@ https:/intrs.nasa.gov/search.jsp?R=20130014011 2019-08-29T15:31:01+00:00Z

NASA/CR-2013-218008

Upgrades to the Probabilistic NAS Platform Air
Traffic Simulation Software

George Hunter and Benjamin Boisvert
Saab Sensis Corporation, Campbell, California

June 2013

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Acronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e (CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,

or other meetings sponsored or co-
sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page
at http.//www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phone the NASA STI Information Desk at
443-757-5802

e Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/CR-2013-218008

Upgrades to the Probabilistic NAS Platform Air
Traffic Simulation Software

George Hunter and Benjamin Boisvert
Saab Sensis Corporation, Campbell, California

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL10AC94T

June 2013

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Table of Contents

System Engineering DESIZNcccviiiiiieeiiiiiiiieiie ettt evee e e e e eebeeesnaeeenes
Software Engineering DESIZNccc.eeiiiiiiiiiiiiieeiieie ettt
Required Time of Arrival Engineering Designccoccveeiiiiiiniiiiiieniiiesieeee e
Required Time of Arrival Conformance Monitor Designcccceevvveeiienienieiieeiieneens
Required Time of Arrival Interface Control Documentcceevveviieiieenienienieeieeieeans
Required Time of Arrival Assignment DESIZNcc.eevuieriieiierieeiieeieeeie e eve e
Weather Avoidance DESIZNcc.eeiiieiieiieiiieeieeteeee ettt see et sieeebe e eaeeseesseeenaeas
Enhanced Terminal Modeling DeSi@nccccuieiieiiiiiieiieiie et
Separation Assurance Software Development Planccocoiiiiiiiiiininiieeee,
AIAA Modeling and Simulation Conference Paperccccoevieiiiiiiiiienieiiccieeeeiee
DASC Modeling and Simulation Conference Paperccccovveevieinieniieeieiiieieeeeeee
PNP Developer GUIACcoouieiieiiiiiieiiesiie ettt sttt et e e s seesnneenseens
PINP USET GUIAE ...ttt s
PNP Plan View Display User GUIAEcceeevuieiieiiiiiieiieieeseee et
Separation Assurance Developer GUIdecooerieierieiiinieiiccieeeeee e
Separation Assurance USET GUIAEcceruieiiiriieiiiiiiniieie et
Required Time of Arrival (RTMX) Client User GUIidecccccocvveeeiieiciiiiiiieeiee e

Introduction

This document is the final report for NASA BOA: NNLOSAA17B, Task Order NNL10AC94T, the
Sensis project entitled “Upgrades to the Probabilistic NAS Platform Air Traffic Simulation
Software.” This report consists of 17 sections which document the results of the several subtasks of
this effort. These 17 sections contain the following documents:

e PNP Separation Assurance Client and Display Enhancements Requirements and Engineering
Design

e PNP Separation Assurance Client Software Design Document

e PNP Required Time of Arrival Requirements and Engineering Design

e PNP RTA Conformance Monitor Utility Requirements and Engineering Design

e PNP Required Time of Arrival (RTA) Conformance Monitor Concepts Interface Control
Document

e RTA Assignment Client Requirements and Engineering Design

e PNP Weather Avoidance Client and Display Enhancements Requirements and Engineering
Design

e PNP Enhanced Terminal Area Modeling Requirements and Engineering Design
e Separation Assurance Software Development Plan

e 2011 Conference paper entitled: “Modeling and Simulation of Interactions Between Traffic
Flow Management and Separation Assurance”

e 2012 Conference paper entitled: “NAS-Wide Traffic Flow Management Concept Using
Required Time of Arrival, Separation Assurance and Weather Routing”

e PNP developer Guide

e PNP User Guide

e PNP Plan View Display User Guide

e Separation Assurance Developer Guide
e Separation Assurance User Guide

e Required Time of Arrival Client User Guide

These 17 areas of work are documented in Sections A-Q, respectively, in this report.

14809-02

PNP Separation Assurance Client and Display
Enhancements Requirements and Engineering
Design

Ben Boisvert
George Hunter
Prepared for:
National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681

Under:
NASA BOA: NNLOSAA17B

December, 2010

Table of Contents

1 INErOAUCTION ...ttt 3
2 Back@roundc.oooiiiiiiiiieie e e 4
2.1 Probabilistic NAS Platformcccooiiiiiiiii e 4
2.2 PrelimiNary tESES. . .cuuvieriieeeiie ettt et e e e et eeenraeeenbaeeenraeenenes 4
3 REQUITEIMENESviieiiiieeiieecie ettt et e e e et eeetaeessnaeeensaeennsaeenens 6
3.1 Separation assurance client reqUITEMENTSccueerueeerierieeieeniieeieerieeereeseeeeeeeens 6
3.2 PNP SEIVEr rEqUITEIMENLS.....ccuviiiiieiieeiiieiie et eite et eteeeiteeteeeaeesaeesseeseessneeseesnneans 7
33 PNP display reqUIrEmMENTS........cc.eeevuieriieeiieiieeiieeiieeieeeiteeteeeveeteeeteesseesseesseeenseens 8
4 Design CONSIACTATIONSeecuvieeeiiieeiieeeieeeetee et e steeesreeeetaeeeaeeeetaeeenaeeesaeeenneeas 10
4.1 Separation assurance maneuver architeCtureccceeeveeevieeerieeeciee e 10
4.2 Conflict detection MOAULE...........ccouiieiiiieiieeeeee e 15
4.3 Conflict resolution MOAUIEccoeiiiiiiiiiiiiieeeee e 17
4.4 PNP SEIVEI deSIZN .oiiuiiiiiiiiieiiieeiieeite ettt ettt ettt eebe et e esseesaeenseenseeenns 21
5 TSN ..ottt ettt sttt et e et e e sabeesbeesabeessaeeabeenbeeenbeenseeenbeas 22
6 CONCIUSIONSvie et eeiiieeetee et e ettt e et e e e taeeetaeeetaeeestaeeessaeesasseesssaeessseeessseeessseeanes 29
RETETEINCESeiiiiieeee ettt et e et e e s tae e s steeesssaeesssaeesseeennseeenns 30

A-2

1 Introduction

This document describes software enhancements required to support NASA air traffic control
experiments to evaluate advanced separation assurance concepts. Section 2 describes the
simulation environment and preliminary work that has been done.

Section 3 describes the requirements for the software to support the upcoming NASA
experiments. These are divided into client, server and display categories. Sections 4 and 5
describe design considerations and future enhancements. Section 6 lists the tests to be performed.
These sections are also divided into client, server and display categories.

A-3

2 Background

This section discusses simulation tool to be used and preliminary tests that have been conducted.
2.1 Probabilistic NAS Platform

In this engineering design we use the Probabilistic NAS Platform (PNP) to implement and test
advanced separation assurance (SA) concepts, and the integration of SA and traffic flow
management (TFM) concepts.

We developed PNP [1-11], are actively maintaining it, and actively use it for NASA, Joint
Planning and Development Office (JPDO), and Federal Aviation Administration (FAA) projects
[12-21]. Figure 1 illustrates PNP’s client-server architecture.

N
@ — —> Graphical !Jser 1"nterface
™~ A~ Plan View Display
A
(D)

O\ — = T T) .
= £ PNP is a
— ‘gl Flight Data NAs-wide
Probabilistic ¥ = Simulation
LN NAS Platform
Scripting (PNP)
\ Interface /
- 4 ;
- 4 A A 4 .
J y y y v
'ATCClient| | TFMClient DACClient| AOC Client .
Decision
making
Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.

2.2 Preliminary tests

We have conducted preliminary tests of separation assurance in PNP. This has included the
testing of an ACCoRD prototype developed at the NASA Langley Research Center, as shown in
Fig. 2. In these preliminary tests horizontal maneuvers were used to implement 10 mile offset,
hypothetical conflict resolutions. These tests used a small set of a dozen flight plans.

A-4

B\ PNP System Manitar B\ Plan View Display - Probabitistic NAS Platform

P8:45:00 11/16/2006

NASA Langley ACCoRD Protatype

8/03/2008 08:39:00 #/Flights:2
i08/03/2009 08:40:00 #/Flights:2
108/03/2008 08:41:00 #Flights:4
108/03/2008 08:42:00 #Flights:4

08/03/2009 08:43:00 #Flights:4

{08/03/2009 08:44:00 Flight PairEGF574:1/EGF761:2
Reroute: EGF761

{08/03/2009 08:44:00 #/Flights:4

NSensis

Figure2 Screen shot of tests of an ACCoRD prototype in the PNP environment.

These tests provided an initial successful integration with PNP. They also revealed that a NAS-
wide implementation requires substantial computational resources and that visualization is
critical to verification and validation.

3 Requirements

This section lists the software requirements, divided into the PNP separation assurance client,
PNP server, and PNP display categories.

3.1 Separation assurance client requirements

1. The SA client shall be a standalone program.

2. The SA client shall support configurable items using INI file format. The INI file format
is a de facto standard for configuration files commonly associated with Microsoft
Windows.

The SA client shall stream output to standard output.
The SA client shall stream errors to standard error.

The SA client shall use PNP’s SimObjects API for communications.

AN

The SA client shall send a connect message to the PNP server. The connect message
establishes a connection between the PNP server and a client.

7. The SA client shall send a heartbeat response messages to the PNP server in response to a
heartbeat request. The heartbeat response message informs the PNP server to continue
processing.

8. The SA client shall send a client configuration message to the PNP server. The client
configuration message defines the client, and its runtime parameters.

9. The SA client shall request from PNP the flight plans for all flights within a specified
distance or time of a specified flight.

10. The SA client shall perform conflict detection of flights for a user-specified conflict
detection look ahead time frame.

11. The SA client shall define an application program interface (API) that supports conflict
detection algorithms.

12. The SA client shall define the conflict detection look ahead time frame.
13. The SA client shall define the minimum vertical separation distance.
14. The SA client shall define the minimum horizontal separation distance.

15. The conflict detection API (CD-API) shall return loss of separation (LOS) pairs
consisting of time, waypoint, and flight IDs.

A-6

16. The conflict detection API (CD-API) shall return gain of separation (GOS) pairs
consisting of time, waypoint, and flight IDs.

17. The conflict detection API (CD-API) shall return the point of closes approach (PCA) data
consisting of time, waypoint, and flight IDs

18. The conflict detection API (CD-API) shall accept 4D trajectory position data.

19. The SA client shall send LOS/GOS flight pairs and PCA data to the PNP server for
visualization on the PVD.

20. The SA client shall determine conflict resolution of flights.

21. The SA client shall define an application program interface (API) that supports conflict
resolution assurance algorithms.

22. The conflict resolution API (CR-API) shall return resolution maneuvers consisting of
modified flight plans (flight plans include the flight ID).

23. The SA client shall perform conflict resolution via turn maneuvers.
24. The SA client shall perform conflict resolution via altitude maneuvers.
25. The SA client shall perform conflict resolution via speed maneuvers.
26. The SA client shall be able to enable and disable turn maneuvers.

27. The SA client shall be able to enable and disable altitude maneuvers.
28. The SA client shall be able to enable and disable speed maneuvers.

29. The conflict resolution API (CR-API) shall accept the LOS, GOS and PCA event data
output by the conflict detection API (CD-API).

30. The conflict resolution API (CR-API) shall accept flight plans and their associated
trajectory data.

31. The SA client shall send modified flight plans to the PNP server.

32. The SA client shall send a disconnect message to the PNP server when shutting down.
The disconnect message allows the PNP server to gracefully shutdown the
communications channel.

3.2 PNP server requirements

33. The PNP server shall process and incorporate modified flight plans received from the SA
client.

34. The PNP server shall update sector loading based on a modified flight plan.

A-7

35.
36.
37.

38.

39.

40.

41.
42.
43.

44,

45.

The PNP server shall update airport loading based on a modified flight plan.
The PNP server shall update a flight state data based on a modified flight plan.

The PNP environment shall include a Trajectory Predictor service that returns trajectory
data calculated from an input flight plan.

The Trajectory Predictor shall compute the future trajectory data as either intended or
projected, according to an input switch. In the intended mode, the Trajectory Predictor
uses the flight plan to predict the future trajectory. In the projected mode, the Trajectory
Predictor uses the current velocity vector to predict the future trajectory.

The Trajectory Predictor’s output trajectory data shall be calculated and output at a user-
specifiable data frequency.

The Trajectory Predictor’s output trajectory data shall consist of latitude, longitude,
altitude, time, and velocity for a specified look ahead time (in minutes).

The Trajectory Predictor’s output trajectory latitude shall be decimal degrees.
The Trajectory Predictor’s output trajectory longitude shall be decimal degrees.

The Trajectory Predictor’s output trajectory altitude shall be feet above mean sea level
(AMSL).

The Trajectory Predictor’s output trajectory velocity shall be calculated and output at a
user-specifiable (true(wind)/ground airspeed in knots).

The Trajectory Predictor’s output trajectory time shall be milliseconds since EPOCH.

3.3 PNP display requirements

46.
47.
48.
49.

50.

The PVD shall display flight LOS/GOS with a red dog bone.
The PVD shall be able to enable the automatic display of the LOS/GOS dog bone.
The PVD shall be able to disable the automatic display of the LOS/GOS dog bone.

