3 (2007)
- 64. Bellm, E. C., et al. Astrophys. J., 688, 491 (2008)
- 65. Bellm, E. C., et al. Nature , 426, 154 (2003)
- 66. Li, Z., & Chevalier, R. A. Astrophys. J., 526, 716 (1999)
- 67. Yamazaki, R., Yonetoku, D., & Nakamura, T. Astrophys. J., 594, L79 (2003)

- 68. Campana, S., et al. Nature, 442, 1008 (2006)
- 69. Soderberg, A. M., et al. Nature, 442, 1014 (2006)
- 70. Vestergaard, M., & Peterson, B. M. Astrophys. J. 641, 689 (2006).
- 71. Pratt, G. W., Croston, J. H., Arnaud, M., & Böhringer, H. Astron. Astrophys. 498, 361 (2009).
- 72. Akritas, M. G., & Siebert, J. Mon. Not. R. Astr. Soc. 278, 919 (1996).
- 73. Bloom, J. S., Frail, D. A., & Kulkarni, S. R. Astrophys. J., 594, 674 (2003).
- 74. Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; & Ghisellini, G. Mon. Not. R. Astron. Soc. , **299**, 433 (1998)
- 75. Donato, D.; Ghisellini, G.; Tagliaferri, G.; & Fossati, G. Astron. Astrophys., **375**, 739 (2001)

4	4								
2FGL name	Alias	Type	N	$\log L^{\rm iso}$	Unc. ^a	$\log L$	Unc. ^b	$\log P_{\rm jet}^{\rm c}$	$\log f_b^{\mathrm{d}}$
				(erg s^{-1})	$\log L^{\rm iso}$	$(erg s^{-1})$	$\log L$	$(erg s^{-1})$	
J0757.1+0957	PKS 0754+100	BLL	0.266	45.72	0.04	42.75	0.26	44.34	-2.97*
J0811.4+0149	PKS 0808+019	BLL	1.148	47.13	0.05	44.56	0.57	45.18	-2.57
J0807.1-0543	PKS 0804-055	BLL	0.158	45.01	0.06	43.16	0.57	44.16	-1.84
J0808.2-0750	PKS 0805-07	FSRQ	1.837	48.61	0.02	45.53	0.56	45.96	-3.08
J0825.9+0308	PKS 0823+033	BLL	0.506	45.86	0.09	43.73	0.57	44.45	-2.14
J0831.9+0429	PKS 0829+046	BLL	0.174	45.68	0.02	43.6	0.56	44.18	-2.08
J0839.4+1802	BZB J0839+1802	BLL	0.28	45.17	0.1	43.27	0.57	44.58	-1.9
J0847.2+1134	BZB J0847+1133	BLL	0.199	44.98	0.12	43.14	0.58	43.76	-1.83
J0839.6+0059	PKS 0837+012	FSRQ	1.123	46.87	0.08	44.39	0.57	45.41	-2.49
J0303.5+4713	4C +47.08	BLL	0.475	46.3	0.04	44.01	0.57	44.71	-2.29
J0854.8+2005	OJ 287	BLL	0.306	46.12	0.03	43.89	0.26	44.17	-2.23*
J2151.5-3021	PKS 2149-307	FSRQ	2.345	48.48	0.06	45.44	0.57	45.67	-3.04
J2158.8-3013	PKS 2155-304	BLL	0.117	45.98	0.01	43.8	0.56	43.9	-2.18
J2258.0-2759	PKS 2255-282	FSRQ	0.927	47.35	0.03	44.7	0.57	45.35	-2.65
J0120.4-2700	0118-272	BLL	0.557	46.78	0.03	44.32	0.57	45.06	-2.45
J0252.7-2218	PKS 0250-225	FSRQ	1.427	48.02	0.03	45.14	0.57	45.5	-2.88
J2213.1-2527	PKS 2210-25	FSRQ	1.831	47.6	0.08	44.86	0.57	45.97	-2.73
J2243.2-2540	PKS 2240-260	BLL	0.774	46.81	0.04	44.35	0.57	45.33	-2.47
J0137.6-2430	PKS 0135-247	FSRQ	0.831	46.78	0.05	44.33	0.57	45.57	-2.45
J0205.3-1657	PKS 0202-17	FSRQ	1.74	47.77	0.06	44.98	0.57	45.42	-2.79
J2157.9-1501	PKS 2155-152	FSRQ	0.672	46.44	0.06	44.11	0.57	45.34	-2.34
J0132.8-1654	PKS 0130-17	FSRQ	1.02	47.35	0.03	44.7	0.57	45.22	-2.65
J2347.9-1629	PKS 2345-16	FSRQ	0.576	46.5	0.05	44.14	0.57	45.21	-2.36
J0116.0-1134	PKS 0113-118	FSRQ	0.672	46.71	0.03	44.28	0.57	45.46	-2.43
J2229.7-0832	PKS 2227-08	FSRQ	1.56	48.26	0.03	45.96	0.26	45.17	-2.3*
J0102.7+5827	TEX 0059+581	FSRQ	0.643	46.82	0.03	44.36	0.57	44.78	-2.47
J0050.6-0929	PKS 0048-09	BLL	0.2	45.7	0.03	43.62	0.56	44.31	-2.08

1. Properties of the blazar
I. Properties of the
I. Properties
Table S

-2.41	-2.64*	-2.59	-2.64	-3.21*	-2.93	-2.1*	-2.14	-2.65	-2.4	-2.78	-2.68*	-2.88*	-2.19	-2.78	-2.66	-2.27	-2.21	-2.94	-2.65	-2.52*	-2.72	-2.74	-1.76	-2.06	-2.41	-2.21	-2.29	-2.54	-2.04	-2.66
45.08	46.29	45.67	45.22	46.46	45.79	45.1	44.6	45.4	45.06	45.46	45.72	45.86	44.38	45.49	44.72	43.75	44.78	45.79	45.33	45.59	45.58	45.25	43.76	44.8	44.8	45.35	45.32	45.78	43.93	45.06
0.57	0.26	0.57	0.57	0.26	0.56	0.28	0.57	0.58	0.57	0.56	0.26	0.26	0.56	0.56	0.56	0.56	0.57	0.57	0.57	0.26	0.56	0.57	0.56	0.57	0.57	0.57	0.57	0.57	0.59	0.57
44.24	45.11	44.59	44.68	45.43	45.24	44.77	43.73	44.7	44.22	44.95	44.89	45.91	43.82	44.95	44.72	43.97	43.85	45.26	44.69	45.27	44.84	44.86	42.99	43.57	44.25	43.86	44.01	44.48	43.53	44.72
0.05	0.03	0.07	0.04	0.02	0.02	0.09	0.06	0.12	0.09	0.02	0.03	0.0	0.01	0.02	0.01	0.02	0.06	0.03	0.09	0.03	0.02	0.04	0.05	0.07	0.04	0.09	0.09	0.08	0.17	0.05
46.65	47.74	47.18	47.32	48.64	48.18	46.87	45.87	47.34	46.62	47.72	47.56	48.79	46.01	47.74	47.38	46.24	46.06	48.2	47.34	47.78	47.56	47.6	44.75	45.63	46.67	46.07	46.3	47.02	45.57	47.38
0.733	1.404	1.285	1.072	2.099	1.715	0.99	0.401	1.489	0.893	1.113	1.037	0.859	0.211	1.075	0.524	0.265	0.505	1.817	1.466	1.207	0.96	1.024	0.096	0.348	0.712	0.565	0.727	1.254	0.49	1.27
BLL	FSRQ	BLL	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	BLL	BLL	BLL	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	BLL	FSRQ	FSRQ	FSRQ	BLL	FSRQ	BLL	FSRQ
0138-097	3C 446	4C -02.81	PKS 2335-027	PKS 0106+01	PKS 0215+015	4C +06.69	BZQ J2334+0736	4C +10.73	0256+075	2144+092	4C 11.69	3C 454.3	S3 2141+17	PKS 2201+171	AO 0235+164	S2 0109+22	B2 2214+24B	B2 2308+34	0202+319	4C +28.07	0218+357	4C +01.24	B2 0912+29	PKS 0925-203	OK 290	4C +23.24	BZB J1012+0630	B2 1020+40	BZB J1051+3943	4C +06.41
J0141.5-0928	J2225.6-0454	J2133.8-0154	J2338.1-0229	J0108.6+0135	J0217.9+0143	J2148.2+0659	J2334.3+0734	J2330.2+1107	J0259.5+0740	J2147.3+0930	J2232.4+1143	J2253.9+1609	J2143.5+1743	J2203.4+1726	J0238.7+1637	J0112.1+2245	J2217.1+2422	J2311.0+3425	J0205.4+3211	J0237.8+2846	J0221.0+3555	J0909.1+0121	J0915.8+2932	J0927.9-2041	J0956.9+2516	J1014.1+2306	J1012.1+0631	J1023.6+3947	J1051.3+3938	J1040.7+0614

