
Symbolic Analysis of Concurrent Programs with
Polymorphism

Neha Rungta
NASA Ames Research Center, Moffett Field, CA 94035, USA

neha.s.rungta@nasa.gov

1. INTRODUCTION
The current trend of multi-core and multi-processor com-

puting is causing a paradigm shift from inherently sequen-
tial to highly concurrent and parallel applications. Certain
thread interleavings, data input values, or combinations of
both often cause errors in the system. Systematic verifica-
tion techniques such as explicit state model checking and
symbolic execution are extensively used to detect errors in
such systems [7, 9].

Explicit state model checking enumerates possible thread
schedules and input data values of a program in order to
check for errors [3, 9]. To partially mitigate the state space
explosion from data input values, symbolic execution tech-
niques substitute data input values with symbolic values [5,
7, 6]. Explicit state model checking and symbolic execu-
tion techniques used in conjunction with exhaustive search
techniques such as depth-first search are unable to detect er-
rors in medium to large-sized concurrent programs because
the number of behaviors caused by data and thread non-
determinism is extremely large.

We present an overview of abstraction-guided symbolic
execution for concurrent programs that detects errors man-
ifested by a combination of thread schedules and data val-
ues [8]. The technique generates a set of key program lo-
cations relevant in testing the reachability of the target lo-
cations. The symbolic execution is then guided along these
locations in an attempt to generate a feasible execution path
to the error state. This allows the execution to focus in parts
of the behavior space more likely to contain an error.

2. ABSTRACTION-GUIDED SYMBOLIC EX-
ECUTION

A high-level overview of the abstraction-guided symbolic
execution technique is shown in Fig. 1.

Input: The input to the technique is a set of target loca-
tions, Lt, that represent a possible error in the program. The
target locations can either be generated using a static analy-
sis tool or a user-specified reachability property. The lockset

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

if(asym)

Target

Rank input data values

Rank thread schedules

True False

t1t0 tn. . .

t0, t1, . . . , tn

analysis

dependence

Control

Data dependence analysis

if(a)

True

def(a)def(a)

target l3

l2

l1

Abstract System

Lt

l0

Symbolic Execution

Refine abstract system

Locations

Figure 1: Overview of the abstraction-guided sym-
bolic execution technique

analysis, for example, reports program locations where lock
acquisitions by unique threads may lead to a deadlock [2].
The lock acquisition locations generated by the lockset anal-
ysis are the input target locations for the technique.

Abstract System: An abstraction of the program is
generated from backward slices of the input target locations
and synchronization locations that lie along control paths to
the target locations. Standard control and data dependence
analyses are used to generate the backward slices. Location
l3 is a single target location in Fig. 1. The possible execution
of location l3 is control dependent on the true branch of the
conditional statement l2. Two definitions of a global vari-
able a at locations l0 and l1 reach the conditional statement
l2; hence, locations l0, l1, and l2 are part of the abstract
system. These locations are directly relevant in testing the
reachability of l3.

Abstraction-Guided Symbolic Execution: The sym-
bolic execution is guided along a sequence of locations (an
abstract trace: 〈l0, l2, l3〉) in the abstract system. The pro-
gram execution is guided using heuristics to intelligently
rank the successor states generated at points of thread and
data non-determinism. The guidance strategy uses infor-
mation that l3 is control dependent on the true branch of
location l2 and in the ranking scheme prefers the successor
representing the true branch of the conditional statement.

Refinement: When the symbolic execution cannot reach
the desired target of a conditional branch statement contain-
ing a global variable we refine the abstract system by adding
inter-thread dependence information. Suppose, we cannot
generate the successor state for the true branch of the con-

https://ntrs.nasa.gov/search.jsp?R=20130013770 2019-08-29T15:44:06+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42736485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ditional statement while guiding along 〈l0, l2, l3〉 in Fig. 1,
then the refinement automatically adds another definition
of a to the abstract trace resulting in 〈l1, l0, l2, l3〉. The new
abstract trace implicitly states that two different threads
need to define the variable a at locations l1 and l0. Note
that there is no single control flow path that passes through
both l1 and l0.

Output: When the guided symbolic execution technique
discovers a feasible execution path we output the trace. The
technique, however, cannot detect infeasible errors. In such
cases it outputs a “Don’t know” response.