The PVD shall display horizontal profile maneuvers as solid magenta reroutes over solid
blue original routes. Note: where routes intersect a magenta line will be displayed.

The PVD shall display vertical profile maneuvers as dashed magenta reroutes over solid
blue original routes. Note: where routes intersect a magenta line will be dashed over a
solid blue line.

A-8

51. The PVD shall be able to enable the automatic display of SA maneuvers.
52. The PVD shall be able to disable the automatic display of SA maneuvers.

A-9

4 Design considerations

This section describes design considerations for the PNP separation assurance client and PNP
server.

4.1 Separation assurance maneuver architecture

There are several solution paths in designing the separation assurance (SA) client architecture.
For instance, resolution maneuvers can be constructed as commands (such as vectors in the
horizontal plane) which are followed while temporarily suspending the original flight plan.
Alternatively, resolution maneuvers can be constructed by amending the flight plan. In the first
example, the architecture includes the concept of flying “off-plan,” while in the second example
the architecture has no such concept. Instead, the flight plan is modified as needed.

We recommend the second example over the first, as it is substantially less complex and is
equally capable of supporting resolution maneuvers. We use the concept of a trajectory plan
rather than the traditional flight plan simply because when implementing maneuvers more details
(e.g., the Mach/CAS profile for a descent) are typically required than are available in a flight
plan. Trajectory plans consist of two components, the horizontal route and the vertical profile.

Figure 3 illustrates how four waypoints can be added to a flight plan to fly a resolution
maneuver. The resolution maneuver, in this example, consists of four turns which are used to
establish a lateral offset and so avoid loss of separation, returning to the original planned track at
the completion of the maneuver.

A-10

Four inserted waypoints and
off-route resolution maneuver

S

¥

Predicted point of

n _ _ _ 4 _ __ __ ___ _ _ . /fMmMAA

Figure 3 Illustration of a detected conflict which is resolved using turn maneuvers to achieve a
lateral offset. In this example method, four waypoints are added to construct the turn
maneuvers to achieve an offset and return to the original trajectory.

In our architecture all aircraft always have an associated trajectory plan. The trajectory plan may
be retrieved for any flight using a query command, and the current location of the aircraft is
identified. To perform a maneuver the trajectory plan is replaced with a new one.

Within the trajectory plan, we separate the horizontal and vertical plane information into two
different components. The vertical plane component specifies a series of segments with speed /
altitude target states that are to be achieved at the completion of the segment. For instance,
consider an aircraft that is currently in a constant speed, level cruise phase segment.

Now consider an altitude maneuver consisting of a descent followed by a level segment, and
finally a climb that returns to the original altitude. This would be achieved by inserting three new
segments. The three new segments would (i) descend to a target altitude, (ii) remain level at that
altitude, and (ii1) then climb to the original altitude. The flight would then resume its level cruise
phase segment. Speed changes may be implemented in the same way.

These turn, altitude and speed maneuvers can be tested in a trial planning algorithm. That is,
rather than implementing a new trajectory plan, one can be hypothesized. We implement this
architecture as illustrated in Fig. 4.

Probabilistic
NAS Platform

Request

SA
Client

Trajectory
Predictor

Figure 4 High level separation assurance maneuver architecture.

As Fig. 4 shows, the SA client requests flight plans from PNP. The client then uses the data to
derive new flight plans for one or more flights which resolve predicted conflicts. As part of this
computation the SA client uses the Trajectory Prediction service to obtain detailed trajectory data
based on the flight plans. The trajectory data indicate the predicted trajectory path. Figure 5
shows a more detailed chart of this architecture.

A-12

Separation assurance client

modified flight plans

Initial flight plans
Trial flight plan Conflict
e resolution
PNP é
5
i Conflict
Flight Traj detection
plans data
Initial
Trajectory — Trial run
predictor

Figure 5 Detailed separation assurance maneuver architecture.

The eight steps identified in the Fig. 5 architecture are described below.

Step 1 The SA client requests the flight plans of all flights within a specified distance or time of
the flight of interest.

Step 2 PNP returns the requested flight plans which the SA client sends to the Trajectory
Predictor service.

Step 3 The SA client will also send the flight plans to the Conflict Resolution module for its
reference.

Step 4 The Trajectory Predictor service returns the trajectory data calculated from the flight
plans. These data extend only to the specified look ahead time frame. The SA client sends these
data to the Conflict Detection module.

Step 5 The Conflict Detection module returns the point of closest approach (PCA) and loss and
gain of separation event data which the SA client sends to the Conflict Resolution module and to

A-13

PNP. The SA client also sends the trajectory data (see Step 4) to the Conflict Resolution module
for its reference.

Step 6 The Conflict Resolution module computes trial-run resolution maneuvers and their
associated flight plan modifications. The SA client sends the new flight plans to the Trajectory
Predictor service.

Step 7 The Trajectory Predictor service returns the trajectory data calculated from the flight
plans. These data extend only to the specified look ahead time frame. The SA client sends these
data to the Conflict Resolution module, as trial plan results.

Step 8 The Conflict Resolution module iterates through Steps 6 and 7 as necessary. Note that as
part of its evaluation of the trial plan, the Conflict Resolution module performs a conflict
detection check between the modified flights and all other flights. For instance, if two flights are
modified, then each one must be checked against all other flights in the set. A possible strategy
for performing these checks is to use the Conflict Detection module. After the trial planning
process is complete, the Conflict Resolution module returns its final new flight plans. The SA
client returns these to PNP for processing and incorporation into the simulation.

Table 1 lists the inputs and outputs of the Trajectory Predictor service.

Table 1 Trajectory Predictor APl (TP-API) inputs and outputs.

Inputs Outputs

A flight plan. Predicted trajectory data (position and
velocity) at the user specified data
frequency, based on the input flight
plan.

Table 2 lists the inputs and outputs of the Conflict Detection API.
Table 2 Conflict Detection API (CD-API) inputs and outputs.

Inputs Outputs

Trajectory position data for N Loss of separation event data (time,
flights at the user specified data position and two flight IDs.
frequency.

Conflict detection look ahead time | Gain of separation event data (time,

frame. position and two flight IDs.
Minimum horizontal separation PCA event data (time, position and
distance. two flight IDs.

Minimum vertical separation
distance.

List of M flights to check (M less
than or equal to N)

A-14

Table 3 lists the inputs and outputs of the Conflict Resolution API.

Table 3 Conflict Resolution API (CR-API) inputs and outputs.

Inputs Outputs

Trajectory data (position and Modified flight plans for selected
velocity) for NV flights at the user | flights.
specified data frequency.

Flight plans for the NV flights.

Loss of separation event data
(time and two flight IDs.

Gain of separation event data
(time and two flight IDs.

PCA event data (time, position
and two flight IDs.

Conflict detection look ahead time
frame.

Minimum horizontal separation
distance.

Minimum vertical separation
distance.

Enabling and disabling switch
settings.

4.2 Conflict detection module

The conflict detection module finds all loss-of-separation events between the current time and
the current time plus the conflict detection look ahead time. The loss-of-separation events that

the conflict detection module identifies are those between (1) the specified subset of M flights

and (i) all the NV input flights. For instance, if all the flights are specified as flights to evaluate (M
= N), then the conflict detection module performs an all-against-all check for loss-of-separation
events. On the other hand, if only a single flight is specified as the flight to evaluate (M = 1),

then the conflict detection module performs a one-against-all check for loss-of-separation events.
The value of M may be anywhere from 1 to N.

Loss-of-separation events occur when the horizontal separation between two flights is less than
the minimum horizontal separation distance, or the vertical separation between two flights is less

A-15

than the minimum vertical separation distance. Figure 6 illustrates the geometry of these two
minimum separation criteria. Note that the horizontal separation between two aircraft can be
computed in a local Cartesian frame of reference, for instance centered at one of the two aircraft.

Minimum
horizontal — —
separation

Minimum
vertical
separation

1

Figure 6 High level separation assurance maneuver architecture.

Loss-of-separation events are not instantaneous, but rather are finite. They include three
important sub events: the point at which separation is lost, the point of closest approach, and the
point at which separation is gained. Figure 7 illustrates these three sub events.

> 3

Loss qf/
separation

~~— Gain of
separation

Point of closest
approach

Figure 7 High level separation assurance maneuver architecture.

The input trajectory data are given at discrete time points. We define the loss of separation
(LOS) time as the discrete time point at which separation is first lost. We define the gain of
separation (GOS) time as the discrete time point at which separation is first gained. And we
define the point of closest approach (PCA) as the discrete time point with the least separation of
all the time points.

A-16

As mentioned above, the conflict detection module returns only those loss-of-separation events
that occur in the conflict detection look ahead time frame. But for a given look ahead time frame,
a loss-of-separation event may begin and end within the time frame, or it may overlap the time
frame, as illustrated in Fig. 8.

LIOS PICA G?S
L?S PCIPA GIOS
L?S PCI2A G?S
L 1 » Time
Current time Lookahead time

Figure 8 High level separation assurance maneuver architecture.

Figure 8 illustrates three different loss-of-separation events. One precedes the look ahead time
frame, one begins and ends within the time frame, and one extends beyond the time frame. Also,
note that in the first and third cases, the PCA time point may be in or out of the time frame. In
overlap cases, the conflict detection module output reports only the sub events that occur within
the conflict detection time frame. For instance, if no LOS time is reported, then this means the
aircraft pair are in conflict at the beginning of the time frame (i.e., the current time). On the other
hand, if no GOS time is reported, then this means the aircraft pair are in conflict at the end of the
time frame.

Also, the predicted runway arrival time, for either flight in a conflict, may occur anywhere within
the conflict detection time frame. When this occurs, none of the three conflict events (i.e., LOS,
PCA and GOS) are possible after the arrival time.

4.3 Conflict resolution module

As Fig. 5 and Table 3 show, the conflict detection data, as well as the nominal flight plans and
associated trajectory data, are input to the Conflict Resolution API (CR-API). The conflict
resolution module uses these data to derive maneuvers to resolve the conflicts. Our design
segregates the fundamental services (conflict detection and trajectory prediction) used by the
conflict resolution module and the conflict resolution algorithm itself.

The objective is to design and implement the fundamental services that are required to support a
wide variety of conflict resolution algorithms. The particular conflict resolution algorithm
designed and implemented here does not guarantee successful resolution of the detected
conflicts. To remain with the project scope, this conflict resolution algorithm is of modest
complexity. The objectives of this algorithm are to demonstrate the implementation of a conflict
resolution algorithm, exercise the fundamental services, and serve as a nominal conflict
resolution algorithm in support of TFM-SA interaction studies.

A-17

In the conflict resolution module, each loss of separation event is treated independently. For each
loss of separation event, we first ensure that both aircraft are airborne for the duration of the
conflict resolution time frame." In other words, the runway departure time must be prior to the
current time, and the predicted runway arrival time must be after the GOS event. Also, the PCA
must occur within the conflict resolution time frame. If either of these tests fails, then the conflict
is ignored. If both pass, then the conflict resolution module evaluates three types of maneuvers:
speed change, altitude change and heading change.

4.3.1 Speed change maneuver

The logic first evaluates the speed change maneuver. The speed change maneuver is most
desirable because it introduces the least deviation, and therefore introduces the least complexity.
The flight does not deviate in its intended altitude profile or its horizontal route. It only changes
its crossing times.

Also, the speed change maneuver is usually the most fuel efficient. A speed reduction decreases
aerodynamic drag while an altitude maneuver often forces a flight to a less efficient altitude, and
a turn maneuver increases the distance flown.

But the speed change maneuver is the most restricted. This is because the speed change
maneuver offers the least distance deviation of the three maneuver types. To achieve the
necessary separation a longer time span is required. Therefore the speed change maneuver often
is insufficient within the conflict resolution time frame.

The speed change maneuver is also geometrically restricted. As Fig. 9 illustrates, the speed
change maneuver is ineffective in head-on encounters. In that case, a speed change merely alters
the PCA time, but not the PCA itself. And in crossing encounters the effectiveness of the speed
change maneuver can be limited. This depends on the precise location of the PCA, and the speed
change that is feasible.

+
¥ ¥ ¥
Head-on Overtake

Figure9 High level separation assurance maneuver architecture.

' The conflict resolution time frame is synonymous with the conflict detection time frame.

A-18

Commercial transports in en route flight often operate near the limits of their performance
envelope. Therefore speed reduction is often more feasible than speed increase. This lack of
control symmetry has implications in the crossing encounter geometries. For instance, in certain
scenarios a speed reduction might aggravate the separation loss. What is needed is a speed
increase, but that may not be available.

For these reasons, while the speed control maneuver is often the most desirable, it also has the
least availability. Therefore we evaluate the speed control maneuver first, and if it is not feasible
then we move to the altitude change maneuver.

To evaluate the speed control maneuver we first check the geometry. We ensure that it is an
overtake encounter by ensuring th~t at the PCA, aircraft A is in the forward hemisphere of
aircraft B, and aircraft B is in the " ~misphere of aircraft A. Figure 10 illustrates this check.

Figure 10 High level separation assurance maneuver architecture.

We use the aircraft velocity vector, and specifically the heading angle, to define the hemisphere,
and we require the respective heading angles to be within 45°:

Ay :|V/A _l//B| <45 (4.1)

where,
v, =heading angle of Aircraft A at PCA (degrees).