-2.19*	-1.8	-1.78	-2.64	-2.76	-2.71	-2.65	-2.58	-3.1*	-1.78	-2.46	-2.05	-1.9	-1.91	-2.65	-1.89	-2.69	-2.63	-3.61*	-2.58*	-1.81	-2.94*	-2.64	-2.4	-2.99*	-2.77	-3.11	-2.37	-2.16	-2.76	-2.73
45.61	43.28	42.61	45.46	45.62	45.2	44.56	44.89	45.43	43.15	45.7	44.49	43.92	42.14	45.42	44.43	45.74	45.22	45.38	45.5	43.72	45.73	45.14	44.25	45.37	45.11	45.74	45.15	44.84	46.29	45.07
0.26	0.56	0.57	0.57	0.57	0.56	0.57	0.57	0.26	0.58	0.57	0.57	0.56	0.56	0.57	0.57	0.57	0.57	0.26	0.26	0.57	0.26	0.56	0.57	0.26	0.57	0.57	0.57	0.57	0.59	0.57
45.23	43.08	43.04	44.68	44.92	44.81	44.69	44.58	44.21	43.04	44.33	43.56	43.28	43.28	44.7	43.25	44.77	44.67	43.9	43.76	43.09	44.7	44.67	44.22	44.58	44.92	45.59	44.16	43.77	44.92	44.85
0.02	0.01	0.07	0.05	0.03	0.02	0.03	0.05	0.02	0.13	0.06	0.05	0.02	0.02	0.04	0.11	0.1	0.04	0.01	0.01	0.06	0.01	0.02	0.05	0.03	0.04	0.03	0.04	0.04	0.16	0.09
47.42	44.88	44.82	47.32	47.68	47.52	47.34	47.16	47.31	44.81	46.79	45.61	45.18	45.18	47.36	45.14	47.46	47.3	47.5	46.34	44.89	47.64	47.31	46.61	47.56	47.69	48.7	46.53	45.93	47.68	47.58
0.888	0.03	0.124	1.223	1.187	1.048	1.088	1.048	0.729	0.194	0.786	0.2	0.1	0.1	0.965	0.24	1.87	1.0	0.435	0.158	0.112	0.536	0.638	0.69	0.997	1.4	2.15	0.539	0.332	3.215	1.82
BLL	BLL	BLL	BLL	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	BLL	FSRQ	BLL	BLL	BLL	FSRQ	FSRQ	BLL	BLL	FSRQ	FSRQ	BLL	FSRQ	FSRQ	BLL	FSRQ						
4C +01.28	MKN 421	EXO 1118.0+4228	PKS 1130+008	PKS 1127-145	PKS 1124-186	S4 1144+402	PKS 1144-379	4C +29.45	B3 1206+416	PKS 1203-26	PG 1218+304	ON 325	ON 231	PKS 1219+04	PKS 1217+02	B3 1222+438	B2 1229+29	4C +21.35	3C 273	Ton 116	3C 279	PKS 1244-255	B3 1307+433	1308+326	B2 1324+22	PKS 1329-049	PKS 1335-127	PKS 1352-104	PKS 1402+044	B3 1417+385
J1058.4+0133	J1104.4+3812	J1121.0+4211	J1132.9+0033	J1130.3-1448	J1126.6-1856	J1146.9+4000	J1146.8-3812	J1159.5+2914	J1209.6+4121	J1206.0-2638	J1221.3+3010	J1217.8+3006	J1221.4+2814	J1222.4+0413	J1219.7+0201	J1225.0+4335	J1231.7+2848	J1224.9+2122	J1229.1+0202	J1243.1+3627	J1256.1-0547	J1246.7-2546	J1309.4+4304	J1310.6+3222	J1326.8+2210	J1332.0-0508	J1337.7-1257	J1354.7-1047	J1405.1+0405	J1419.4+3820

-1.81	-2.18	-1.88	-2.05	-1.67	-2.62*	-2.93*	-3.93*	-2.97	-2.72	-2.01	-2.27	-2.11	-2.07*	-2.64	-2.1*	-2.85*	-2.42	-2.66*	-2.8	-2.64	-1.78	-2.39*	-2.21	-1.88	-1.87	-2.25	-2.78	-1.79	-2.11*	-2.09
44.2	44.22	44.59	44.79	43.57	44.78	44.93	45.72	45.9	46.07	44.77	44.42	44.18	45.01	45.79	44.86	45.29	44.88	45.65	45.52	45.43	42.91	45.26	44.82	43.55	44.35	44.06	45.53	43.62	45.3	44.33
0.57	0.56	0.57	0.57	0.56	0.26	0.26	0.26	0.56	0.57	0.57	0.57	0.57	0.27	0.57	0.26	0.26	0.57	0.26	0.57	0.56	0.57	0.28	0.57	0.57	0.57	0.57	0.58	0.56	0.28	0.57
43.1	43.8	43.22	43.55	42.83	44.95	44.51	43.45	45.31	44.83	43.47	43.98	43.67	46.25	44.69	44.16	44.7	44.25	46.45	44.98	44.67	43.04	43.65	43.86	43.23	43.21	43.93	44.95	43.06	44.88	43.62
0.12	0.02	0.1	0.04	0.03	0.02	0.01	0.04	0.02	0.05	0.04	0.03	0.05	0.07	0.07	0.03	0.05	0.04	0.01	0.03	0.02	0.07	0.1	0.03	0.05	0.04	0.09	0.11	0.04	0.1	0.05
44.92	45.98	45.1	45.6	44.5	47.57	47.44	47.39	48.27	47.55	45.48	46.26	45.78	48.32	47.33	46.26	47.56	46.67	49.12	47.78	47.31	44.83	46.04	46.06	45.11	45.08	46.18	47.73	44.85	46.98	45.71
0.237	0.16	0.244	0.244	0.049	0.859	0.36	0.902	1.388	1.191	0.222	0.414	0.293	2.367	1.422	0.322	1.226	0.601	1.839	1.29	0.444	0.131	0.605	0.357	0.137	0.156	0.65	1.884	0.117	1.401	0.342
BLL	BLL	BLL	FSRQ	BLL	FSRQ	BLL	FSRQ	FSRQ	FSRQ	FSRQ	BLL	BLL	BLL	BLL	BLL	BLL	BLL	FSRQ	BLL	FSRQ	BLL									
BZB J1417+2543	PG 1424+240	PKS 1437-153	CRATES J1513-3234	AP Lib	DA 55	PKS 1510-089	NRAO 530	PKS 2022-077	4C -05.64	PKS 1509+022	PKS 1546+027	PKS 1725+044	S5 0212+73	4C +05.64	OT 081	4C +10.45	PKS 2032+107	PKS 1502+106	PKS 1551+130	3C 66A	BZB J1838+4802	4C +14.60	PKS 1604+159	PKS 1717+177	4C +72.28	PKS 1514+197	BZQ J1745+2252	B2 1811+31	OS 319	S5 2007+777
J1418.1+2539	J1427.0+2347	J1440.3-1540	J1513.6-3233	J1517.7-2421	J0136.9+4751	J1512.8-0906	J1733.1-1307	J2025.6-0736	J1510.9-0545	J1512.2+0201	J1549.5+0237	J1728.2+0429	J0217.7+7353	J1550.7+0526	J1751.5+0938	J1608.5+1029	J2035.4+1058	J1504.3+1029	J1553.5+1255	J0222.6+4302	J1838.7+4759	J1540.4+1438	J1607.0+1552	J1719.3+1744	J2009.7+7225	J1516.9+1925	J1746.0+2316	J1813.5+3143	J1613.4+3409	J2004.5+7754

