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ABSTRACT

Prior research has questioned the effectiveness of speech analysis to measure the stress, workload, truth-
fulness, or emotional state of a talker. The question remains regarding the utility of speech analysis for
restricted vocabularies such as those used in aviation communications. A part-task experiment was con-
ducted in which participants performed Air Traffic Control read-backs in different workload environments.
Participant’s subjective workload and the speech qualities of fundamental frequency (F0) and articulation
rate were evaluated. A significant increase in subjective workload rating was found for high workload seg-
ments. F0 was found to be significantly higher during high workload while articulation rates were found to
be significantly slower. No correlation was found to exist between subjective workload and F0 or articulation
rate.

1. INTRODUCTION

Research has questioned the effectiveness of the
use of speech analysis to measure stress, workload,
truthfulness or other factors related to the emotional
state of a talker for well over half a century. The use
of voice stress analysis as a form of lie detection in

commercial products has been disparaged and for
the most part is not taken seriously in the scien-
tific community [1]. This includes measures of low-
frequency “micro-tremors” in the laryngeal muscles
as indicators of psychological stress related to decep-
tion, analogous to polygraph measures [2].
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The relationship between speech measures and psy-
chological stress caused by high-stress activities has
received more scientific attention, although these
studies have not defined “workload” or “stress” in a
consistent manner. Cain’s (2007) review asserts that
no commonly accepted, formal definition of work-
load exists, but states, “workload can be character-
ized as a mental construct that reflects the mental
strain resulting from performing a task under spe-
cific conditions” [3]. Brenner et. al (1994) defines
workload to mean changes in task demands and in-
centives, and stress as psychological changes that re-
sult from workload demands, which may be observed
from changes in physiological measures [4]. Ruiz et
al. (1990) defines workload as pathological elements
characterized by physical fatigue and psychological
stress that are carried in the speech signal [5]. Lit-
erature reviews indicate that physiological measures
that attempt to unambiguously identify a “tell tale”
sign of workload, such as heart rate or evoked poten-
tial monitoring, have generated mixed results over-
all, and are not generalizable to all persons [6].

Investigations of the relationship between workload
and its effects on speech in an aeronautic context
are exemplified by Brenner and Shipp (1987), who
measured stress in terms of heart rate and found
significant correlation with both speech rate and
fundamental frequency [7]. However, other studies
have shown measures such as fundamental frequency
are inconclusive with regards to stress or workload.
Hecker et al. (1968) examined task-induced stress
and found that “the acoustical effect of stress for
one individual may be quite different from those
for another individual,” concluding that the mani-
festations of stress were well defined only for some
individuals [8]. Ruiz et al.’s (1990) review of the
literature concluded that a single parameter analy-
sis, for example fundamental frequency, was insuf-
ficient, but that multi-dimensional measures would
be promising [5].

The question remains about the utility of speech
analysis for restricted vocabularies such as those
used in aviation communications. An exploratory
study by one of the authors examined the differ-
ences in fundamental frequency and articulation rate
among single pilots flying very light jets in high and
low workload contexts, based on both read back and
other communications [9]. No significant differences

were found, likely due to the minimal number of sub-
jective workload ratings obtained.

The goal of this study was to determine whether
speech analyses of fundamental frequency and artic-
ulation rate of pilot “read back” of air traffic control
(ATC) commands could be used as a basis for detect-
ing changes in the pilot’s workload. “Read back” is
a characteristic aviation voice communication tech-
nique between pilots and air traffic controllers, where
the essential details of a command (e.g., flight level
or direction of turn) are repeated by the receiving
party. For the present study, workload was defined
as the level of mental and physical work needed to
maintain performance in a communication read back
task, as confirmed by the participant’s subjective
workload rating. We aimed to achieve the following
objectives:

1. Ensure a difference in subjective workload (par-
ticipant’s perceived level of workload) and task
workload (speed of distractor messages pre-
sented) exists.