We also restrict our speed change maneuver to speed reductions. This means that only the
trailing aircraft may be maneuvered in the speed change maneuver. We estimate the required
speed reduction (in knots) as:

AP

=———— (42)
AT cos Ay

A-19

where,

AP = minimum horizontal separation — PCA horizontal separation (nmi),
AT =PCA time — current time (hours).

We round AV up to the next multiple of 5, and we reject the speed change maneuver if it is
greater than 20 kts. Note that to pass this test, the PCA must occur within the look ahead time
frame (see Fig. 8).

If these geometry and separation tests are passed, then the conflict resolution module enters a
trial planning iteration to confirm separation assurance. Specifically, Aircraft B immediately
decelerates until its airspeed is reduced by AV. This new trajectory is tested against all other
trajectories (one against all) using the conflict detection module. The maneuver is accepted if the
conflict detection module returns no conflicts. In this case, Aircraft B maintains its new, slower,
speed. There is no recovery maneuver.

4.3.2 Altitude change maneuver

If the speed change maneuver is not accepted, then the altitude change maneuver is evaluated.
First, the altitude difference between the two aircraft must exceed 50% of the minimum vertical
separation. If this is true, then the trial planning step is next. The lower aircraft (Aircraft B)
immediately initiates a descent maneuver. The altitude reduction (in feet) is equal to the
minimum vertical separation minus the altitude separation at the PCA, plus a buffer of 100 ft:

Ah=MVS —(h, —h,)+100 (4.3)

where,

MVS = minimum vertical separation (ft),
h, = altitude of Aircraft A at PCA (ft).

We round 4% up to the next multiple of 100. If the GOS event occurs within the conflict
resolution time frame, then Aircraft B performs a recovery maneuver. Otherwise there is no
recovery maneuver and the lower altitude is maintained. The recovery maneuver is a climb back
to the initial altitude, beginning at the GOS time.

This new trajectory is tested against all other trajectories (one against all) using the conflict
detection module. The maneuver is accepted if the conflict detection module returns no conflicts.

4.3.3 Heading change maneuver

If both the speed change and altitude change maneuvers are rejected, then the conflict resolution
module attempts to find a heading change maneuver to resolve the conflict. Such maneuvers are
only performed for aircraft whose predicted runway arrival time is at least 10 minutes after the
GOS time. For aircraft that pass this test, two heading maneuvers are evaluated: a turn maneuver

A-20

initially to the right, and a turn maneuver initially to the left. Therefore, in this heading change
maneuver algorithm, a maximum of four different maneuvers are evaluating using trial planning

(i.e., two aircraft and two different trial plan maneuvers per aircraft). The first successful trial
plan maneuver that is found is used. If all the maneuvers fail, then no heading change maneuver
is implemented. Each trial plan maneuver consists of:

e An approximately 45° turn (to the right or left) commenced immediately,
e A straight segment,
e An approximately 45° turn (to the left or right) to return to the initial heading.

The length of the straight segment is sufficient to generate a separation greater than PCA loss of
separation. Its time duration (in hours) is:

AP

T=—— (4.4)
07 x AV

where,

AP = minimum horizontal separation — PCA horizontal separation (nmi),
AV = Aircraft airspeed at current time (kt).

The recovery maneuver is simply the reverse of the conflict avoidance maneuver, commencing at
the GOS time plus a time buffer of 30 seconds.

4.4 PNP server design

The engineering design of the PNP server does not change. Modifications that may be required
to support the SA client are discussed in the Software Design Document.

A-21

5 Testing

This section describes the software testing for the PNP separation assurance client, PNP server,
and PNP display enhancements. Table 4lists the PNP SA client tests.

Table 4 PNP SA client tests.

PNP Separation Assurance Client Tests

Requirements Qualification Design Code Build
Traceability Traceability

1 The SA client shall be a Demonstration |
standalone program.

2 The SA client shall support | Demonstration 1
configurable items using
INI file format. The INI file
format is a de facto standard
for configuration files
commonly associated with
Microsoft Windows.

3 The SA client shall stream | Demonstration 1
output to standard output.

4 The SA client shall stream Demonstration 1
errors to standard error.

5 The SA client shall use Inspection 1
PNP’s SimObjects API for
communications.

6 The SA client shall send a Analysis 1

connect message to the PNP
server. The connect
message establishes a
connection between the
PNP server and a client.

7 The SA client shall send a Analysis 1
heartbeat response messages
to the PNP server in
response to a heartbeat
request. The heartbeat
response message informs

A-22

the PNP server to continue
processing.

The SA client shall send a
client configuration
message to the PNP server.
The client configuration
message defines the client,
and its runtime parameters.

Analysis

The SA client shall request
from PNP the flight IDs for
all flights within a specified
distance or time of a
specified flight.

Analysis

10

The SA client shall perform
conflict detection of flights
for a user-specified conflict
detection look ahead time
frame.

Inspection

11

The SA client shall define
an application program
interface (API) that supports
conflict detection
algorithms.

Inspection

12

The SA client shall define
the conflict detection look
ahead time frame.

Inspection

13

The SA client shall define
the minimum vertical
separation distance.

Inspection

14

The SA client shall define
the minimum horizontal
separation distance.

Inspection

15

The conflict detection API
(CD-API) shall return loss
of separation (LOS) pairs
consisting of time,
waypoint, and flight IDs.

Inspection

16

The conflict detection API

Inspection

A-23

(CD-API) shall return gain
of separation (GOS) pairs
consisting of time,
waypoint, and flight IDs.

17

The conflict detection API
(CD-API) shall accept 4D
trajectory position data.

Inspection

18

The SA client shall send
LOS/GOS flight pairs to the
PNP server for visualization
on the PVD.

Demonstration

19

The SA client shall
determine conflict
resolution of flights.

Analysis

20

The SA client shall define
an application program
interface (API) that supports
conflict resolution assurance
algorithms.

Inspection

21

The conflict resolution API
(CR-API) shall return
resolution maneuvers
consisting of modified flight
plans (flight plans include
the flight ID).

Analysis

22

The SA client shall perform
conflict resolution via turn
maneuvers.

Analysis

23

The SA client shall perform
conflict resolution via
altitude maneuvers.

Analysis

24

The SA client shall perform
conflict resolution via speed
maneuvers.

Analysis

25

The SA client shall be able
to enable and disable turn
maneuvers.

Demonstration

A-24

26

The SA client shall be able
to enable and disable
altitude maneuvers.

Demonstration

27

The SA client shall be able
to enable and disable speed
maneuvers.

Demonstration

28

The conflict resolution API
(CR-API) shall accept the
LOS and GOS event data
output by the conflict
detection API (CD-API).

Inspection

29

The conflict resolution API
(CR-API) shall accept flight
plans and their associated
trajectory data.

Inspection

30

The SA client shall send
modified flight plans to the
PNP server.

Analysis

31

The SA client shall send a
disconnect message to the
PNP server when shutting
down. The disconnect
message allows the PNP
server to gracefully
shutdown the
communications channel.

Analysis

Table 5 lists the PNP server tests.

Table 5 PNP server tests.

PNP Server Tests

#

Requirements

Qualification

Design
Traceability

Code
Traceability

Build

32

The PNP server shall be
able to process and
incorporate modified flight
plans received from the SA

Analysis

A-25

client.

33

The PNP server shall update
sector loading based on a
modified flight plan.

Analysis

34

The PNP server shall update
airport loading based on a
modified flight plan.

Analysis

35

The PNP server shall update
a flight state data based on a
modified flight plan.

Analysis

36

The PNP environment shall
include a Trajectory
Predictor service that
returns trajectory data
calculated from an input
flight plan.

Inspection

37

The Trajectory Predictor’s
output trajectory data shall
be calculated and output at a
user-specifiable data
frequency.

Inspection

38

The Trajectory Predictor’s
output trajectory data shall
consist of latitude,
longitude, altitude, time,
and velocity for a specified
look ahead time (in
minutes).

Analysis

39

The Trajectory Predictor’s
output trajectory latitude
shall be decimal degrees.

Inspection

40

The Trajectory Predictor’s
output trajectory longitude
shall be decimal degrees.

Inspection

41

The Trajectory Predictor’s
output trajectory altitude
shall be feet above mean sea
level (AMSL).

Inspection

A-26

42

The Trajectory Predictor’s
output trajectory velocity
shall be calculated and
output at a user-specifiable
(true(wind)/ground airspeed
in knots).

Inspection

43

The Trajectory Predictor’s
output trajectory time shall
be milliseconds since
EPOCH.

Inspection

Table 6 lists the PNP display tests.

Table 6 PNP display tests.

PNP Display Tests

#

Requirements

Qualification

Design
Traceability

Code
Traceability

Build

44

The PVD shall display
flight LOS/GOS with a red
dog bone.

Demonstration

45

The PVD shall be able to
enable the automatic display
of the LOS/GOS dog bone.

Demonstration

46

The PVD shall be able to
disable the automatic
display of the LOS/GOS
dog bone.

Demonstration

47

The PVD shall display
horizontal profile
maneuvers as solid magenta
reroutes over solid blue
original routes. Note: where
routes intersect a magenta
line will be displayed.

Demonstration

48

The PVD shall display
vertical profile maneuvers
as dashed magenta reroutes

Demonstration

A-27

over solid blue original
routes. Note: where routes
intersect a magenta line will
be dashed over a solid blue
line.

49 The PVD shall be able to Demonstration
enable the automatic display
of SA maneuvers.

50 The PVD shall be able to Demonstration

disable the automatic
display of SA maneuvers.

A-28

6 Conclusions

This document describes software enhancements required to support NASA air traffic control
experiments to evaluate advanced separation assurance concepts. This includes both
requirements and design considerations. The requirements and design considerations fall into
client, server and display categories. This document also presents design enhancements for the
future, and testing to be conducted.

A-29

References

1. George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

2. George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic meteorological
forecasts in NAS-wide traffic flow management decision making," 13th Conference on Aviation, Range
and Aerospace Meteorology, New Orleans, LA, January, 2008.

3. Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air Traffic
Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, January, 2008.

4. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington, DC,
December, 2007.

5. Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System Performance
Improvement With Four Dimensional Trajectories," AIAA Digital Avionics Systems Conference
(DASC), Dallas, TX, October, 2007.

6. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather forecasts
in future NAS," The 87th American Meteorological Society Annual Meeting, San Antonio, TX, January,
2007.

7. Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the Presence of
Inclement Weather and Other System Uncertainties," INFORMS Annual Meeting, Pittsburgh, PA,
November, 2006.

8. Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM Evaluation
Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR, October, 2006.

9. Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation Tool and
Experiment," Integrated Communications, Navigation and Surveillance Conference (ICNS), Baltimore,
MD, May, 2006.

10. Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture Strategies for
Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics Systems Conference (DASC),
Crystal City, VA, October, 2005.

11. George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National Airspace
System in Heavy Weather," AIAA Aviation Technology, Integration and Operations (ATIO) Forum,
Arlington, VA, September 2005.

12. George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics Systems
Conference (DASC), Salt Lake City, UT, October, 2010.

13. Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake City, UT,
October, 2010.

14. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and Evaluation of
Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology, Integration and
Operations (ATIO) Forum, Dallas, TX, September 2010.

A-30

15. Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future National
Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO) Forum, Dallas, TX,
September 2010.

16. George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and Traffic
Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

17. Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation," AIAA
Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

18. George Hunter, "Preliminary Assessment of Interactions Between Traffic Flow Management and
Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics Systems Conference (DASC), St.
Paul, MN, October, 2008.

19. George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of NAS
Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

20. George Hunter, "Sensitivity of the National Airspace System Performance to Weather Forecast
Accuracy," Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA,
May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and Surveillance
Conference (ICNS), Herndon, VA, May, 2007.