-2.91	-3.29*	-3.2*	-1.66	-1.97	-2.3	-2.71	-2.57	-2.04	-1.79	-2.32*	-0.34*	-2.25*	-2.49	-2.37	-1.69	-1.77*	-2.47	-2.03	-2.81	-1.64	-1.68	-3.02	-1.91	-2.99	-1.88	-2.71	-2.49	-1.44	-2.25	-2.32*
45.51	45.62	45.74	43.2	44.03	45.25	45.25	45.8	43.86	43.81	45.4	43.95	44.88	45.98	45.83	43.38	43.45	44.85	44.27	45.37	43.67	43.72	46.29	43.8	46.26	42.74	45.86	45.09	43.28	44.37	44.76
0.57	0.26	0.26	0.56	0.57	0.57	0.57	0.57	0.56	0.57	0.26	0.24	0.26	0.56	0.57	0.57	0.26	0.57	0.58	0.57	0.57	0.58	0.56	0.57	0.56	0.56	0.57	0.56	0.57	0.56	0.26
45.2	45.44	43.75	42.8	43.41	44.03	44.82	44.54	43.54	43.06	44.61	44.08	44.83	44.4	44.16	42.87	43.4	44.36	43.52	45.01	42.77	42.85	45.41	43.29	45.34	43.23	44.82	44.4	42.39	43.95	44.46
0.04	0.02	0.04	0.02	0.05	0.08	0.03	0.03	0.02	0.08	0.02	0.02	0.02	0.03	0.07	0.08	0.01	0.04	0.15	0.03	0.08	0.12	0.02	0.06	0.02	0.02	0.08	0.03	0.08	0.02	0.01
48.12	48.72	46.95	44.46	45.38	46.33	47.53	47.11	45.58	44.85	46.93	44.42	47.08	46.89	46.53	44.56	45.16	46.82	45.54	47.83	44.41	44.53	48.43	45.2	48.33	45.11	47.53	46.89	43.83	46.2	46.78
1.66	1.814	0.593	0.034	0.229	0.663	1.162	0.858	0.107	0.181	0.663	0.051	0.684	0.651	0.713	0.148	0.069	0.77	0.479	1.375	0.125	0.138	1.522	0.217	1.489	0.092	1.85	0.714	0.055	0.301	0.3
FSRQ	FSRQ	FSRQ	BLL	BLL	FSRQ	FSRQ	FSRQ	BLL	BLL	BLL	BLL	BLL	FSRQ	FSRQ	BLL	BLL	BLL	BLL	FSRQ	BLL	BLL	FSRQ	BLL	FSRQ	BLL	FSRQ	FSRQ	BLL	FSRQ	BLL
NRAO 512	4C +38.41	3C 345	MKN 501	B3 1747+433	1800 + 440	TEX 0529+483	PKS 0454-46	PKS 0447-439	BZB J1829+5402	4C +56.27	3C 371	S5 1803+784	PKS 0637-75	PKS 1116-46	RGB 1742+597	BL Lac	1749+701	BZB J2258-5525	4C +51.37	BZB J1725+5851	1ES 1544+820	PKS 1424-41	S5 0916+864	PKS 2052-47	MH 2136-428	S5 0633+73	S4 1726+45	IZW 187	BZQ J1700+6830	S5 0716+714
J1640.7+3945	J1635.2+3810	J1642.9+3949	J1653.9+3945	J1749.1+4323	J1801.7+4405	J0533.0+4823	J0456.1-4613	J0449.4-4350	J1829.2+5402	J1824.0+5650	J1806.7+6948	J1800.5+7829	J0635.5-7516	J1118.1-4629	J1742.1+5948	J2202.8+4216	J1748.8+7006	J2258.8-5524	J1740.2+5212	J1725.2+5853	J1538.1+8159	J1428.0-4206	J0930.4+8611	J2056.2-4715	J2139.3-4236	J0641.2+7315	J1727.1+4531	J1728.2+5015	J1700.2+6831	J0721.9+7120

43.8 -1.7	43.62 -1.9	45.97 -3.2*	45.1 -2.65	43.87 -1.77	45.22 -3.1*	45.23 -2.54	45.35 -2.59	45.19 -2.08	45.59 -2.62	45.42 -2.49	44.3 -2.05	43.19 -2.0	43.82 -1.71	44.01 -1.91	43.48 -1.45	43.57 -2.1	44.42 -2.18	45.66 -2.67	43.29 -1.89	45.51 -2.83	43.82 -1.84	43.79 -1.77	44.51 -2.25	43.74 -1.71	45.56 -2.77	44.5 -2.6	43.9 -1.7	43.68 -2.0	43.34 -1.83
0.57	0.56	0.26	0.56	0.57	0.26	0.57	0.57	0.57	0.57	0.57	0.57	0.56	0.58	0.57	0.56	0.57	0.56	0.57	0.56	0.56	0.57	0.57	0.57	0.57	0.56	0.57	0.57	0.56	0.56
42.96	43.27	45.16	44.7	43.02	44.07	44.5	44.59	43.61	44.64	44.39	43.56	43.45	42.9	43.3	42.4	43.66	43.8	44.74	43.25	45.04	43.16	43.02	43.94	42.9	44.93	44.6	42.89	43.47	43.14
0.09	0.03	0.05	0.03	0.1	0.04	0.11	0.04	0.05	0.06	0.03	0.05	0.02	0.12	0.07	0.06	0.07	0.03	0.06	0.04	0.02	0.07	0.05	0.06	0.1	0.02	0.03	0.08	0.03	0.04
44.7	45.17	48.36	47.34	44.78	47.17	47.04	47.18	45.69	47.25	46.88	45.62	45.45	44.61	45.21	43.85	45.76	45.98	47.41	45.14	47.87	45.0	44.8	46.19	44.6	47.7	47.2	44.59	45.47	44.97
0.125	0.135	2.172	0.933	0.192	0.941	1.228	1.117	0.334	1.292	0.74	0.3	0.124	0.201	0.226	0.046	0.36	0.368	1.446	0.138	1.401	0.229	0.151	0.543	0.191	0.895	0.847	0.127	0.144	0.106
BLL	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	FSRQ	BLL	FSRQ	BLL	BLL	BLL	BLL	BLL	BLL	BLL	FSRQ	BLL	FSRQ	BLL	BLL	FSRQ	BLL	FSRQ	BLL	BLL	BLL	BLL
EXO 0706.1+5913	CRATES J0654+5042	4C +71.07	S4 0650+45	B3 0745+453	B2 0827+24	B2 1015+35B	S4 1030+415	SBS 1150+497	S4 0707+476	4C +47.44	BZB J1558+5625	BZB J1542+6129	BZB J1110+7133	SBS 0812+578	MKN 180	1ES 1028+511	S4 0954+658	S4 0917+62	1ES 0806+524	S4 1030+61	BZB J0945+5757	1418+546	CRATES J1154+6022	BZB J1018+5911	4C +55.17	PG 1246+586	BZB J1151+5859	BZB J1058+5628	BZB J1037+5711
J0710.5+5908	J0654.5+5043	J0841.6+7052	J0654.2+4514	J0747.7+4501	J0830.5+2407	J1017.0+3531	J1033.2+4117	J1153.2+4935	J0710.8+4733	J1637.7+4714	J1559.0+5627	J1542.9+6129	J1110.2+7134	J0816.5+5739	J1136.7+7009	J1031.0+5053	J0958.6+6533	J0921.9+6216	J0809.8+5218	J1033.9+6050	J0945.9+5751	J1420.2+5422	J1154.4+6019	J1019.0+5915	J0957.7+5522	J1248.2+5820	J1151.5+5857	J1058.6+5628	J1037.6+5712