2. To investigate the influence of task workload on
articulation rate.

3. To investigate the influence of task workload on
F0.

4. To examine if a linear relationship exists be-
tween subjective workload and articulation
rate.

5. To examine if a linear relationship exists be-
tween subjective workload and F0.

We predicted that subjective workload ratings would
increase with an increase in task workload based on
an experimental manipulation of a distractor task
rate. Likewise we predicted that the average F0 and
articulation rate for a read back phrase would be
significantly different as a function of task workload.
No direction was specified for the change in F0 and
articulation rate. We also predicted that if a sig-
nificant difference existed in subjective workload as
a function of the experimental manipulation, a lin-
ear relationship would also exist between subjective
workload and F0 and articulation rate.
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Fig. 1: Virtual (iPad) button display for answer-
ing incoming ATC messages. (The second button is
yellow to indicate it is active)

2. METHOD

2.1. Participants
Seventeen participants were recruited for the study
(9 men and 5 women, age range 18 to 33) via the
Subject Recruitment Office of the San Jose State
University Foundation. The experiment was approx-
imately 60 minutes including a training and famil-
iarization session. Participants were paid a nom-
inal amount for participation in the study. The
study protocol was covered under an omnibus Hu-
man Research Institutional Review Board approval
from NASA Ames Research Center.

2.2. Experimental Setup and Equipment
The experiment was performed in a sound proof
booth where participants heard all audio on open
circumaural dynamic headphones (Sennheiser HD
595). Ambient aircraft noise was played through the
headphones throughout the course of the experiment
to simulate pilot aural conditions. A high quality
speech synthesizer was used to deliver incoming mes-
sages. Two portable touch screen interfaces (Apple
iPad II) were used; one to answer ATC calls using
a virtual button display (see Figure 1) and another
in which participants were prompted to provide sub-
jective ratings on a seven-point Likert scale. A com-
puter display was used to present pseudo-radar in-
formation to the participant and a computer mouse
was used to select direction in the distractor task.
All communication was recorded using a high qual-
ity microphone (AKG C414 B-ULS). An illustration
of the experimental setup is shown in Figure 2.

2.3. Procedure

Prior to the start of the experiment, participants
were trained to use a restricted aviation-specific vo-
cabulary. Participants were asked to play the role
of “pilot” and were tasked with answering incoming

Fig. 2: Experimental Setup

messages from ATC, confirming instructions by ra-
dioing ATC, and indicating nearby aircraft positions
on flight radar.

Participants were presented incoming messages via
the left side iPad with five interactive buttons. Each
button represented an open line in which the ATC
might call. Active lines with incoming messages were
presented in yellow and non-active lines were shown
in grey. When a line appeared yellow the participant
selected the line by pressing on the touch screen dis-
play, this allowed the ATC message to be played for
the participant.

Two types of ATC messages were given to the pilot,
priority and distractor. Priority messages were ad-
dressed specifically to the participant’s aircraft, and
participants were asked to respond to priority mes-
sages by providing ATC a read-back of the instruc-
tion. For example, a priority ATC message could
be “United 972, Saint Louis center. Climb to flight
level 380.” and the participants response would be,
“Saint Louis center this is United 972. Climbing to
flight level 380.”

Distractor messages were instructions given to other
aircraft presented on the radar. These messages did
not require a verbal response from the participant;
however, participants were asked to acknowledge the
message by selecting the appropriate arrow on the
flight response indicator on the computer screen us-
ing a mouse. The instructions needed to identify
which arrow to select in the distractor task were
delivered at the end of each message, forcing the
participants to listen to the entire message. For ex-
ample, in response to the message “Jet Blue 877,
San Francisco Center. Turn right heading 90.” the
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Fig. 3: Example user response to the distractor
message “Jet Blue 877, San Francisco Center. Turn
right heading 90.”

participant would click the right arrow as shown in
Figure 3.

Participants were asked to provide a subjective
workload rating once per minute. Participants were
prompted via the right side touch screen to “Rate
your workload”. A seven point interactive Likert
scale was presented with one representing “very low”
workload and seven being “very high” workload.

The experiment was broken into two 20 minute,
30 second blocks. Within each block were two 10
minute segments separated by 30 seconds. For all
segments, participants received one priority message
per minute. During high workload segments, partic-
ipants received 10 distractor messages per minute,
and during low workload segments, 5 distractor mes-
sages per minute. A 10 minute break was provided
between blocks. Tasks in both segments and blocks
were identical however the order of workload was
varied.

2.3.1. Design
The independent variable was task workload, at two
levels: high (10 distractor messages per minute) and
low (five distractor messages per minute). The de-
pendent variables were subjective rating, F0, and
articulation rate. Participant’s F0 and articulation
rate were derived using PRAAT software and cus-
tom algorithms [10, 11] for each priority readback [3].
Average fundamental frequency was measured in Hz
and articulation rate was calculated by the number
of syllables divided by phonation time (i.e., the total
speaking time from the start to the end of read back
utterance, not including pauses in speaking). An ex-
ample of the measurements taken for one subject is
shown in Figure 4.