A-31

14809-02

PNP Separation Assurance Client
Software Design Document

Saab Sensis Corporation
Prepared for:
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:

NASA BOA: NNLOSAA17B

August, 2011

Table of Contents

1 INTRODUGCTION. ... icitiiiieirererensresresrasresssassesssnssassenssassesssnssassenssassenssnnsanns 3
2 SOFTWARE ARCHITECTURE......coiteciieiieeiiriirssiesssssassesssssssssnsssnsssansssnsnses 4
3 PNP SERVER ...t itiiiiiiiiireiise e ressse s sesssnssessesssassasssnssassesssasressenssassenssnnrnnnen 5
3.1 FUNCTIONAL DESCRIPTION .etuuiiittieirttieeeretieeertieeerssneesssseeesssaeeesssnneesssseeesssseesssnneesssnneeessnnns 5
3.2 SOFTWARE DESIGN .evuuiiieuniiiiiieeeietiieeeeeteeeeesieeeretieeesssneeesssneesssneeesssseessaseeesssneeessssneessssneees 7
3.3 INTERFACES ..t tteete ettt e ettt e eeeteeeeeaa et e s et e ee e et e eesaaan e ssaaaeesataeesssanessssnessssneeessraneerssnneesssen 10
4 DYNAMIC AIRSPACE CLIENT ...ocuiiiiireiiesiiessresrssssssssssssssnssssssssnsssnsssannns 12
4.1 FUNCTIONAL DESCRIPTION «vuutttunietuettneettnterueesteeesneersneessntesueessesssneesssesssneessseesseessserseessneens 12
4.2 SOFTWARE DESIGN uutiiuniitiiiiiiiii et eiiee it etaeetteeea e ettt e s st eesaesatessanteranessaessnseranesstneesnesrannes 12
4.3 INTERFACES .. ttttetttttieett ettt et e ete ettt ee st te s esatesaatesanessaaeesaesssaeessnesanessnnessnsssneessnsessneesneres 12
5 PROBABILISTIC TRAFFIC FLOW MANAGEMENT CLIENT........ccceevrenree. 14
5.1 FUNCTIONAL DESCRIPTION .evuuuiiittanierttieeietieeeretieersstneesrsaneeresneessasnessssneeessssneesssssessssneeerees 14
5.2 SOFTWARE DESIGN .evuuuiiiitiiiiieiieeietieeeeeteeeettieeeetteeeretaeersatnessaaneereraeeessraeesssnnesrarneeerernnes 14
5.3 INTERFACES ..ttt ittt tttieett ettt ettt e et era e e st eesaes st eeaatesanssbaeesansssnsssnsesanessnnessnessneesnneessneesnneres 14
6 SEPARATION ASSURANCE FRAMEWORK CLIENT ...ccoviieirerecennrenens 16
6.1 FUNCTIONAL DESCRIPTION .evuutiiittanieiiuieeietieeererieersstneesrsaneeresneessssnessssneesssneeessssnsesssseeesees 16
0.2 SOFTWARE DESIGN .evuuniiiitiiiiiiiitiieiieeeeeieeeettieesesaeeereraeeessaaneessaaeeereraeeererasesssnnsesrsreeerernnes 16
6.3 INTERFACES ..t i etete ettt ettt e et e e et e e s et e e e e et e e s aaan e s e saaeesabaseessaansesssaasesrsnnseersraneersnaneesrees 18
7 CONFLICT DETECTIONooeiiiiieeiieeirsaressisssrssssssssssssssnsssnsssenssensssnnsrensns 21
7.1 FUNCTIONAL DESCRIPTION «evuuittunettnettneettnteruersteeesneersnesssneesueesseessneessnesssneesmseesseeesnserseessneens 21
7.2 SOFTWARE DESIGN 1uuiiuuiiiniiiiniiiieetteetteeti ettt etsteesaneesanesstsesneesanessansesaessneessnternessneesneersnnes 21
7.3 APPLICATION PROGRAMMING INTERFACE ..vuuiitniiiniitieitieeetnterteesieesneersnessineesneessneessnserseessnneens 22
8 CONFLICT RESOLUTION.....ciciiiiteireienrmrensrnsresssnsresssnssesssnssassenssassenssansens 24
8.1 FUNCTIONAL DESCRIPTION .evuutiiittunieituieeeetieeeeetaeeeestnesrsanneesssnneessssnsesrssneesesneeesssnsessssneeesees 24
8.2 SOFTWARE DESIGN uuuiiiiuuiiieiieiietie e ettt e e et e e e ebeeeeeabeeesataneesasaaeeerasasessaaanseraranesssanseesennneens 24
8.3 APPLICATION PROGRAMMING INTERFACE «.vuuiitniitniitteirteettneerteesineesneersnessnneesneessneessneernneesnneees 26

B-2

1 Introduction

This document describes software design required to support NASA air traffic control
experiments to evaluate advanced separation assurance concepts.

B-3

2 Software Architecture

PNP is a client/server architecture. PNP supports multiple clients. Clients may be
distributed locally or remotely. PNP’s architecture is plug-and-play, so PNP requires no
advance knowledge of clients. Clients can dynamically enter and exit the system.

When a client joins the PNP simulation, it registers with PNP and specifies what types of
data it will require, and at what intervals.

An airspace client is required to provide the PNP server with the required sectorization
information to evaluate flights in the National Airspace System (NAS). The PNP
architecture consists of two required Computer Software Configuration Items (CSCI): the
PNP server and an airspace client. A Computer Software Configuration Item is the
logical grouping of software by functionality to form a single entity. The CSCls
described in this architecture are the Dynamic Airspace Client (DAC), the Probabilistic
Traffic Flow Management Client (ProbTFM), and the Separation Assurance Framework
Client (SA).

The PNP architecture is scalable and supports an unlimited number of clients. Note that
there can be multiple instances of the SA clients dedicated to the separation of a specified
aircraft as illustrated below in Figure 1.

Figure I ~ PNP Client/Server Architecture

3 PNP Server

This section describes the PNP server Computer Software Configuration Item.

3.1 Functional Description

The PNP server is responsible for the execution and flow control of the system. The PNP
server manages communications, airport capacities/loading, sector definitions/loading
(geometries/capacities/monitor alert parameters), display updates, flight data (trajectory
models/persistence), and weather models.

PNP server uses meteorological data provided by WSI, including radar reflectivity,
winds, and ceiling and visibility. PNP server uses NAS airspace data, airport location and
capacity, demand set data containing flight data sets (FDSs), and BADA aircraft
performance data (Please refer to the PNP User Agreement for data use requirements).

The PNP server maintains the connections of clients. The PNP server provides client
status through the exchange of heartbeat messages. The PNP server sends requested data
to clients based on the clients data and interval requests. The PNP server responds
interactively with clients based on route requests. The PNP server accepts flight flan
modifications, flight delays, and re-sectorization requests [Req#32]. The PNP Server
maintains the current state of all flights loaded for a given look ahead period till their
arrival. Airport and sector loading is calculated based on the current state of all the flights
loaded in the system. Flight state, airport, and sector loading data is re-calculated based
on reroutes, delays and re-sectorization [Req#33-35].

Strategic planning is accomplished through predicted trajectory reports, weather and
sector modeling. The PNP Server creates minute trajectories. These trajectories provide
the predicted position reports used to load the sector tables. The PNP server creates
decision support data based on a 15 minute resolution. The decision support data consist
of: (1) Sector loading, capacities and capacity reductions based on reflectivity and/or user
specified reductions and (2) Airport loading, capacities and capacity reductions based on
METAREsS.

The PNP server uses a Trajectory Predictor (TP) developed by Sensis called PointMass.
The TP accepts a user-specifiable resolution in seconds [Req#37]. The TP returns a
trajectory based on the following inputs: (1) aircraft type, (2) flight plan, (3) cruise
altitude, (4) cruise airspeed, (5) departure time, (6) resolution, (7) initial altitude, (8)
initial airspeed, (9) arrival runway altitude, and (10) 4D gridded winds [Req#36]. The TP
resultant trajectory consists of latitude, longitude, altitude, time, and velocity
(true(wind)/ground airspeed in knots) [Req#38-43].

The PNP server has two runtime modes. In the real-time mode the PNP server connects
to WSI’s real-time traffic and weather data feed and receives messages WSI’s real-time
traffic and weather data feed provides NOWRAD, GRIB, METAR, TAF, and SIGMENT
data with ASDI data on a 5 minute delay. Time Management is driven by the system

B-5

clock. In the fast-time mode the PNP server uses archived data sets to read flights and
conditions based on an look ahead time. An archive consists flight data sets, sector
definitions, airport definitions, NOWRAD images, GRIB data, METAR, TAF, and
SIGMENT reports. Time Management is driven by an internal timer.

The PNP server has a Plan View Display (PVD). The PVD allows the user to visualize
the NAS. The PVD displays flight data, reflectivity, sector congestion, airport congestion,
sector geometries, forecasts, METARs, TAFs and winds. The PVD will display flight
LOS/GOS with a red dog bone [Req#44]. The PVD will have a check box button
dedicated to the display of the LOS/GOS dog bones [Req#45-46]. The PVD will display
horizontal profile maneuvers as solid magenta reroutes over solid blue original routes
[Reqg#47]. The PVD will display vertical profile maneuvers as dashed magenta reroutes
over solid blue original routes [Req#48]. The PVD display have a check box dedicated to
the display of SA maneuvers [Req#49-50].Toggles have been built in to control the
display as the PVD may become cluttered during a session when aircraft counts typically
exceed 50,000 as illustrated below in Figure 2.

§ Plan View Display - Probabilistic NAS Platform

%= N NSensis

) [2] [0 Bl <1 i) o) i

Figure2 Plan View Display Snapshot

3.1.1 Services

This section describes the PNP server services available to clients:

Sectorization

B-6

The PNP server will send out the sectorization at startup and after a resectorization The
sectorization data includes: geometries, id/name mapping, subsector mapping, capacities,
and min/max altitude definitions.

Airport Capacities

The PNP server will send out the airport capacities. Default airport capacities are based
on a 2 point Pareto curve but N point Pareto curve data can also be configured to seed the
capacities.

City Pair Routes

The PNP server will send out city pair routes in response to a CityPairRequest message.
Flight Plan Modifications

The PNP server will accept flight plan modifications through BatchResponse message.
Flight Delays

The PNP server will accept flight delays through BatchResponse message.

3.2 Software Design

This section describes the software high level design of the PNP server. The PNP server
consist of two threads. One thread dedicated to communications and one thread dedicated
to event processing. There are shared objects between the two threads that synchronize
information exchange. This is illustrated below in Figure 3.

Event Driven
Thread

Communications
Thread

Shared Objects

Figure3 PNP Server Threads

3.2.1 Event Thread

The PNP Server main event thread manages time and timers. The server uses a minute
timer to check if any client requests need to be fulfilled and flight state data needs to be

B-7

updated. The server uses an interval time to run models/algorithms and generate reports
and data sets. This is illustrated below in Figure 4.

Pre-Load

alrsl.nac?. _ | DataSets/
sectorization,

and flights

Archive

Advance
Time

Flight data and weather data
management,
Queue outbound messages

Minute
Timer

Generate decision support
dataand reports,
Queue outbound messages

Interval
Timer

Wait for client
\

acknowledgements

Figure 4 PNP Event Thread Design Flow

Initialization

At system startup, the server launches three threads. An initialization thread that loads the
airspace and airport capacity datasets then terminates. A communications thread that sets
up the server to connection requests and messages. An event thread to control time and
scheduled events. The Dynamic Airspace Client (DAC) provides the sectorization and
terminates. The event thread loads flights from the adapted flight data set based on the
configurable items: start time and look-ahead time. The start time is used to determine
what time the simulation is suppose to start. The look-ahead time is used to control how
far into the future the server is to load flights. Weather phenomena is loaded and
processed based on the start time and configurable parameters.

Steady State

In the main loop of the event thread time is controlled. In the fast-time mode, events are
executed as fast as possible. Every iteration of the main loop advances time to next
minute. The current simulation time is used to check if time exceeds twice the
configurable item: playback time. If any client interval messages needs to be sent, they
are queued for sending. If any wind or terminal forecast data exists in the archive for this
minute then it is loaded. If any flights depart in this minute then the flight is departed. If
any flights arrive in this minute then the flight is unloaded from the system. If any flights

B-8

depart in this minute plus the look-ahead time then it is loaded into the system. All
departed aircraft positions are advanced to this minute’s position report. If the current
minute also is an interval minute, then if any reflectivity data exists in the archive for this
interval it is loaded. The decision support data is created based on the current weather and
flight state data. Weather models translate weather data into current/future capacity
reductions using persistent forecasts. Capacity reductions are results of percentage of
reflectivity sector coverage and METAR/TAF reports. The system reports and chart data
are updated based off the latest decision support data: (1) ATGATE and ENROUTE
interval loading. (2) airport loading and capacity, (3) METAR and TAF state data, and
(4) flight statistics. If any messages were sent to a client, the server waits until it receives
an acknowledgement back from the client. If the server does not hear back from a client
by the configurable item: timeout then the server reports the error and continues.

Shutdown

At the end of an experiment or a user shutdown request, the server generate reports and
terminates each client gracefully.

3.2.2 Communications Thread

The communications thread is responsible for managing the client connections and
message exchange. The main loop in the communications thread is infinite. The server
opens a connection ready to receive connection requests and messages. The server senses
whether a connection is trying to be established, queued messages for sending, and
whether a message was received for processing. This is illustrated below in Figure 5.

Load airspace
and
sectorization

Message
Receive?

Request?

Send clientresponse

Connection? Process Connection
\

Update client

Acknowledgment?
response count

Process Message

Send client data

D

Queued
Message?

Figure 5 PNP Event Thread Design Flow

3.3 Interfaces

PNP is a client/based architecture. The PNP Server interfaces with clients with TCP/IP
sockets. The clients may use a Java API interface library provided by PNP. The PNP API
encapsulates all the messages and methods needed to communicate with the PNP Sever.
The PNP Server has three main state relationships with clients as depicted in Figure 6.

Register

|

Client Configuration

|

PnpFilghtDetailsDesc

|

Sync

|

Heartbeat Response

Heartbheat

L
]
c
@
»
a
=
a

T reeeee— A

Heartbeat Response

Command Request: SHUTDOWN

|

Disconnect

Figure 6 PNP Server Interface Diagram

Start-up

The Start-up state is when a client registers with the server and begins it initialization.

Steady -State

In the Steady-state phase the server communicates with clients in a synchronous cycle.
As the server advances time in the simulation, it will periodically reach a time at which
messages need to be sent to its clients. At each time point when the server needs to send
messages, it will send the appropriate messages, send a heartbeat message to the clients,
and wait for the receiving clients to respond. Only after all receiving clients have
responded will the PNP server continue to advance time.