44.41 -1.17	44.17 -2.08	46.1 -2.51	44.18 -1.93	45.84 -3.12	44.26 -1.95	44.15 -1.94	45.65 -3.28*	15 73 _7 51	TU.7- CI.CH	45.54 -2.68	45.54 -2.68 45.31 -3.03*	45.54 -2.68 45.31 -3.03* 43.56 -1.37	45.54 -2.68 45.31 -3.03* 45.35 -1.37 43.56 -1.37 45.68 -2.17	45.54 -2.68 45.31 -3.03* 45.31 -3.03* 45.68 -1.37 45.68 -2.17 45.88 -2.14	45.54 -2.68 45.31 -3.03* 45.31 -3.03* 43.56 -1.37 45.68 -2.17 43.88 -2.14 45.24 -2.4*	45.54 -2.68 45.31 -3.03* 45.31 -3.03* 45.68 -1.37 45.68 -2.17 45.68 -2.14 45.24 -2.4* 45.53 -3.0	45.54 -2.68 45.31 -3.03* 45.31 -3.03* 45.68 -1.37 45.68 -2.14 43.88 -2.14 45.53 -2.4* 45.53 -3.0 45.53 -2.78	45.54 -2.68 45.31 -3.03* 45.31 -3.03* 43.56 -1.37 43.58 -2.14 43.88 -2.14 45.24 -2.4* 45.23 -3.0 45.23 -2.78 45.41 -2.72	$\begin{array}{rcl} 45.54 & -2.68 \\ 45.31 & -3.03* \\ 45.31 & -3.03* \\ 45.68 & -2.17 \\ 45.68 & -2.14 \\ 45.24 & -2.4* \\ 45.53 & -3.0 \\ 45.53 & -3.0 \\ 45.41 & -2.72 \\ 45.41 & -2.72 \\ 46.3 & -2.74* \end{array}$	$\begin{array}{rcrcrc} -2.03 \\ 45.54 \\ -2.68 \\ 45.31 \\ -3.03* \\ 43.56 \\ -1.37 \\ 43.68 \\ -2.17 \\ 43.88 \\ -2.14 \\ 45.24 \\ -2.4* \\ 45.53 \\ -2.14 \\ 45.53 \\ -2.74 \\ 45.16 \\ -2.53 \end{array}$	$\begin{array}{rrrrr} -2.72 & -2.68 \\ 45.31 & -3.03* \\ 45.31 & -3.03* \\ 45.68 & -2.17 \\ 45.68 & -2.14 \\ 45.68 & -2.14 \\ 45.24 & -2.4* \\ 45.53 & -3.0 \\ 45.22 & -2.78 \\ 45.41 & -2.72 \\ 45.16 & -2.53 \\ 45.16 & -2.53 \end{array}$	$\begin{array}{rrrrr} -2.72 & -2.68 \\ 45.31 & -3.03* \\ 45.31 & -3.03* \\ 43.56 & -1.37 \\ 43.68 & -2.17 \\ 43.88 & -2.14 \\ 45.24 & -2.4* \\ 45.53 & -3.0 \\ 45.53 & -3.0 \\ 45.53 & -2.74* \\ 45.16 & -2.53 \\ 45.92 & -2.96* \\ 45.57 & -2.8 \end{array}$	$\begin{array}{rrrrr} 45.54 & -2.68 \\ 45.31 & -3.03 \\ 45.31 & -3.03 \\ 43.56 & -1.37 \\ 43.68 & -2.17 \\ 45.28 & -2.14 \\ 45.23 & -2.14 \\ 45.22 & -2.4 \\ 45.22 & -2.78 \\ 45.16 & -2.53 \\ 45.16 & -2.53 \\ 45.57 & -2.96 \\ 45.57 & -2.96 \\ 45.53 & -2.96 \\ 45.57 & -2.96 \\ 45.53 & -2.96 \\ \end{array}$	$\begin{array}{rrrr} 45.54 & -2.68 \\ 45.31 & -3.03* \\ 45.31 & -3.03* \\ 43.56 & -1.37 \\ 45.68 & -2.17 \\ 43.88 & -2.14 \\ 45.24 & -2.4* \\ 45.53 & -2.78 \\ 45.41 & -2.72 \\ 46.3 & -2.74* \\ 45.41 & -2.72 \\ 46.3 & -2.74* \\ 45.41 & -2.72 \\ 45.41 & -2.72 \\ 45.41 & -2.72 \\ 45.41 & -2.72 \\ 45.41 & -2.8 \\ 45.41 & -2.96* \\ 45.42 & -3.01* \\ 45.42 & -3.01* \\ \end{array}$	$\begin{array}{rrrrr} 45.54 & -2.68 \\ 45.31 & -3.03 \\ 45.31 & -3.03 \\ 43.56 & -1.37 \\ 43.68 & -2.17 \\ 43.88 & -2.14 \\ 45.24 & -2.4 \\ 45.23 & -3.0 \\ 45.53 & -2.74 \\ 45.16 & -2.53 \\ 45.16 & -2.53 \\ 45.41 & -2.72 \\ 45.57 & -2.96 \\ 45.42 & -3.01 \\ 44.47 & -2.38 \\ 44.47 & -2.38 \\ 45.42 & -3.01 \\ 44.47 & -2.38 \\ 45.42 & -3.01 \\ 45.42 & -3.01 \\ 45.42 & -3.01 \\ 45.42 & -3.01 \\ 45.42 & -3.01 \\ 45.42 & -2.38 \\ 45.47 & -2.48 \\ 45.47$	$\begin{array}{rcrcrc} 45.54 & -2.68 \\ 45.31 & -3.03 \ast \\ 45.31 & -3.03 \ast \\ 43.56 & -1.37 \\ 43.68 & -2.17 \\ 43.88 & -2.14 \\ 45.23 & -3.0 \\ 45.23 & -2.78 \\ 45.41 & -2.78 \\ 45.41 & -2.72 \\ 46.3 & -2.74 \ast \\ 45.42 & -2.96 \ast \\ 45.57 & -2.96 \ast \\ 45.57 & -2.96 \ast \\ 45.42 & -3.01 \ast \\ 44.47 & -2.38 \\ 44.1 & -2.74 \ast \\ 45.42 & -3.01 \ast \\ 44.1 & -2.74 \ast \\ 44.1 & -2.74 \ast \\ 45.42 & -3.01 \ast \\ 44.1 & -2.74 $	$\begin{array}{rcrcr} 45.54 & -2.68 \\ 45.31 & -3.03* \\ 45.31 & -3.03* \\ 43.56 & -1.37 \\ 43.68 & -2.17 \\ 43.88 & -2.14 \\ 45.24 & -2.4* \\ 45.53 & -2.78 \\ 45.53 & -2.78 \\ 45.41 & -2.72 \\ 46.3 & -2.74* \\ 45.53 & -2.96* \\ 45.57 & -2.8 \\ 45.57 & -2.8 \\ 45.42 & -3.01* \\ 44.47 & -2.38 \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 44.41 & -2.74* \\ 45.42 & -3.01* \\ 44.41 & -2.74* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -2.44* \\ 44.41 & -$	$\begin{array}{rrrrr} 45.54 & -2.68 \\ 45.31 & -3.03 \ast \\ 45.31 & -3.03 \ast \\ 43.56 & -1.37 \\ 43.56 & -1.37 \\ 43.58 & -2.14 \\ 45.24 & -2.4 \ast \\ 45.53 & -3.0 \\ 45.53 & -2.78 \\ 45.16 & -2.53 \\ 45.16 & -2.53 \\ 45.42 & -2.96 \ast \\ 45.42 & -2.01 \ast \\ 44.47 & -2.38 \\ 44.47 & -2.38 \\ 44.47 & -2.38 \\ 44.47 & -2.38 \\ 45.37 & -2.39 \end{array}$	$\begin{array}{rrrrr} 45.54 & -2.68 \\ 45.31 & -3.03 \\ 45.31 & -3.03 \\ 45.56 & -1.37 \\ 45.68 & -2.14 \\ 45.53 & -2.14 \\ 45.53 & -2.14 \\ 45.53 & -2.74 \\ 45.41 & -2.72 \\ 46.3 & -2.74 \\ 45.53 & -2.74 \\ 45.53 & -2.96 \\ 45.53 & -2.96 \\ 45.53 & -2.96 \\ 44.1 & -2.73 \\ 44.0 \\ 44.0 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.38 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.39 \\ 44.0 \\ -2.30 $
0.26	0.56	0.58	0.57	0.56	0.58	0.58	0.28	0.57	0.57	0.26		0.57	0.57 0.57	0.57 0.57 0.57	0.57 0.57 0.57 0.26	0.57 0.57 0.56 0.26 0.56	0.57 0.57 0.57 0.26 0.56 0.57	0.57 0.57 0.57 0.26 0.56 0.57 0.56	$\begin{array}{c} 0.57 \\ 0.57 \\ 0.57 \\ 0.26 \\ 0.56 \\ 0.57 \\ 0.56 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.$	$\begin{array}{c} 0.57 \\ 0.57 \\ 0.57 \\ 0.56 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.$	$\begin{array}{c} 0.57 \\ 0.57 \\ 0.56 \\ 0.56 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.$	$\begin{array}{c} 0.57 \\ 0.57 \\ 0.57 \\ 0.56 \\ 0.56 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.$	$\begin{array}{c} 0.57 \\ 0.57 \\ 0.56 \\ 0.56 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.56\\ 0.57\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.57\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.57\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\$	$\begin{array}{c} 0.57\\ 0.57\\ 0.57\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\$