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

time (min)

A
rt

ic
u
la

ti
o
n
 R

a
te

 (
s
y
lla

b
le

s
 p

e
r 

s
)

Subject 8 data for one experimental block

 

 

Slow Section Fast Section

0 2 4 6 8 10 12 14 16 18 20
140

150

160

170

f 0
 (

H
z
)

AR
f
0

Fig. 4: Subject 8’s raw data for one block.

3. RESULTS

Prior to statistical analyses, data from three partic-
ipants were removed because they did not complete
the task correctly. Outliers beyond two standard
deviations were removed prior to averaging F0 and
articulation rate.

In order to ensure that participants were sensitive to
the low and high levels of task workload manipula-
tion, a Wilcoxon signed rank test was conducted on
their subjective workload ratings. Participants re-
ported a significant increase in perceived workload
during high workload segments (Mdn = 4.54) as
compared to low workload segments (Mdn = 2.00),
z = 4.3734, p < .0005, r = 0.580.

To test our prediction that F0 would be different un-
der high and low workload, a paired samples t-test
was used to investigate whether there was a statisti-
cally significant mean difference of participant’s av-
erage F0 between the two workload segments. Two
outliers were detected and removed from the analy-
sis. The data was normally distributed, as assessed
by the Shapiro-Wilk test (p = .216). Participant’s
average F0 was found to be significantly higher dur-
ing high workload segments (M = 159.853, SD =
48.723) than low workload segments (M = 158.319,
SD = 47.753), a statistically significant mean in-
crease of 1.534 Hz, 95% CI [0.61872 to 2.45025],
t(11) = 3.688, p < .01, d = 1.065.
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Fig. 5: Average AR of each subject in each condi-
tion.

To investigate our prediction that a linear relation-
ship would exist between our speech variables and
subjective rating (based on the results of the pre-
vious tests) we planned to conduct two Pearson
product-moment correlations. In order to meet the
criteria of the statistical test (i.e., continuous vari-
ables), delta scores (effect size) were used in lieu of
raw data. However, preliminary analyses of data
plots did not indicate a linear or monotonic rela-
tionship to exist between the effect size of subjective
rating and F0 or the effect size of subjective rating
and articulation rate.

4. DISCUSSION

With this experiment we were able to show that par-
ticipants perceived a difference in our high and low
workload sections, and these differences were demon-
strated in the speech variables measured. Partici-
pant’s perceived workload increased as a result of
increasing the number of distractor messages indi-
cating that there was an actual difference in work-
load between the trials. As predicted, we found a
significant 1.5% decrease in participant’s F0 when
participants took part in the slow trial as compared
to the fast trial. Also confirming our predictions
was a 0.14% increase in articulation rate during the
slow trials. We did not find a relationship between
the speech measures researched and the participant’s
subjective ratings of workload. This was likely due
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Fig. 6: Average F0 of each subject in each condi-
tion.

to the variability of the subjective responses across
the task.

We observed that the use of a more controlled and
restricted aviation vocabulary restricted the range
of fundamental frequency and articulation rate dif-
ferences compared to those that occur in normal ev-
eryday speech, in an idiosyncratic manner for each
talker. In a study using a counting task, Brenner
et al. [4] found a ∼2 Hz increase in fundamental
frequency, which compares in magnitude to the 1.5
Hz increase found here. They observed that, while
“the degree of change would be difficult to recog-
nize in normal conversation” the measured effect de-
served “special attention for practical aerospace ap-
plications.” While we found that fundamental fre-
quency increased with workload, similar to [4], that
study also showed an increase in articulation rate
with increased workload for most subjects (about a
0.5 syllable increase/sec), whereas the current study
found a decrease in articulation rate. The decrease
in articulation rate with increased workload found
here is consistent with several studies focused on
the effects of cognitive load, where the experimental
manipulation involved increasingly difficult speaking
tasks [12].

Our results also suggest that, notwithstanding the
controlled aviation vocabulary, each person’s voice
responds differently to stress in the given context.
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For example, three of the subject’s fundamental fre-
quencies decreased slightly under stress, and two ad-
ditional subjects had a slight increase in articulation
rate, contrary to the direction of the mean. These in-
dividual differences can still be used as an indicator
of stress if the direction of change is normalized. Fu-
ture research might investigate the advantages of a
more complex analysis model, tailoring speech stress
analysis to each individual’s characteristic response
for a given task.
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