Shutdown

The Shutdown phase is either initiated by the server when all flights have landed in an
experiment, twice the playback time is surpassed, or via a human in the loop request from

B-10

the control GUI. A client may leave the simulation by sending a Disconnect message to
the server. A client may connect to the simulation again via the Connect message.

4 Dynamic Airspace Client

This section describes the Dynamic Airspace Client (DAC) Computer Software
Configuration Item

4.1 Functional Description

The Dynamic Airspace Client is responsible for publishing and maintaining the sector
geometries, characteristics, capacities, and references.

4.2 Software Design

The Dynamic Airspace Client creates the sector grid that PNP uses to track flight
congestion. The DAC parses sector or subsector geometries to create a sector grid. The
sector grid is used to efficiently map positions to sectors. The grid is also used to
determine the area reduction based on reflectivity. The DAC maps all the sector
information to a single sector id.

The sector information includes:

Sector name/identifier mapping
Subsector name/identifier mapping
Sector/Subsector mapping

Monitor alert parameter

Minimum altitude

Maximum altitude

The DAC design is beyond the scope of this project and left blank intentionally.

4.3 Interfaces

The Dynamic Airspace Client interfaces with the PNP via the Java API library provided
by PNP. For every message the client registers for a corresponding ApiListener must be
created. The interface messages are illustrated below in Figure 7.

Heartbeat

|

SectorldMap

|

SectorNameMap

|

SectorMxMap

|

SectorPointsMap

|

SectorGeometries

-
)
aa_, (]
w <C
0-}_‘3
P
o

SectorGridMap

|

SectorGridRow

|

SectorMinAltMap

|

SectorMaxAltMap

|

Heartbeat Response

Figure 7 DAC Interface Diagram

B-13

S Probabilistic Traffic Flow Management Client

This section describes the Probabilistic Traffic Flow Management (ProbTFM) Computer
Software Configuration Item

5.1 Functional Description

The Probabilistic TFM client reduces airspace congestion by issuing delays and reroutes
to the flights likely to contribute most to NAS congestion. By first assessing the likely
effect of weather and traffic on NAS capacity, and then enforcing those constraints with
delays and reroutes, ProbTFM can distribute expected traffic loads across the NAS,
reducing airspace congestion while keeping delays and fuel burn to a minimum. Because
its capacity predictions are based on historical data encoded in probability distributions,
ProbTFM is able to effectively define constraints where demand is most likely to exceed
capacity.

5.2 Software Design

The Probabilistic TFM client design is beyond the scope of this project and left blank
intentionally.

5.3 Interfaces

The Probabilistic TFM client interfaces with the PNP via the Java API library provided
by PNP. For every message the client registers for a corresponding ApiListener must be
created. ProbTFM will create a ClientConfiguration and PnpFlightDetailsDescr message
when coding the API interface. ProbTFM will enable predicted positions and the sector
schedule in the PnpFlightDetailsDescr object used at instantiation of a client API object.
The API automatically sends this message to the server after the client configuration
message. The interface messages are illustrated below in Figure 8.

B-14

EnrouteMinBin

e ———____§

PnpFlightDetails

——— 4

PnpinFlightDetails

eee———— |

PnpDelayedFlightDetails

<

AirportCapacities

—

Terminal Conditions

—————

AirtportFlightRules

e 4]

AirtportCapacities6Points

I 4

Heartbeat

S
o
&
@
n
o
=
a

CityPairRequest
A q
CityPairResponse

Batch Response (Delays& Reroutes)

Heartbeat Response

Figure 8 ProbTFM Interface Diagram

6 Separation Assurance Framework Client

This section describes the Separation Assurance Framework (SA) Computer Software
Configuration Item

6.1 Functional Description

The Separation Assurance Framework client will provide a framework for developers to
select conflict detection and resolution (CDR) algorithms. A Java interface will be
created for the conflict detection and resolution implementations. The Java factory
creation pattern will be used to support different CDR solutions.

6.2 Software Design

The separation assurance client will be a standalone program [Req#1]. The SA will load
user specified inputs using the windows de factor standard for configurations files
[Reg#2]. The SA will stream output to standard output and errors to standard error
[Req#3-4].

The SA will use PNP’s SimObjects API for communications [Req#5]. The SimObjects
API provides a client with mature methods to connect and communicate with the PNP
server. The SA will send a connect message to the PNP server [Req#6]. The connect
message establishes a connection between the PNP server and a client. The SA will send
a client configuration message to the PNP server [Req#8]. The client configuration
message defines the client and its runtime parameters (ownship aircraft id/distance or
time). The SA will register for the flight plans for all flights [Req#9]. The SA will
establish communications with the server and wait for messages.

When messages are received they are processed until a heartbeat is received. The
heartbeat is the trigger that all interval requested messages have been sent from the
server. The client will process all the flights into a flight manager. The flight manager
create all the predicted trajectories. The flight ids with trajectories will be passed to the
conflict detection algorithm. The conflict detection algorithm will process the trajectories
based on a user-specified conflict detection look ahead time frame [Req#10] and return
conflict data. The SA will send LOS/GOS flight data to the PNP server for visualization
on the PVD [Req#18]. The conflict data will be passed to the conflict resolution
algorithm. The conflict resolution algorithm will attempt different strategies to resolve
conflicts. The conflicts resolution will be passed back to the flight manager. The
resolutions will be used to create an in-flight reroute based on the flight modification.
This in-flight reroute will be sent back to the server to be implemented [Req#30]. Once
conflict resolution has attempted to resolve all the conflicts or a successful flight plan
modification has been found, then heartbeat response is sent back to the server [Req#7].
The client waits for the next set of interval requested messages. The SA will send a
disconnect message to the PNP server when shutting down before the end of a simulation
[Reg#31]. This flow is illustrated below in Figure 9.

B-16

User Specified
----------------------- > Inputs

S

Load
User Specified Inputs

s Heartbeat Flight Data

Received? Management

Conflict Detection

Conflicts? Conflict Resolution

Send Flight Plan

Resolutions?
@ Modifications

Send Heartheat
Response

Figure 9 Separation Assurance Design Diagram

6.2.1 Separation Assurance Detailed Design

This section describes the detailed design of the separation assurance client.

Initialization

The SA will load the user specified configuration to establish the (1) trajectory resolution,
(2) conflict detection look ahead time, (3) conflict detection minimum horizontal
separation distance, (4) conflict detection minimum vertical separation distance, and (5)
conflict resolution retry criteria. The SA will establish communications with the server.
The SA will register its interval request messages with the server.

Steady-State

The SA will constantly receive and process messages from the server. When flight data is
received the flight data manager will check for updates. If the flight plan has not changed
then the flight and run the trajectory predictor on new or updated flights store them in the
flight data manager. When a heartbeat is received, then the SA will process the
trajectories in the flight data manager by performing conflict detection and resolution.
The resulting conflict resolutions will be sent to the server as flight modifications. Once
all CDR is attempted for all flights then a heartbeat response will be sent back to the
server to advance the simulation.

Shutdown

The SA will shutdown communications and reports statistics that have been accumulated
throughout the experiment.

6.3 Interfaces

The separation assurance (SA) client interfaces with the PNP via the Java API library
provided by PNP. For every message the client registers for a corresponding ApiListener
must be created. The SA will create a ClientConfiguration and PnpFlightDetailsDescr

message when coding the API interface. The separation assurance client will register for
PnplInFlightDetails. The interface messages are illustrated below in Figure 10.

PnpEnrouteFlightDetails

Heartbeat

Batch Response (InFlight Reroutes)

p =
]
2
@
»
o
=
o

Heartbeat Response

Separation Assurance Client

Figure 10 Separation Assurance Interface Diagram

The ClientConfiguration message can be adapted to request all enroute flights, fleet based enroute
flights, ownship enroute flights, and geographical bounded enroute flights. To requests all enroute
flights, set the ownship flag in the adaptation file to “none”. To enable the fleet based enroute
flights, set the ownship flag in the adaptation file to a fleet identifier i.e. “UPS”. To enable the
ownship enroute flights, set the ownship flag in the adaptation file to an aircraft identifier i.e.
“AAL1076”. To enable the geographical bounded, set the ownship flag in the adaptation file to
“polygon” and set the separationassurancepolygon flag to a set of decimal latitude/longitudes i.e.
“35.1/-101.7,35.1/-91.3,31.1/-91.3,31.1/-101.7”

B-18

6.3.1 Pseudo Code

This section provides the separation assurance interface. The separation assurance
interface consists of several methods. The process method uses the conflict detection and
resolution instances to set reroutes, loss of separation list, conflict list and gather
statistics. The clear method initializes all state data. The getReroutes, getLosList, and
getConflictList methods provide assessors to their associated state data.

public interface SeparationAssurancelnterface

{

public void process(ConflictDetectionInterface conflictDetection,
ConflictResolutionlInterface conflictResolution,
long ts);

public void clear();

public Map<Integer, ReroutePlan> getReroutes();
public LosList getLosList();

public ConflictList getConflictList();

void createSummaryReport(String experiment);

}

Two separation assurance implementations are available in the separation assurance
factory. To enable the ownship separation assurance implementation, set the
separationassuranceimplementation flag in the adaptation file to “ownship”. To enable
the surveillance separation assurance implementation, set the
separationassuranceimplementation flag in the adaptation file to “surveillance”.

public class SeparationAssuranceFactory

{

public static SeparationAssurancelnterface get(String criteria)

{

if (criteria.toLowerCase().equals("ownship"))

{

return new OwnshipSeparationAssurance();

}

else if (criteria.toLowerCase().equals("surveillance"))

{

return new SurveillanceSeparationAssurance();

}

else

{

return null;

B-19

B-20

7 Conflict Detection

This section describes the Conflict Detection Algorithm.

7.1 Functional Description

The Conflict Detection Algorithm will perform conflict detection based on a ownship
centric perspective.

7.2 Software Design

The Conflict Detection (CD) will copy all the flight data from the Flight Data Manager.
The CD will be ownship centric. If a trial resolution exists, the resolution will be updated
for the ownship flight. The CD will load the user specified inputs: (1) conflict detection
look ahead time, (2) conflict detection minimum horizontal separation distance, and (3)
conflict detection minimum vertical separation distance. The CD will analyze trajectories
for all loss-of-separation events based on the current time to the conflict detection look
ahead time. The CD will compare the ownship position to every flight in the data set,
starting from the current position to last position report defined by the conflict detection
look ahead time. If at any point in time an aircraft losses separation with the ownship
then the occurrence is saved in the conflict recorder. The CD will post conflict data from
the conflict recorder. Once all flight have been analyzed the conflict data will be returned
to the calling process.

FlightData 4D Trajectory User Specified
Management Management

Attempt

s S Conflict Detection

Post

Conflicts Conflict Recorder

Figure 11 Conflict Detection Design Diagram

B-21

7.3 Application Programming Interface

This section describes the Application Programming Interface for conflict detection
algorithms [Req#11]. The Conflict Detection Application Programming Interface (CD-
API) will provide methods to access and mutate the (1) conflict detection look ahead time
frame [Reg#12], (2) minimum vertical separation distance [Req#13], and (3) minimum
horizontal separation distance [Req#14]. The CD-API will provide a method to access the
loss of separation (LOS) pairs consisting of time, waypoint, and flight IDs [Req#15]. The
CD-API will provide a method to access the gain of separation (GOS) pairs consisting of
time, waypoint, and flight IDs [Req#16]. The CD-API will provide a methods to access
and mutate 4D trajectory position data array identified by a flight id [Req#17]. The SA
will perform conflict detection of flights based on the user-specified conflict detection
look ahead time frame.

7.3.1 Pseudo Code

This section provides the conflict detection interface. The conflict detection interface
consists of one method: detectConflicts. A conflict resolution detection would write a
detectConflicts method to identify conflict pairs.

public interface ConflictDetectionInterface

{

public List<DetectedConflict> detectConflicts(int ownshipFlightld,
List<FlightDetails> flights,
long ts);

}

Two conflict detection implementations are available in the conflict detection factory.
To enable the Sensis conflict detection implementation, set the
conflictdetectionimplementation flag in the adaptation file to “sensis”. To enable the
Stratway conflict detection implementation, set the conflictdetectionimplementation flag
in the adaptation file to “stratway”.

public class ConflictDetectionFactory

{

public static ConflictDetectionInterface get(String criteria)

{

if (criteria.toLowerCase().equals("stratway"))

{

return new StratwayConflictDetection();

}

else

{

return new SensisConflictDetection();

}

B-22

The DectectedConflict class consists of a conflict pair ids, seconds to loss of separation,
seconds to point of closest approach, and seconds to gain of separation.

public class DetectedConflict

{
private int m_MyFlightld,

private int m_OtherFlightld;

private int m_SecondsToLossOfSeparation;
private int m_SecondsToClosestApproach;
private int m_SecondsToGainOfSeparation;

public DetectedConflict(int myFlightld,
int otherFlightld,
int secondsToLos,
int secondsToClosestApproach,
int secondsToGainOfSeparation)
{
m_MyFlightld = myFlightld;
m_OtherFlightld = otherFlightld;
m_SecondsToLossOfSeparation = secondsToLos;
m_SecondsToClosestApproach = secondsToClosestApproach;
m_SecondsToGainOfSeparation = secondsToGainOfSeparation;

B-23

8 Conflict Resolution

This section describes the Conflict Resolution Algorithm.