45.01	43.61	44.44	43.32	45.6	43.36	43.34	43.71	44.44	44.76	43.93		42.24	42.24 43.78	42.24 43.78 43.73	42.24 43.78 43.73 45.22	42.24 43.78 43.73 45.22 45.37	42.24 43.78 43.73 45.22 45.37 44.95	42.24 43.78 43.73 45.22 45.37 44.95 44.95	42.24 43.78 43.73 45.22 45.37 44.95 44.84 45.28	42.24 43.78 43.73 45.27 45.37 44.95 44.95 45.28 44.46	42.24 43.78 43.73 45.22 45.37 44.95 44.46 45.28 44.46 45.36	42.24 43.78 43.73 45.27 45.37 45.37 45.37 45.36 45.36 45.36 45.36	42.24 43.78 43.73 45.37 45.37 44.95 45.36 45.28 45.28 45.28 45.28 45.29	42.24 43.78 43.73 45.22 45.37 45.37 45.37 45.36 45.36 45.28 45.29 45.29	42.24 43.78 43.73 45.37 45.37 44.95 44.95 44.46 44.98 44.98 44.98 44.02	42.24 43.78 43.73 45.22 45.37 45.37 45.36 45.36 45.36 45.29 44.19 45.29 44.19 42.91	42.24 43.73 43.73 45.22 45.37 45.37 45.37 45.28 45.29 45.29 44.02 45.29 44.02 45.29 45.29 42.02 42.02 42.91	42.24 43.73 43.73 45.22 45.37 44.95 45.36 44.46 45.28 45.29 44.46 45.29 44.19 42.91 42.91	42.24 43.73 43.73 45.22 45.37 45.37 45.37 45.36 45.28 45.29
0.02	0.03	0.11	0.07	0.02	0.13	0.13	0.09	0.1	0.07	0.04	0.07		0.1	0.1	0.04 0.02 0.02	0.0 0.04 0.02 0.01	0.1 0.04 0.02 0.01 0.03	0.1 0.04 0.02 0.01 0.03 0.03	0.1 0.04 0.02 0.01 0.03 0.01 0.01	0.1 0.04 0.02 0.03 0.03 0.07 0.07	$\begin{array}{c} 0.1\\ 0.1\\ 0.02\\ 0.02\\ 0.03\\ 0.07\\ 0.07\\ 0.07\\ 0.05\end{array}$	0.1 0.04 0.02 0.03 0.07 0.03 0.07 0.03 0.07 0.03 0.03 0.07 0.03	0.1 0.04 0.02 0.03 0.07 0.07 0.07 0.07 0.03 0.03 0.07 0.03 0.07 0.03	$\begin{array}{c} 0.1\\ 0.04\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.02\\ 0.03\\ 0.01\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ $	$\begin{array}{c} 0.1\\ 0.04\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.02\end{array}$	$\begin{array}{c} 0.1\\ 0.1\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\end{array}$	$\begin{array}{c} 0.1\\ 0.04\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\end{array}$	$\begin{array}{c} 0.1\\ 0.1\\ 0.02\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.01\end{array}$	$\begin{array}{c} 0.1\\ 0.1\\ 0.02\\ 0.02\\ 0.03\\ 0.07\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.01\end{array}$
46.17	45.69	46.95	45.24	48.72	45.31	45.27	46.98	46.95	47.44	46.96	43.61		45.95	45.95 45.88	45.95 45.88 47.62	45.95 45.88 47.62 48.37	45.95 45.88 47.62 47.73	45.95 45.88 47.62 47.73 47.73	45.95 45.88 47.62 48.37 47.57 47.57	45.95 45.88 47.62 47.73 47.73 48.02 46.99	45.95 45.88 47.62 47.73 47.73 48.37 48.02 48.32	45.95 45.88 47.62 47.73 47.73 47.73 47.73 47.73 47.73 47.73 47.73	45.95 45.88 47.62 47.73 47.73 47.73 48.02 48.02 48.32 48.25	45.95 45.88 47.62 47.57 47.57 47.57 47.57 47.57 47.73 47.73 47.73 47.03	45.95 47.62 47.62 47.73 47.73 47.73 48.37 48.32 48.32 48.32 47.78 47.78 47.03	45.95 47.62 47.62 47.62 47.57 47.57 48.37 48.32 48.32 48.32 47.03 47.03 47.03 47.03	45.95 45.88 47.62 47.57 47.57 47.73 48.32 48.25 48.25 48.72 48.75	$\begin{array}{c} 45.95\\ 45.88\\ 45.88\\ 47.62\\ 47.57\\ 47.57\\ 48.32\\ 48.32\\ 48.32\\ 48.25\\ 48.25\\ 48.25\\ 48.75\\ 48.75\\ 48.75\\ 46.6\\ 48.75\end{array}$	$\begin{array}{c} 45.95\\ 45.88\\ 47.62\\ 48.37\\ 47.57\\ 47.57\\ 48.32\\ 48.25\\ 48.25\\ 48.25\\ 48.25\\ 48.75\\ 48$
.245	4	2	6	6	6	4	\sim	~	~~		~		_	. —	$\sim - \sim$					<u></u> v_ <u>-</u> 494	ν	ν _ L 4 9 4 [×] 4	<u></u>						0
0	0.2(1.46	0.24	2.18	0.34	0.36	1.252	1.269	1.258	0.852	0.048		0.57	0.57 0.31	0.57 0.31 0.91	0.57 0.3 0.91 1.1	$\begin{array}{c} 0.57 \\ 0.31 \\ 0.91 \\ 1.11 \\ 1.20 \end{array}$	0.57 0.3] 0.91 1.1] 1.20 1.20 0.84	0.57 0.3] 0.91 1.1] 1.20 0.84 0.84 2.28	$\begin{array}{c} 0.57\\ 0.31\\ 0.91\\ 1.1\\ 1.20\\ 0.84\\ 0.84\\ 0.95\\ 0.95\end{array}$	$\begin{array}{c} 0.57\\ 0.31\\ 0.91\\ 1.11\\ 1.20\\ 0.84\\ 0.84\\ 0.95\\ 0.95\\ 2.07\end{array}$	$\begin{array}{c} 0.57\\ 0.31\\ 0.91\\ 1.11\\ 1.20\\ 0.84\\ 0.84\\ 2.28\\ 0.95\\ 0.95\\ 1.25\end{array}$	$\begin{array}{c} 0.57\\ 0.31\\ 0.91\\ 1.11\\ 1.20\\ 0.84\\ 0.95\\ 0.95\\ 0.95\\ 0.89\\ 0.89\end{array}$	$\begin{array}{c} 0.57\\ 0.31\\ 0.91!\\ 1.111\\ 1.20\\ 0.844\\ 0.844\\ 0.95^{\prime}\\ 0.95^{\prime}\\ 0.896\\ 0.896\\ 0.877\\ 0.870\\ 0.877\\ 0.877\\ 0.876\\ 0.876\\ 0.876\\ 0.877\\ 0.876\\$	$\begin{array}{c} 0.57\\ 0.31\\ 0.31\\ 1.11\\ 1.207\\ 0.844\\ 0.956\\ 0.956\\ 0.956\\ 0.956\\ 0.956\\ 0.896\\ 0.877\\ 0.422\\ 0.872\\ 0.422\\ 0.872\\$	$\begin{array}{c} 0.571\\ 0.31\\ 0.31\\ 1.11\\ 1.20\\ 0.844\\ 0.844\\ 0.952\\ 0.952\\ 0.956\\ 0.872\\ 0.896\\ 0.872\\ 0.424\\ 0.191\\ 0.191\\ 0.191\\ 0.191\\ 0.191\\ 0.101\\ 0.101\\ 0.101\\ 0.101\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.000\\$	$\begin{array}{c} 0.57\\ 0.31\\ 0.31\\ 1.11\\ 1.20\\ 0.84\\ 0.84\\ 0.95\\ 0.95\\ 0.95\\ 0.87\\ 0.87\\ 0.19\\ 1.59\\ 1.59\end{array}$	$\begin{array}{c} 0.57\\ 0.31\\ 0.91\\ 1.11\\ 1.20\\ 0.84\\ 0.87\\ 0.95\\ 0.95\\ 0.89\\ 0.87\\ 0.87\\ 0.81\\ 0.87\\ 0.81\\ 0.81\\ 0.87\\ 0.81\\ 0.19\\$	$\begin{array}{c} 0.57\\ 0.31\\ 1.11\\ 1.120\\ 1.20\\ 0.84\\ 0.95\\ 0.87\\ 0.89\\ 0.87\\ 0.19\\ 1.59\\ 1.07\\ 1.07\\ 1.07\\ 0.05\end{array}$