3. RANKING DATA NON-DETERMINISM
Generalized symbolic execution (GSE) algorithm is a pow-

erful technique to analyze programs with symbolic input
data structures [4]. During GSE, when an un-initialized
symbolic object reference of type T is accessed, the reference
is non-deterministically initialized to the following choices:
(a) null, (b) a new instance of class T , and (c) all previ-
ously initialized symbolic references of type T . Step (c)
allows the algorithm to account for aliasing. The initial-
ization is termed as lazy since the initialization is delayed
until the symbolic reference is first accessed during sym-
bolic execution. The GSE approach is further extended to
handle polymorphism [6, 8]. Step (b) is extended to also
non-deterministically initialize instances of all sub-classes
that inherit from class T . Similarly, step (c) is extended
to where the symbolic reference is non-deterministically ini-
tialized to all previously initialized symbolic references of
type T ′ where T ′ is a subtype of T . A systematic initializa-
tion with polymorphism causes a combinatorial explosion in
the number of choices that are explored in the generalized
symbolic execution algorithm.

We use the information in the abstract trace to rank data
non-determinism choices generated in GSE when lazily ini-
tializing a reference with a polymorphic class hierarchy. We
rank a program state, s, at a point of complex data non-
determinism for some object obj sym . If there exists in an
abstract trace the following sequence of instructions:

l : obj sym .foo() → l′ : some insn

The object obj sym invokes the procedure foo at the call site,
l, such that some insn is the first instruction to be execution
at location l′ in foo.

The heuristic computation assigns the lowest heuristic
value to a successor state, s′ ∈ successors(s), in which obj sym

is initialized to objects of type T := getClass(l′). The
getClass function returns the class containing the program
location l′. The term class and type are used interchange-
ably. The heuristic computation allows us to exploit infor-
mation about the class hierarchies in the abstract traces.

4. EXPERIMENTAL RESULTS
We demonstrate in an empirical analysis on benchmarked

multi-threaded Java programs and the JDK 1.4 concurrent
libraries that locations in the abstract system can be used
to generate feasible execution paths to the target locations.
We show that the abstraction guided-technique can find er-
rors in multi-threaded Java programs in a few seconds where
exhaustive symbolic execution is unable to find the errors
within a time bound of an hour. We use Symbolic Pathfinder
to conduct the experimental study [6].

Model States Time Memory Total trace Total
secs MB Length Refinements

Reorder (9,1) 205 1.67 7MB 13 1
Reorder (10,1) 236 1.67 7MB 13 1
Airline (15,3) 1210 3.23 5MB 3 13
Airline (20,2) 3279 7.46 6MB 3 19
Airline (20,1) 3609 7.46 6MB 3 20
VecDealock0 1370 4.56 66MB 14 1
VecDeadlock1 2948 6.89 69MB 15 2
VecRace 3120 7.98 65MB 12 1

Table 1: Effort in error discovery and abstract trace
statistics.

VecDeadlock0, VecDeadlock1, and VecRace shown in Ta-
ble 1 are examples that use the JDK 1.4 synchronized Vector

library in accordance with the documentation. We use Jlint
to automatically generate warnings on possible deadlocks
and race-conditions in the synchronized Vector library [1].
Exhaustive symbolic execution using a depth-first search is
unable to discover the errors in these models within a time
bound of one hour. In the VecDeadlock0, the abstraction-
guided symbolic execution only generates 1370 states and
takes about 4.5 seconds to find the deadlock in the program.
Similarly in the VecDeadlock1 and VecRace programs, the
guided symbolic execution only generates a few thousand
states before generating a concrete trace to the error.

Using the information from the abstract trace set, the
heuristic to rank the non-determinism of complex data struc-
tures, and refining the abstract trace when required allows
us to achieve this dramatic improvement in error discovery
over exhaustive symbolic execution.

5. REFERENCES
[1] C. Artho and A. Biere. Applying static analysis to

large-scale, multi-threaded java programs. In Proc.
ASWEC, page 68, 2001.

[2] D. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. In Proc.
SOSP ’03, pages 237–252, 2003.

[3] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[4] S. Khurshid, C. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing.
Proc. TACAS, pages 553–568, 2003.

[5] J. C. King. Symbolic execution and program testing.
Comm. ACM, 19(7):385–394, 1976.

[6] C. Pasareanu and N. Rungta. Symbolic Pathfinder:
Symbolic execution of Java bytecode. In Research Tool
Demo, ASE (To Appear), 2010.

[7] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing NASA
software. In Proc. ISSTA, 2008.

[8] N. Rungta, E. G. Mercer, and W. Visser. Efficient
testing of concurrent programs with abstraction-guided
symbolic execution. SPIN, 2009.

[9] W. Visser, K. Havelund, G. P. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering, 10(2):203–232, 2003.