8.1 Functional Description

The Conflict Resolution will attempt to create flight modifications for a specified aircraft
through speed, altitude, or turn maneuvers.

8.2 Software Design

The Conflict Resolution (CR) loads all the conflicts from the CD. all the flight data from
the Flight Data Manager. The CR will load the user specified input: conflict resolution
parameters. The CR will attempt speed, altitude, and turn maneuvers to reduce the
number of conflicts, the maneuver order will be configurable. If an resolution is found

that reduces conflicts the flight modifications will be passed to the server as a
InFlightReroute in the BatchResponse [Req#19,21].

User Specified Resolution Flight Data
Inputs Management Management

Post Attempt Conflict
Resolutions Resolutions?

Altitude
Resolution?

Right Turn

Resolution?

Speed
Resolution?

Figure 12 Conflict Resolution Design Diagram

Right Turn Maneuver

The CR will first attempt an right turn maneuver (See EDD 4.3.3). If the conflict is
avoided the right turn maneuver is accepted and the flight modification is committed to

B-24

the flight data manager [Req#22]. If the conflict persists the right turn maneuver is
rejected and the flight modification is canceled.

The Turn maneuver resolution is created by first adding all the flown waypoints. Then
the current position is added followed by a 902 turn based on the minimum horizontal
separation distance. The next position added is based on the distance to the point of
closest approach followed by a 902 turn back to the original trajectory.

Left Turn Maneuver

The CR will attempt a left turn maneuver (See EDD 4.3.3) if the conflict still exists. If the
conflict is avoided the left turn maneuver is accepted and the flight modification is
committed to the flight data manager. If the conflict persists the left turn maneuver is
rejected and the flight modification is canceled.

Speed Reduction Maneuver of Trailing Aircraft

The CR will attempt a speed reduction maneuver of the trailing aircraft (See EDD
Section 4.3.1) if the conflict still exists. If the conflict is avoided the speed maneuver is
accepted and the flight modification is committed to the flight data manager [Req#24]. If
the conflict persists the speed maneuver is rejected and the flight modification is
canceled.

The speed reduction maneuver is based on the two aircraft with a respective heading

angles to be within 45° at the point of closest approach. This means that only the trailing

aircraft may be maneuvered in the speed reduction maneuver. We restrict our speed

reduction maneuver to speed reductions during the cruise phase of flight. We restrict

stacking maneuvers based on an adaptable maneuver timer. We estimate the required
AP

speed reduction (in knots) as: AV = ——
AT cos Ay

where,

AP = minimum horizontal separation — PCA horizontal separation (nmi),
AT = PCA time — current time (hours).

We round AV up to the next multiple of 5, and we reject the speed reduction maneuver if
it is greater than 10% of the cruise speed.

Altitude Descent Maneuver

The CR will attempt an altitude maneuver (See EDD 4.3.1) if the conflict still exists. The
altitude maneuver will be executed only if the ownship is the lower aircraft in the
conflict. If the conflict is avoided the altitude maneuver is accepted and the flight
modification is committed to the flight data manager [Req#23]. If the conflict persists the
altitude maneuver is rejected and the flight modification is canceled.

The altitude change maneuver is based on the altitude delta of two aircraft. The altitude
reduction (in feet) is equal to the minimum vertical separation minus the altitude
separation at the PCA, plus a buffer of 100 ft:

Ah=MVS —(h, —h,)+100

B-25

where,

MVS = minimum vertical separation (ft),
h, = altitude of Aircraft A at PCA (ft).

We round 4h up to the next multiple of 100. We restrict our altitude change maneuver to
altitude reductions during the cruise phase of flight. We restrict stacking maneuvers
based on an adaptable maneuver timer.

8.3 Application Programming Interface

This section describes the Application Programming Interface for conflict resolutions
algorithms [Req#20]. The Conflict Resolution Application Programming Interface (CR-
API) will provide methods to perform turn, speed, and altitude maneuvers [Req#25-27].
The CR-API will accept the LOS and GOS event data output from the CD-API [Req#28].
The CD-API will provide a methods to access and mutate flight plans and their associated
trajectory data [Req#29].

8.3.1 Pseudo Code

This section provides the conflict resolution interface source code. The conflict
resolution interface consists of one method: computeConflictResolutionOptions. A

conflict resolution implementation would write a computeConflictResolutionOptions
method to create resolutions to resolve the conflict between the ownship and nextship.

public interface ConflictResolutionInterface
{
public List<Resolution> computeConflictResolutionOptions(FlightDetails ownship,
FlightDetails nextship,
DetectedConflict conflict,
long ts);

Two conflict resolution implementations are available in the conflict resolution factory.
To enable the Sensis conflict resolution implementation, set the
conflictresolutionimplementation flag in the adaptation file to “sensis”. To enable the
Stratway conflict resolution implementation, set the conflictresolutionimplementation
flag in the adaptation file to “stratway”.

public class ConflictResolutionFactory

{

public static ConflictResolutionInterface get(String criteria)

{

B-26

if (criteria.toLowerCase().equals("stratway"))

{
}

else

{

}
j
}

The resolution class consists of a type, trajectory, and plan. The type describes the
resolution (right turn, left turn, speed control, or altitude change). The trajectory is used
to test the resolution in the conflict detection evaluation. The plan is sent to the PNP
server to implement the resolution in the system.

return new StratwayConflictResolution();

return new SensisConflictResolution();

public class Resolution

{
private RESOLUTION TYPE m_Type;

private Traj3D[] m_Trajectory = null;
private ReroutePlan m_Plan = new ReroutePlan(10);

public Resolution(RESOLUTION_ TYPE type)
{
m_Type = type;
}
}

The reroute plan consists of a priority, flight plan, list of flight plan waypoint names, list
of flight plan waypoints, or a list of maneuvers. The priority is used to determine if a
resolution is implemented in the system if there is a collision with another reroute plan
for this flight during this interval. The flight plan, waypoint names, and waypoints
describe the reroute to be implemented by the system. The maneuvers describe the
maneuver to be implemented by the system.

public class ReroutePlan extends Message implements java.io.Serializable
{ private int m_Priority = 9999;
private String m_FlightPlan ="";
private ArrayList<String> m_FlightPlanWaypointNames = new ArrayList<String>();

private ArrayList<Traj2D>m_FlightPlanWaypoints = new ArrayList<Traj2D>();

B-27

private ArrayList<Maneuver> m_Maneuvers = new ArrayList<Maneuver>();

public ReroutePlan(int priority)

{
m_Priority = priority;

}

B-28

Attachment 1

used to determine loss of separation

serverrequestinterval The time interval in which PNP server will 1
send messages to the SA client

minimumhorizontalseparation The minimum horizontal distance in 10
nautical miles used to determine loss of
separation

minimumverticalseparation The minimum horizontal distance in feet 1000

conflictdetectionimplementation

The conflict detection implementation used
to determine loss of separation

sensis | stratway

conflictresolutionimplementation

The conflict resolution implementation used
to determine resolutions

sensis | stratway

separationassuranceimplementation

The separation assurance implementation
used to separate air traffic

sensis | stratway

separationassurancedistance The distance in which two aircraft are in 10
proximity

separationassurancetime The look ahead time in which two aircraft 12
are in proximity

minimumaltitudebound The minimum altitude in which an aircraft 18000
is considered for separation

trajectorytimestepinseconds The time step in which trajectories are 10
created

maneuvertimer The time in minutes in which an aircraft 10
cannot perform another maneuver

outputpath The directories in which to output reports data\\reports

B-29

14809-04

PNP Required Time of Arrival Requirements and
Engineering Design
George Hunter
Prepared for:
National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681

Under:
NASA BOA: NNLOSAA17B

July, 2011

Table of Contents

1 INErOAUCTION ...ttt e e e e e e e e areeetaeeenaaeeeans 3
2 Back@round.........c.oooiieiiiiiieii e 4
3 REQUITEIMENLSviieiiiieeeiie ettt e et e e e taeessraeeensaeesnsaeenans 6
4 Design CONSIAETATIONSccuviieriiieeiiieeiee et e eiee e tee et e e steeesaeeeaaeesssaeeessaeesssaeenans 8
5 Future enhanCementscooiiiiiiiiiiii it 9
6 TSI . . ettt e et e et e st e et e e saaeebaeenbeenbeeenbeeseeearean 10
7 CONCIUSIONSviieeeie ettt ettt e ettt e ettt e et e e et eeeete e e etaeeebaeeeaaeesseeesaseeesaseeesaseeenns 11
RETOICICES ... et e et et e e et e e teeeeareeeeaseeeeasaeenns 12

C-2

1 Introduction

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced national airspace system (NAS) concepts.
Section 2 describes the simulation environment and provides an overview of the required
time of arrival (RTA) concept.

Section 3 describes the requirements for the software. These are divided into PNP
architecture, client, and utility categories. Sections 4 and 5 describe design considerations
and future enhancements. Section 6 lists the tests to be performed.

C-3

2 Background

This section discusses simulation tool to be used and provides an overview of the
required time of arrival (RTA) concept.

2.1 Probabilistic NAS Platform

In this engineering design we use the Probabilistic NAS Platform (PNP) to implement
and traffic flow management (TFM), separation assurance (SA), traffic spacing and
regional rerouting to avoid heavy weather and congestion concepts.

We developed PNP [1-11], are actively maintaining it, and actively use it for NASA,
Joint Planning and Development Office (JPDO), and Federal Aviation Administration
(FAA) projects [12-21]. Figure 1 illustrates PNP’s client-server architecture.

~

~

<_, Graphical User Interface
@ Plan View Display

\

m)
(. 4\ PNP is a
B S S NAS-wide
Probabilistic Simulation

LU NAS Platform Weather Data
Scripting

_ Interface (PNP) Y

a2
v

4 4 A 4

y

v \ 4
|ATC Client TFM ;:lient\ ' DACClient AOC Client

Decision
making

Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.
2.2 Overview of the required time of arrival concept

A required time of arrival is a desired crossing time for a flight which is attached to a
geographically-fixed position along the flight plan route. An RTA is implemented by first
determining the RTA value, and then modifying the flight plan to meet the RTA value.
The flight plan can be modified in several different ways. Our first priority is to use
modifications to the horizontal route to meet the RTA. Second, as a stretch goal we use
modifications to the descent segment, including both speed control and the top of descent
(TOD) control. Third, a future enhancement (or stretch goal) is to use speed control.

Within the PNP architecture we implement an RTA utility that clients can use. Clients
make an RTA request and the RTA utility returns the modified flight plan along with a

Cc4

figure of merit indicating the quality of the RTA solution. Figure 2 shows the high level
architecture and use case.

Use Case

1. Client requests flight plans from PNP.

2. PNP returns flight plans to client.

3. Client evaluates spacing at waypoints, determines
spacing delays needed and computes RTAs.

4. For each RTA, client passes flight plan and RTA data
(start/stop waypoints, RTA time and location) to the
RTA utility.

5. RTA utility returns modified flight plan and FOM.

6. Client repeats Step 4 as necessary.

7. Client decides which flight plans to change, sends
modified flight plans to PNP and logs these actions.

o Flight plans o Flight plan request
o Modified flight plan

®

e Flight plan, RTA request data

e Modified flight plan and FOM

®

Figure2 The PNP RTA high level architecture and use case.

Any client can use the RTA utility to derive flight plan modifications for any flight.
Furthermore, there is no limit to the number of RTAs that can be implemented per flight.
But the RTA utility handles only one request per call, so clients that use the RTA utility
to implement multiple RTAs for a flight must make multiple calls to the RTA utility. In
other words, multiple RTAs are implemented serially, one at a time.

Finally, there is no restriction on the RTA value itself. Crossing times may imply positive
or negative delays for the flight. Of course negative delays, which require the flight to
reach the waypoint earlier than planned, may be more difficult to achieve.

C-5

3

Requirements

This section lists the software requirements, divided into the PNP architecture, client, and
utility categories.

3.1 PNP architecture

1.
2.
3.

RTAs shall be specifiable for any and all flights in the simulation.
Each RTA shall be assigned to a flight plan waypoint or a range value.

The client shall have available to it several flight plan and trajectory functions for
convenience. These include insertion of a waypoint into a flight plan, calculation
of the range value of a waypoint, and conversion between range to the destination
airport and range from the origin airport.

Stretch goal: The PNP flight plan architecture shall include a change history
which indicates all changes that have been made to the flight plan during the
simulation run, the simulation time of the change, the type of change and the
reason for the change.

3.2 PNP client

5.

All RTA actions shall be logged.

3.3 PNP RTA utility

6.

The RTA utility shall accept as input a flight plan, the RTA crossing time, and the
RTA geographical location. The RTA utility shall also accept as input an
indication of which control strategy to use and associated input data. For turn
control strategy, for instance, the input data may include two geographical
locations indicating the earliest and latest execution of the RTA maneuver (i.e.,
the “maneuver boundaries™).

The RTA utility shall accept the geographical locations (for the maneuver
boundaries and the RTA) in terms of (i) a flight plan waypoint, (ii) a range value
from the origin airport, or (iii) a range value to the destination airport. The range
values are specified in terms of distance along the flight’s ground track.

The RTA utility shall return as output a modified flight plan that attempts to meet
the RTA.