BLL 0	BLL 0.20	FSRQ 1.46	FSRQ 0.24	FSRQ 2.18	BLL 0.34	BLL 0.36	FSRQ 1.253	FSRQ 1.269	FSRQ 1.258	FSRQ 0.852	RLI 0.045		FSRQ 0.57	FSRQ 0.57 BLL 0.31	FSRQ 0.57 BLL 0.31 FSRQ 0.91	FSRQ 0.57 BLL 0.3 FSRQ 0.91 BLL 1.11	FSRQ 0.57 BLL 0.3 FSRQ 0.91 BLL 1.1 FSRQ 1.20	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 1.20 FSRQ 0.84	FSRQ 0.57 BLL 0.3 FSRQ 0.91 BLL 1.1 FSRQ 0.84 FSRQ 0.84 FSRQ 0.84	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 0.94 FSRQ 0.84 FSRQ 0.84 FSRQ 0.95	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 0.84 FSRQ 0.84 FSRQ 0.85 FSRQ 0.95 FSRQ 2.07	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 0.84 FSRQ 0.84 FSRQ 0.95 FSRQ 0.95 FSRQ 2.07 FSRQ 2.07 FSRQ 2.07	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 0.84 FSRQ 0.84 FSRQ 0.95 FSRQ 0.95 FSRQ 2.07 FSRQ 2.07 FSRQ 2.07 FSRQ 2.07 FSRQ 2.07 FSRQ 2.07	FSRQ 0.57 BLL 0.31 FSRQ 0.913 BLL 1.11 FSRQ 0.914 FSRQ 1.207 FSRQ 0.844 FSRQ 0.844 FSRQ 0.954 FSRQ 0.956 FSRQ 1.256 BLL 0.896 FSRQ 0.870	FSRQ 0.571 BLL 0.31 FSRQ 0.915 BLL 1.11 FSRQ 0.944 FSRQ 0.844 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.872 BLL 0.890 FSRQ 0.872 BLL 0.890	FSRQ 0.571 BLL 0.31 FSRQ 0.915 BLL 1.11 FSRQ 0.844 FSRQ 0.844 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.954 FSRQ 0.872 BLL 0.896	FSRQ 0.571 BLL 0.31 FSRQ 0.913 FSRQ 0.914 FSRQ 1.207 FSRQ 0.844 FSRQ 2.286 FSRQ 2.286 FSRQ 2.07 FSRQ 0.952 FSRQ 0.952	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 FSRQ 0.84 FSRQ 0.84 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19	FSRQ 0.57 BLL 0.31 FSRQ 0.91 BLL 1.11 BLL 1.11 FSRQ 0.84 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.95 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.19 FSRQ 0.10 FSRQ 0.10 FSRQ 0.10 FSRQ 0.10 FSRQ 0.10 FSRQ 0.10 FSRQ 0.10 FSRQ 0.05 FSRQ 0.05
S4 0814+425 BLL 0	S4 1250+53 BLL 0.20	S4 0859+470 FSRQ 1.46	S4 0830+42 FSRQ 0.24	S4 0917+44 FSRQ 2.18	PG 1437+398 BLL 0.34	BZB J1012+4229 BLL 0.36	4C +40.24 FSRQ 1.25	S4 0913+391 FSRQ 1.269	NRAO 140 FSRQ 1.258	PKS 0336-019 FSRQ 0.852	PKS 0338-214 BLL 0.048		PKS 0403-13 FSRQ 0.57	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+001 FSRQ 0.91 PKS 0420-01 FSRQ 0.91 PKS 0426-380 BLL 1.11	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422-01 FSRQ 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.3 PKS 0420-01 FSRQ 0.91 PKS 0426-380 BLL 1.1 0446+112 FSRQ 1.20 PKS 0440-00 FSRQ 0.84	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 PKS 0440-00 FSRQ 0.84 4C -02.19 FSRQ 2.28	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 0.84 PKS 0440-00 FSRQ 0.84 0.84 PKS 0502+049 FSRQ 0.95 0.95	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 PKS 0440-00 FSRQ 1.20 4C -02.19 FSRQ 0.84 4C -02.19 FSRQ 2.28 PKS 0502+049 FSRQ 0.95 PKS 0528+134 FSRQ 2.07	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0426-01 FSRQ 0.91 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 0.84 PKS 0440-00 FSRQ 0.84 0.84 4C -02.19 FSRQ 0.95 0.95 PKS 0528+134 FSRQ 0.95 0.95 PKS 0529+075 FSRQ 1.25 1.25	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 0.84 PKS 0440-00 FSRQ 0.84 0.84 PKS 0502+049 FSRQ 0.95 0.95 PKS 0522+049 FSRQ 0.95 0.95 PKS 0523+134 FSRQ 1.25 0.95 PKS 0537-441 BLL 0.89	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.20 0.84 PKS 0440-00 FSRQ 1.20 0.84 PKS 0502+049 FSRQ 0.95 0.95 PKS 0522+049 FSRQ 0.95 0.95 PKS 05237-441 BLL 0.890 PKS 0537-441 BLL 0.890 PKS 0537-441 BLL 0.890	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0420-01 FSRQ 0.91 0.91 PKS 0426-380 BLL 1.11 0446+112 FSRQ 1.200 0.84 PKS 0440-00 FSRQ 1.200 0.84 PKS 0440-00 FSRQ 0.84 0.94 PKS 0502+049 FSRQ 0.95 0.95 PKS 0502+049 FSRQ 0.95 0.95 PKS 0502+049 FSRQ 0.95 0.95 PKS 0502+049 FSRQ 1.200 0.95 PKS 0502+049 FSRQ 0.95 0.95 PKS 05528+134 FSRQ 1.25 0.95 PKS 0537-441 BLL 0.890 PKS 0735+17 BLL 0.422	PKS 0403-13 FSRQ 0.571 PKS 0422+004 BLL 0.31 PKS 0422-01 FSRQ 0.915 PKS 0426-380 BLL 1.11 PKS 0426-380 BLL 1.11 PKS 0426-380 BLL 1.11 PKS 0426-380 BLL 1.11 PKS 0440-00 FSRQ 0.944 PKS 0440-00 FSRQ 1.205 PKS 0502+049 FSRQ 0.944 PKS 05528+134 FSRQ 0.952 PKS 05528+134 FSRQ 0.952 PKS 05537-441 BLL 0.847 PKS 0537-441 BLL 0.897 PKS 0735+17 BLL 0.422 PKS 0735+17 BLL 0.422 PKS 0735+10 FSRQ 0.191	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+004 BLL 0.31 PKS 0426-380 BLL 1.11 PKS 0426-380 BLL 1.11 PKS 0426-380 BLL 1.11 PKS 0440-00 FSRQ 0.915 PKS 0440-00 FSRQ 1.207 PKS 0502+049 FSRQ 0.84+ PKS 0502+049 FSRQ 0.95 PKS 0523+049 FSRQ 0.95 PKS 0523+049 FSRQ 0.95 PKS 0523+049 FSRQ 0.95 PKS 0537-441 BLL 0.890 PKS 0735+17 BLL 0.42 PKS 0735+01 FSRQ 0.42 PKS 0735+01 FSRQ 0.19 PKS 0735+01 FSRQ 0.19 PKS 0727-11 FSRQ 0.19	PKS 0403-13FSRQ0.57PKS 0422+004BLL0.31PKS 0420-01FSRQ0.91PKS 0426-380BLL1.110446+112FSRQ1.20PKS 0440-00FSRQ1.20PKS 052+049FSRQ2.28PKS 0528+134FSRQ2.07PKS 0529+075FSRQ0.95PKS 05237-441BLL0.42PKS 0735+17BLL0.42PKS 0735+17BLL0.42PKS 0735+11FSRQ0.19PKS 0735+01FSRQ0.19PKS 0727-11FSRQ1.59PKS 0727-11FSRQ1.107PKS 0727-11FSRQ1.107PKS 0727-11FSRQ1.107PKS 0727-11FSRQ1.107PKS 0727-11FSRQ1.107	PKS 0403-13 FSRQ 0.57 PKS 0422+004 BLL 0.31 PKS 0422+001 FSRQ 0.91 PKS 0426-380 BLL 1.11 PKS 0440-00 FSRQ 0.84 PKS 0502+049 FSRQ 0.84 PKS 0502+049 FSRQ 0.95 PKS 0528+134 FSRQ 2.07 PKS 0528+134 FSRQ 0.95 PKS 0528+134 FSRQ 0.95 PKS 0537-441 BLL 0.89 PKS 0537-441 BLL 0.42 PKS 0735+17 BLL 0.42 PKS 0735+17 PKS 0735+17 PKS 0735+17