The RTA utility shall return a figure of merit (FOM) of its RTA solution,
indicating how accurately the RTA will be met, in seconds. An early arrival (i.e.,
the modified flight plan arrives at the specified geographical location before the
RTA) shall be indicated using a negative FOM. A late arrival shall be indicated
using a positive FOM. In other words, the FOM shall be computed as the planned
crossing time — RTA.

C-6

10.

11.

12.

13.

The RTA utility shall implement multiple control strategies to meet the RTA.
Only one control strategy may be used by the client per call.

The RTA utility shall implement a general turn strategy that modifies the flight
plan horizontal route to meet the RTA.

Stretch goal: The RTA utility shall implement a descent segment strategy that
modifies the descent speed profile to meet the RTA.

Stretch goal: The RTA utility shall implement a descent segment strategy that
modifies the top of descent to meet the RTA.

C-7

4 Design considerations

There are no design considerations at this time.

5 Future enhancements

This section describes enhancements that are outside the scope of this effort but may be
implemented in the future.

5.1 PNP architecture

1. The PNP flight plan architecture shall include a change history which indicates all
changes that have been made to the flight plan during the simulation run, the
simulation time of the change, the type of change and the reason for the change.

5.2 PNP client
There are no client enhancements at this time.

5.3 PNP RTA utility

2. The RTA utility shall implement a general speed strategy that modifies the
airspeed to meet the RTA. This strategy shall include both airspeed increase and
decrease strategies.

3. The RTA utility shall support the use of forecasted trajectories that do not match
the actual trajectory that PNP will simulate. For instance, the forecasted trajectory
may be based on a forecasted wind field rather than the actual wind field.

C-9

6 Testing

Each of the requirements in Section 3 will be verified either by demonstration, analysis or
inspection.

C-10

7 Conclusions

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced RTA concepts.

C-11

References

1. George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

2. George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic
meteorological forecasts in NAS-wide traffic flow management decision making," 13th
Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January, 2008.

3. Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air
Traffic Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV, January, 2008.

4. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington, DC,
December, 2007.

5. Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System
Performance Improvement With Four Dimensional Trajectories," AIAA Digital Avionics
Systems Conference (DASC), Dallas, TX, October, 2007.

6. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather
forecasts in future NAS," The 87th American Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

7. Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the
Presence of Inclement Weather and Other System Uncertainties," INFORMS Annual Meeting,
Pittsburgh, PA, November, 2006.

8. Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM
Evaluation Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR, October,
2006.

9. Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation
Tool and Experiment," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Baltimore, MD, May, 2006.

10. Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture
Strategies for Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics Systems
Conference (DASC), Crystal City, VA, October, 2005.

11. George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National
Airspace System in Heavy Weather," AIAA Aviation Technology, Integration and Operations
(ATIO) Forum, Arlington, VA, September 2005.

12. George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics
Systems Conference (DASC), Salt Lake City, UT, October, 2010.

13. Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake City,
UT, October, 2010.

C-12

14. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and
Evaluation of Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology,
Integration and Operations (ATIO) Forum, Dallas, TX, September 2010.

15. Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future
National Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO)
Forum, Dallas, TX, September 2010.

16. George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and
Traffic Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando, FL,
October, 2009.

17. Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation,"
AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

18. George Hunter, "Preliminary Assessment of Interactions Between Traffic Flow
Management and Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics
Systems Conference (DASC), St. Paul, MN, October, 2008.

19. George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of
NAS Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

20. George Hunter, "Sensitivity of the National Airspace System Performance to Weather
Forecast Accuracy," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Herndon, VA, May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and
Surveillance Conference (ICNS), Herndon, VA, May, 2007.

14809-06

PNP RTA Conformance Monitor Utility
Requirements and Engineering Design

George Hunter

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:
NASA BOA: NNLORAA17B

October, 2011

Table of Contents

1 INEFOAUCTION ...ttt e e e e e e eab e e e eareeeeaneeenaneeeans 3
2 Back@round.........c.oooiieiiiiiieii e 4
3 REQUITEIMENLSviieiiiieeeiie ettt e et e e e taeessraeeensaeesnsaeenans 6
4 Design CONSIAETATIONSccuviieriiieeiiieeiee et e eiee e tee et e e steeesaeeeaaeesssaeeessaeesssaeenans 8
5 Future enhanCementscooiiiiiiiiiiii it 9
6 TSI . . ettt e et e et e st e et e e saaeebaeenbeenbeeenbeeseeearean 10
7 CONCIUSIONSviieeeie ettt ettt e ettt e ettt e et e e et eeeete e e etaeeebaeeeaaeesseeesaseeesaseeesaseeenns 11
RETOICICES ... et e et et e e et e e teeeeareeeeaseeeeasaeenns 12

D-2

1 Introduction

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced national airspace system (NAS) concepts.
Section 2 describes the simulation environment and provides an overview of the required
time of arrival (RTA) conformance monitor concept.

Section 3 describes the requirements for the software. These are divided into PNP
architecture, utility and client categories. Sections 4 and 5 describe design considerations
and future enhancements. Section 6 lists the tests to be performed.

RTA conformance monitoring is part of a larger context, including these steps:
1. Specify an RTA for a flight
2. Monitor the flight’s RTA conformance
3. Attempt to use maneuvers to reestablish RTA when out of conformance
4. Reformulate RTA when attempts to reestablish RTA fail

We define Step 1 as a TFM function. The TFM client analyzes multiple flights in a traffic
flow, and determines how delay should be distributed among the flights. RTA
assignments are a result of this analysis.

We assign Steps 2 and 3 to the RTA Conformance Monitor utility. And we define Step 4
as another TFM function. By assigning Steps 1 and 4 to the TFM client and Steps 2 and 3
to the Conformance Monitor utility, we focus the former on problems involving multiple
flights (and traffic flow considerations), and the latter on problems involving single
flights.

D-3

2 Background

This section discusses simulation tool to be used and provides an overview of the
required time of arrival (RTA) conformance monitor concept.

2.1 Probabilistic NAS Platform

In this engineering design we use the Probabilistic NAS Platform (PNP) to implement
RTA conformance monitoring. We developed PNP [1-11], are actively maintaining it,
and actively use it for NASA, Joint Planning and Development Office (JPDO), and
Federal Aviation Administration (FAA) projects [12-21]. Figure 1 illustrates PNP’s
client-server architecture.

e

~

<_, Graphical User Interface
Plan View Display

\ﬂ«ﬂl o — s

PNP is a
1V __V Flight Dat. NAS-wide
Probabilistic { Fiight Data | Simulation

LU NAS Platform Weather Data
Scripting

_ Interface (PNP) Y

a2
v

4 4 A 4

y

v \ 4
|ATC Client TFM ;:iient\ ' DACClient AOC Client

Decision
making
Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.
2.2 Overview of the RTA conformance monitor concept

An RTA is a desired crossing time for a flight which is attached to a geographically-fixed
position along the flight plan route. An RTA is implemented by first determining the
RTA value, and then modifying the flight plan to meet the RTA value, if necessary. At
this stage of development we use the flight’s destination airport as the geographic
location associated with the RTA. In later stages this may be generalized to allow the
RTA to be anywhere along the flight plan’s trajectory.

PNP clients, such as the TFM client, will need to use the RTA conformance monitoring
functionality. At this time there is no requirement for PNP to use conformance
monitoring the as a client. Therefore we architect the conformance monitoring as a
utility, for use by PNP clients. We also consider the possible future enhancement of using
the RTA Conformance Monitor as a PNP client. We ensure that our architecture supports
such a future enhancement.

Therefore we consider two cases: the RTA conformance monitor as a PNP client and as a
utility for use by other PNP clients. Figure 2 shows the high level architecture and use
case for the RTA conformance monitoring client.

Use Case

. Client requests data from PNP.
2. PNP returns data to client.
3. Client checks RTA conformance, uses maneuvers to

—

e Data reestablish conformance where possible, and logs
@ Data < remaining non conformance.
: Midifi“::lu:ala 4. Client sends modified data to PNP and logs these

@ actions.

s

Figure2 The high level architecture and use case for the RTA conformance
monitoring client.

Figure 2 shows the high level architecture and use case for the RTA conformance
monitoring utility.

Use Case

. TEM client requests data from PNP.
. PNP returns data to TFM client.

3. TFM client uses RTA Conformance Monitor utility to
determine current non conformance status.
4. RTA Conformance Monitor utility returns suggested
modified flight plans and non conformance data.
5. TFM client evaluates non conformance and other NAS
@ data, determines flight plan modifications and RTAs.

6. TFM client sends modified data to PNP and logs these
e Data e Data request

@ o Modified data actions.

e Flight plan, RTA request data

- * Modified ﬂight plan

®

Figure 3 The high level architecture and use case for the RTA conformance
monitoring utility.

N —

D-5

3 Requirements

This section lists the software requirements, divided into the PNP architecture,
Conformance Monitor client / utility, and other client categories.

3.1 PNP architecture

1.

RTA fields shall be added to the PNP flight plan format. These RTA fields shall
include the predicted arrival time, if not already available.

A change history shall be added to the PNP flight plan format. This change
history shall indicate which client made the change, the simulation time of day of
the change, the type of change, and the reason for the change. Types of changes
shall include: gate delay, and in-flight maneuver. Reasons for changes shall
include: weather avoidance, separation assurance, meet initial RTA, RTA
conformance, congestion management.

PNP shall include a list of all flights known to be out of RTA conformance. This
list serves as a quick reference for clients dealing with such flights (so the client
need not search through all flights). This is the “RTA conformance list.”

3.2 PNP RTA Conformance Monitor utility

*® 2 »n bk

10.

1.

12.

13.

The RTA conformance monitor shall be callable by a PNP client as a utility.
The utility shall accept as input a time window.

The utility shall check for non conformance within the input time window.
The utility shall use an RTA time tolerance value.

The utility shall perform its non conformance check only for flights that are on the
RTA conformance list.

The utility shall perform its non conformance check only for flights that have an
RTA value within the input time window.

The utility shall perform its non conformance check using the RTA value stored
in the flight plan.

The utility shall check for non conformance by determining if a flight’s predicted
arrival time at the RTA point differs from the RTA by more than the RTA time
tolerance.

The utility shall output suggested flight plan modifications to meet the RTAs. The
utility shall not modify any flight plans.

The utility shall output a list of flights that cannot be brought into conformance (if
any) using any of the available maneuvers, and output files for post analysis.

D-6

3.3 Other PNP clients

14. Any client that modifies a flight plan shall add that flight to the RTA conformance
list, indicating that that flight may be out of conformance.

D-7

4 Design considerations

PNP flight plans include the predicted arrival times for all waypoints as well as the
destination airport. Often these predicted arrival times have no error. Errors arise when
the forecasted trajectory is different from the actual trajectory that PNP simulates. Such
differences can arise when a client uses a trajectory prediction model that is different
from the PNP trajectory model. Such differences can also arise when inputs to the
trajectory prediction model differ between the client and PNP. For instance, this would
occur if the client does not have accurate aircraft weight data, wind forecasts, and so
forth.

For PNP simulation runs that do not have these error sources, predicted arrival times have
no error. While this is not a general case, it is typical. For many air traffic control
research problems, the lack of winds and otherwise trajectory prediction errors is of little
or no consequence. The majority of our research PNP simulation runs do not have these
error sources.

These cases present a significant opportunity for the RTA Conformance Monitor client
and utility. Specifically, because there is no arrival time prediction error, all RTA
violations (i.e., cases of non conformance) can be known in advance. Such violations
only occur when a flight is delayed or maneuvered. This means that the RTA
Conformance Monitor need not search through all aircraft, but could simply find the
cases of non conformance on a list.

Such a list (the “RTA conformance list”) could be maintained by PNP. A flight would be
added to the list when the flight plan is modified by a client. This includes gate delays,
reroutes, in flight maneuvers, and so forth.

Therefore there are two cases to consider: the perfect arrival time prediction case and the
more general case in which arrival times contain prediction errors.

In the latter case, the RTA Conformance Monitor must first determine all flights that
have an RTA that falls within the input time window. The RTA Conformance Monitor
then ensures that each of these flights has a sufficiently recent trajectory prediction, such
that the predicted arrival times in the flight plan are reasonably up to date. And finally,
the RTA Conformance Monitor must then check for RTA conformance for all these
flights.

Clearly there is substantially more algorithm complexity and computational resource
requirements in the more complex, general case. At this time we do not include this more
complex and resource intensive case, in our architecture. But we consider this case and
ensure that our architecture is easily scalable to handle the general case.

D-8

5 Future enhancements

As discussed in Section 2.2, we use the flight’s destination airport as the geographic
location associated with the RTA. In later stages this may be generalized to allow the
RTA to be anywhere along the flight plan’s trajectory.

As discussed in Section 4, a future enhancement is to handle the more general case in
which the predicted arrival times may have various error sources.

As discussed in Section 2.2, the conformance monitor utility could be modified so that it
can also be called directly by PNP as a client.

6 Testing

Each of the requirements in Section 3 will be verified either by demonstration, analysis or
inspection.

D-10

7 Conclusions

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced TFM concepts. In particular, these concepts
specify RTAs for flights, and require RTA conformance monitoring functionality to
maintain those RTAs or alert the TFM algorithm of RTAs which cannot be maintained.