-1.89	-2.52	-2.57	-1.84	-1.81	-2.37	-2.72	-2.75	-1.84	-1.56	-2.61	-2.22	-2.03	-1.7	-2.59	-1.48	-1.76	-2.48	-2.02	-1.83	-1.69
44.25	45.21	45.3	44.45	43.84	45.55	45.84	45.96	44.61	43.81	45.39	45.17	44.66	43.54	45.27	43.45	43.68	45.34	44.88	43.74	43.2
0.57	0.56	0.57	0.57	0.57	0.58	0.57	0.57	0.57	0.57	0.56	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.56	0.56
43.25	44.46	44.55	43.16	43.1	44.16	44.83	44.89	43.16	42.62	44.63	43.88	43.52	42.88	44.58	42.47	43.01	44.37	43.5	43.14	42.88
0.08	0.02	0.04	0.09	0.08	0.12	0.05	0.08	0.09	0.12	0.02	0.09	0.09	0.1	0.05	0.07	0.08	0.09	0.08	0.03	0.04
45.13	46.99	47.13	45.01	44.91	46.53	47.55	47.64	45.01	44.18	47.25	46.1	45.55	44.58	47.17	43.95	44.77	46.85	45.52	44.98	44.57
0.207	0.603	0.957	0.198	0.185	1.05	1.489	2.084	0.227	0.083	0.657	0.617	0.451	0.135	1.083	0.066	0.14	1.24	0.335	0.097	0.062
FSRQ	FSRQ	FSRQ	BLL	BLL	FSRQ	BLL	FSRQ	BLL	BLL	FSRQ	FSRQ	FSRQ	BLL	BLL	BLL	BLL	FSRQ	FSRQ	BLL	BLL
BZQ J0250+1712	NRAO 62	PKS 0907-023	BZB J0913-2103	BZB J1204-0710	B2 1315+34A	PKS 1309-216	PKS 1348+007	CRATES J1435+2021	1ES 1741+196	4C +66.20	BZQ J0610-6058	S5 1217+71	BZB J1136+6737	BZB J1454+5124	SBS 1200+608	BZB J1053+4929	B3 1432+422	PKS 0313-107	S4 0609+41	BZB J0630-2406
J0250.6+1713	J0112.8+3208	J0909.7-0229	J0912.9-2102	J1204.3-0711	J1317.9+3426	J1312.4-2157	J1351.1+0032	J1435.1+2022	J1744.1+1934	J1849.4+6706	J0611.8-6059	J1219.2+7107	J1136.3+6736	J1454.4+5123	J1203.2+6030	J1053.6+4928	J1433.8+4205	J0315.8-1024	J0612.8+4122	J0630.9-2406

Notes:

(a) Uncertainty on L^{iso} in dex.

(b) Uncertainty on the collimation-corrected γ -ray luminosity L in dex.

(c) The uncertainty on P_{jet} is 0.7 dex as described in the text. (d) Values with a "*" correspond to those measured by 24, otherwise they were estimated from the best-fit in Fig. 2.

Ref.	1	1	1	1	2	7	7	2	7	2	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	10,8,6	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3,4,5,22	3, 4, 5, 22	3, 4, 5, 22	3, 4, 5, 22
Observatory	LAT	LAT	LAT	LAT	GBM	GBM	GBM	GBM	GBM	GBM	BeppoSAX	BATSE	BATSE	BATSE	BeppoSAX	BeppoSAX	BATSE	BATSE	BATSE	BATSE	BATSE	BeppoSAX	BeppoSAX	BeppoSAX	BeppoSAX	BeppoSAX	HETE
$\log P_{\rm jet}^{\rm e}$ (erg s ⁻¹)	49.68	49.83	50.24	50.19	51.0	51.26	50.13	50.19	49.35	50.07	49.11	50.92	49.55	50.73	50.13	45.98	50.04	50.47	49.98	48.89	51.16	49.83	52.09	50.04	49.66	50.22	49.89
$\log E_k^{\rm iso \ d}$ (erg)	54.07	53.91	53.75	52.91	54.12	54.22	53.49	53.71	53.36	53.7	53.24	52.96	53.57	53.89	53.05	49.08	53.35	54.27	54.08	52.49	54.53	52.66	53.96	54.32	53.08	53.63	54.31
$\log L^{\rm c}$ (erg s ⁻¹)	50.14	48.9	51.0	51.55	50.35	49.69	50.02	49.51	48.13	48.7	48.02	49.71	49.32	50.16	48.81	45.1	49.47	50.36	49.14	49.8	50.36	50.39	51.58	49.65	49.41	49.45	49.47
$\log L^{\rm iso b}$ (erg s ⁻¹)	53.06	51.47	53.63	53.46	53.28	51.52	52.19	51.65	50.47	50.8	50.63	50.86	51.43	52.49	50.43	46.84	51.19	52.79	51.91	52.17	52.86	52.54	53.82	52.46	51.62	51.49	52.29
$\log E_{\gamma}^{ m iso b}$ (erg)	54.53	52.99	54.5	54.27	53.47	52.64	53.38	53.03	52.14	52.33	52.15	51.74	53.34	53.32	51.73	48.2	52.78	54.16	53.25	53.41	53.73	53.23	53.45	53.93	52.83	52.86	53.89
θ_{j}^{a}	2.8	4.2	3.9	9.0	2.8	9.8	6.7	6.9	5.5	7.3	4.0	21.6	7.1	5.5	12.6	11.0	11.2	4.9	3.4	5.3	4.6	6.8	6.2	3.2	6.4	7.8	3.1
t_{90} (s)	133.1	57.0	21.0	20.0	5.8	20.2	24.0	65.0	68.7	71.0	56.0	14.0	160.0	30.0	42.0	23.3	76.0	61.0	57.0	32.0	15.0	9.0	1.3	74.0	51.0	40.0	89.0
Ņ	3.57	0.74	1.82	2.11	2.77	0.54	0.54	1.71	0.48	1.06	0.7	0.84	0.96	3.42	1.1	0.01	0.97	1.6	1.62	0.84	1.02	0.85	2.04	1.48	2.14	0.7	1.25
Name	090323	090328	090902B	090926A	081222	090424	090618	091020	091127	091208B	970228	970508	970828	971214	980613	980425	980703	990123	990510	990705	991216	021004	000926	010222	011211	020405	020813

sample.
GRB
of the
Properties o
Table S2.

021004	2.32	52.4	12.7	52.75	51.55	49.93	53.89	51.07	HETE	3,4,5,22
031203	0.1	40.0	9.0	50.99	49.43	47.52	51.14	47.67	Integral	9,6
030329	0.17	22.3	5.1	52.1	50.82	48.42	52.8	49.12	HETE	7,11
050709	0.16	0.1	17.2	50.0	51.22	49.87	51.05	50.92	BAT	12
050820A	2.62	26.0	6.6	53.98	53.13	50.95	54.73	51.69	BAT	13,14
050904	6.3	225.0	8.0	54.12	52.63	50.62	53.95	50.45	BAT	13,15
060218	0.03	2100.0	80.4	49.4	46.09	46.01	49.11	45.73	BAT	16,23
060418	1.49	52.0	22.5	52.6	51.28	50.16	52.09	49.65	BAT	13
070125	1.55	60.0	13.2	53.98	52.61	51.03	52.81	49.86	BAT	13, 17, 18
080319B	0.94	50.0	7.0	52.67	51.26	49.13	54.13	50.59	BAT	21,13
050505	4.27	136.0	2.0	53.27	51.86	48.66	54.77	50.16	BAT	2
050814	5.3	48.0	2.4	53.24	52.36	49.32	54.92	51.0	BAT	2
051109A	2.35	360.0	3.4	52.82	50.79	48.02	54.23	49.43	BAT	7
051221A	0.55	8.0	11.8	51.41	50.7	49.02	52.64	50.25	BAT	2
060124	2.3	3.3	2.4	53.6	53.6	50.55	54.94	51.89	BAT	2
060614	0.12	6.9	11.6	50.52	49.73	48.05	52.23	49.75	BAT	2
060707	3.42	210.0	7.9	52.85	51.18	49.16	54.01	50.31	BAT	7
060814	0.84	1.2	3.5	52.78	52.96	50.24	53.44	50.9	BAT	2
061021	0.35	79.0	8.6	51.52	49.75	47.8	52.79	49.07	BAT	7
061222A	2.09	16.0	2.7	53.48	52.76	49.8	55.36	51.68	BAT	2
070306	1.5	3.0	4.4	52.78	52.7	50.16	53.83	51.21	BAT	7
070318	0.84	0.4	8.8	52.03	52.69	50.76	53.92	52.65	BAT	2
070508	0.82	23.4	3.5	52.87	51.76	49.03	53.03	49.19	BAT	0
080310	2.43	32.0	3.6	52.78	51.81	49.1	53.47	49.79	BAT	7
080413B	1.1	1.0	6.0	52.29	52.61	50.35	54.14	52.2	BAT	7
090313	3.38	170.0	3.1	52.82	51.23	48.38	54.38	49.94	BAT	2
091018	0.97	106.5	4.7	51.77	50.04	47.57	53.08	48.87	BAT	0
090423^{f}	8.2	10.3	> 12	53	53	> 51.3	53.6	> 51.9	BAT	19,20
020903 ^g	0.251	10	< 90	49.04	48.14	< 48.14	50.6	< 49.7	HETE-2	24,25
Notes:										

(a) Uncertainty of 0.1 dex as described in the text.

(b) Uncertainty of 0.2 dex as described in the text.

(c) Uncertainty of 0.3 dex as derived from uncertainties in θ_j and E_{γ}^{iso} .

(d) Uncertainty of 0.5 dex as described in the text.

(e) Uncertainty of 0.54 dex as derived from uncertainties in θ_i and $E_k^{\rm iso}$

(f) Lower limit on the opening angle. Not taken into account in the statistics.

(g) X-ray flash with an upper limit on the opening angle. Not taken into account in the statistics.

References: 1. Cenko et al. 2012 (35), 2. Racusin et al. 2011 (31), 3. Bloom et al. 2003 (73),

4. Berger et al. 2003 (56), 5. Lloyd-Ronning & Zhang 2004 (54), 6. Ghisellini et al. 2006 (55),

7. Berger et al. 2003b (65), 8. Li & Chevalier 1999 (66), 9. Soderberg et al. 2004 (37),

10. Yamasaki et al. 2003 (67), 11. Vanderspek et al. 2004 (58), 12. Villasenor et al. 2005 (59),

13. Cenko et al. 2010 (60), 14. Cenko et al. 2006 (61), 15. Kawai et al. 2006 (62),

16. Campana et al. 2006 (68), 17. Racusin et al. 2007 (63), 18. Bellm et al. 2008 (64),

19. Tanvir et al. 2009 (43), 20. Chandra 2010 (44), 21. Racusin et al. 2008 (42),

22. Fan & Piran 2006 (29), 23. Soderberg et al. 2006 (69), 24. Soderberg et al. 2004b (41), 25. Sakamoto et al. 2004 (57).