References

1. George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

2. George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic
meteorological forecasts in NAS-wide traffic flow management decision making," 13th
Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January, 2008.

3. Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air
Traffic Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV, January, 2008.

4. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington, DC,
December, 2007.

5. Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System
Performance Improvement With Four Dimensional Trajectories," AIAA Digital Avionics
Systems Conference (DASC), Dallas, TX, October, 2007.

6. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather
forecasts in future NAS," The §7th American Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

7. Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the
Presence of Inclement Weather and Other System Uncertainties," INFORMS Annual Meeting,
Pittsburgh, PA, November, 2006.

8. Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM
Evaluation Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR, October,
2006.

9. Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation
Tool and Experiment," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Baltimore, MD, May, 2006.

10. Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture
Strategies for Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics Systems
Conference (DASC), Crystal City, VA, October, 2005.

11. George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National
Airspace System in Heavy Weather," AIAA Aviation Technology, Integration and Operations
(ATIO) Forum, Arlington, VA, September 2005.

12. George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics
Systems Conference (DASC), Salt Lake City, UT, October, 2010.

13. Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake City,
UT, October, 2010.

14. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and
Evaluation of Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology,
Integration and Operations (ATIO) Forum, Dallas, TX, September 2010.

15. Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future
National Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO)
Forum, Dallas, TX, September 2010.

16. George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and
Traffic Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando, FL,
October, 2009.

17. Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation,"
AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

18. George Hunter, "Preliminary Assessment of Interactions Between Traffic Flow
Management and Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics
Systems Conference (DASC), St. Paul, MN, October, 2008.

19. George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of
NAS Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

20. George Hunter, "Sensitivity of the National Airspace System Performance to Weather
Forecast Accuracy," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Herndon, VA, May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and
Surveillance Conference (ICNS), Herndon, VA, May, 2007.

D-13

14809-09

PNP Required Time of Arrival (RTA)
Conformance Monitor Concepts
Interface Control Document

Ben Boisvert

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:

NASA BOA: NNLOSAA17B

November, 2011

Table of Contents

INTRODUCGTIONo s 3
SOFTWARE ARCHITECTURE.........orirrreecis s s 3
INTERFACGES ... s 3
3.1 FlIght CRANGe RECOITcc.ooueeeeeieeeeeeeeeseeeee ettt 3
3.2 DIAY PIAN.........oeoeieeeee ettt 4
3.3 REIOULE PUAN. ...ttt 4
34 FlIGRE DOIAIIS ...t 4
3.5 RTA NON-CONfOIMANCE LIStooooireeisieieieieieeeesesetset ettt 5
3.6 RTA SPACING MAN@UVEL ...ttt 5
CONGCLUSIONciiiiiiiiiriieess s s s sssnsssss s s s s s s s nmsss s s s s s s s s s s s mnssssssssssssnsnnnnnsnsssnnns 6

E-2

1 Introduction

This document describes the interface control document required to support NASA air traffic
control experiments to evaluate the required time of arrival (RTA) conformance monitor
concepts.

2 Software Architecture

The RTA Conformance Monitor Utility is a set of methods in a library that can be
utilized by a client or the server. The PNP server will provide a list of all flights known
to be out of RTA conformance.

3 Interfaces
3.1 Flight Change Record

The Flight Change Record class is used to track flight plan changes over time. The creation of a
delay or reroute requires the creation of a Flight Change Record such that all flight change
transaction can be traced throughout the system.

FlightChangeRecord

Field Type Description

m_Client String Indicates the client that submitted the flight
change record.

m_Timestamp | long The time that the flight change record was
assigned.

m_Rta long The required time of arrival associated with
the flight change record.

m_Status FlightChangeRecord. STATUS | The status of the flight change record.
Values:

SUBMITTED,

IMPLEMENTED,

PRIORITY_CONFLIGHT IMPLEMENTED,
PRIORITY CONFLIGHT IGNORED,
OVERCOME BY EVENTS

m_Reason FlightChangeRecord. RESAON | The reason the flight change record was
created.

Values:

WEATHER AVIODANCE,
SEPARATION ASSURANCE,
INITIAL RTA,
RTA_CONFORMANCE,
CONGESTION _MANAGEMENT

m_Type FlightChangeRecord. TYPE The type of change in the flight change

E-3

record.

Values:

GATE DELAY,
PREDEPARTURE REROUTE,
INFLIGHT MANEUVER,
INFLIGHT REROUTE

3.2 Delay Plan

The Delay Plan class is used to request that the PNP server institute a delay for a flight.

DelayPlan

Field Type Description

m_DelayInSeconds int Indicates the delay in seconds for
a flight.

m_FlightChangeRecord FlightChangeRecord Indicates who, when, and why
flight is being delayed.

3.3 Reroute Plan

The Reroute Plan class is used to request that the PNP server institute a reroute for a flight.

ReroutePlan

Field Type Description

m_FlightPlan String Indicates the ASDI flight plan.

m_FlightPlanWaypointNames | ArrayList<String> List of flight plan waypoint
names.

m_FlightPlanWaypoints ArrayList<Traj2D> List of 2D trajectory flight plan
waypoints.

m_Maneuvers ArrayList<Maneuver> List of maneuvers

m_ FlightChangeRecord FlightChangeRecord Indicates who, when, and why
flight is being delayed.

3.4 Flight Details

The Flight Details class has been updated to contain the following fields to support the RTA
enhancements.

FlightDetails

Field Type Description

m_FlightClassification FlightClassification.CLASSIFICATION | Indicates the
classification of a flight.

Values:

VFR,
IFR,

AFR,
UAS

m_Rta long The required time of
arrival.
m_FlightChangeHistory | Map<Long, FlightChangeRecord> List of flight change

records by time.

3.5

RTA Non-Conformance List

The RTA Non-Conformance List class is a list of all flights known to be out of RTA

conformance

PnpRtaNonConformanceList

Field

Type

Description

m_FlightDetails

List<FlightDetails>

List of RTA non-conformant
flights.

3.6

RTA Spacing Maneuver

The RTA Spacing Maneuver class contains the maneuver need to achieve a RTA.

RtaSpacingManeuver
Field Type Description
m_ImplementManeuverTime | long Indicates the time in which a
RTA maneuver is
implemented.
m_RequiredArrivalTime long The required time of arrival.
m_SpeedRtaEnabled RtaSpacingManeuver. TYPE Type of RTA maneuver
Values:
CRUISE CAS,
DESCENT PROFILE,
DOGLEG

E-5

4 Conclusion

This document describes software interfaces required to support NASA air traffic control
experiments to evaluate advanced TFM concepts. In particular, these interfaces specify RTAs for
flights.

1214809-03

RTA Assignment Client Requirements and
Engineering Design

Ben Boisvert
George Hunter

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:
NASA BOA: NNLO8AA17B/Task Order NNL10AC94T

March, 2012

Table of Contents

1 INErOAUCTION ...ttt e e e e e e e e areeetaeeenaaeeeans 3
2 Back@round.........c.oooiieiiiiiieii e 4
2.1 Probabilistic NAS Platformcccooiiiiiiiiiee e 4
2.2 PrelimINary tESES. . .cvvieiiiieeiie ettt ettt et e e e et e e et e e e e e e e e nreeeenneeenanee e 5
3 REQUITEIMENLSviieiiiieeiie ettt e e et eeetaaesssaeeensaeennsaeenans 6
4 Design CONSIACTALIONSccuveeiieiieeiieriieeiee et eeste et eite et e seaeebeesieeebeessaeenseesnneens 7
4.1 Use case and aSSUMPLIONSc.eeevieriieeireniieeieesieeeieeseesseeeseesseeesseesseesseesseessseenseens 7
4.2 RTA Assignment client archit€Cture............cccveeeiverieriiiiienieeieecie e 7
4.3 Initial RTA aSSIZNMENT.......eceiiiieiiieeciieeeiiee et et e et e e et e e eaeeeeaaeeessseeeseseeessseeenenes 8
4.4 RTA confOormance MONILOTccueiiieiiiiiieeeiiiee et e ettt e e e e e eareeeeeans 10
4.5 Schedule Creationcoiiiiiie e e 10
4.6 Schedule MaINtENANCE.cccviieeiiieeiie et 11
4.7 Discrete time versus CONtINUOUS tIMEcc.veeeeuveeeiuieeeiiieeeeieeeeieeeeereeeeveeeereeeeanenes 12
4.8 Future enhanCemenLtsc..coovuiiiiiiiiiiee et e e e 12
5 TSI .ttt ettt ettt ettt et et eatean 14
6 CONCIUSIONS ...ttt et e et e e e e e e e e eaae e e e eeaaaeeeeearaeeeeanes 15
RETCICICES ...t e et a e e 16

F-2

1 Introduction

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced, cockpit-based, traffic flow management
concepts including separation assurance. Section 2 describes the simulation environment
and preliminary work that has been done.

Section 3 describes the requirements for the software to support upcoming NASA
experiments. Sections 4 describes design considerations and future enhancements.
Section 5 lists the tests to be performed and Section 6 gives the conclusions.

F-3

2 Background

This section discusses simulation tool to be used and preliminary tests that have been
conducted.

2.1 Probabilistic NAS Platform

In this engineering design we use the Probabilistic NAS Platform (PNP) to implement
and test advanced traffic flow management (TFM) concepts including separation
assurance (SA).

We developed PNP [1-11], are actively maintaining it, and actively use it for NASA,
Joint Planning and Development Office (JPDO), and Federal Aviation Administration
(FAA) projects [12-21]. Figure 1 illustrates PNP’s client-server architecture.

C e
@ — —> Graphical _User I nterface
™~ / 3 Plan View Display
\ \/ /
e D

ve—~—<—pgEEa | [&LZ

PNP is a

. Flight Data l\!AS- wifle
e L _— Simulation
. AS Platrc Weather Data
@ = N y

o

<
«

4 a 7 N y -
v v : :
'ATCClient| | TFMClient DACClient| AOC Client

Decision
making

Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.

In this project we add Weather Avoidance and RTA Assignment clients to PNP. As
Fig. 2 shows, these clients will be used with the SA and ProbTFM clients.

PNP

Weather RTA
SA Avoidance Assignment ProbTFM
Trajectory -
Predictor RTAUtlity
High-to-low priority >

Figure 2 High level experiment architecture indicating maneuver priority used to
resolve conflicting client requests.

2.2 Preliminary tests

In previous efforts we have constructed and tested the SA and ProbTFM clients. We also
constructed and tested the RTA utility which evaluates flight times for different
maneuvers and designs maneuvers to meet a given RTA.

F-5

3 Requirements

This section lists the software requirements for the RTA Assignment client.

1. The RTA Assignment client shall schedule an initial RTA for all feasible aircraft
at the arrival airport.

2. The RTA Assignment client shall monitor RTA conformance for all feasible
flights.

3. The RTA Assignment client shall attempt to assign a new RTA in the event a
flight cannot meet the assigned RTA.

4. Ifthe RTA Assignment client fails to successfully assign an RTA to a flight, that
failure shall be logged to the system.

5. The RTA Assignment client shall not interfere with the operation of the other
PNP clients.

F-6

4 Design considerations

This section describes design considerations for the RTA Assignment client and PNP
server.

4.1 Use case and assumptions

This section describes the nominal use case for the 2012 experiment which will use the
RTA Assignment client, along with the SA, Weather Avoidance and ProbTFM clients.
PNP is run in a scenario with heavy traffic and significant en route convective weather
but light airport surface weather. Therefore the capacities of the en route airspace sectors
are impacted by the presence of convective weather and consequently incur time-varying
capacity reductions, but the airports have constant, clear weather, capacity.

In every 15 minute time bin PNP calls the four clients: SA, Weather Avoidance, RTA
Assignment and ProbTFM. The SA client is run with standard en route separation
assurance settings.

The Weather Vectoring client has two separate components, a strategic component for
pre departure flights and a tactical component for en route flights. The strategic
component runs first. It uses a database of fixed routes to search for alternate routes for
flights which are forecasted to penetrate too much convective weather. An alternate route
is selected for such flights if its associated weather penetration is less than the tolerance.

Next the tactical component runs. It computes reroutes around local weather for flights
that are forecasted to penetrate too much weather. For both the strategic and tactical
components, for flights that are rerouted a flag is set in the flight plan if the flight
becomes out of conformance of a previously assigned RTA.

The RTA Assignment client assigns RTAs for the first time to flights in their en route
phase. The RTA Assignment client also monitors RTA conformance. For flights that are
out of conformance, the client attempts to reestablish conformance.

For the ProbTFM client rerouting is turned off as well as en route sector congestion. Only
gate delays are used to resolve airport congestion. Sector congestion is turned off by
scaling the sector capacities globally to infinity.

4.2 RTA Assignment client architecture

Figure 3 shows that the RTA Assignment client consists of two main parts corresponding
to its two main tasks. First, the client assigns the initial RTAs for all flights, and second,
the client monitors RTA conformance and attempts to reassign RTAs for flights out of
conformance.

F-7

RTA

Assignment
|
| |
Initial RTA Conformance
Assignment and
Reassignment

Figure 3 ~ RTA Assignment client high level architecture.

4.3 Initial RTA assignment

Flights have their initial RTA assigned when they enter an adaptable distance or time
from the destination airport. Of course, once a flight has an RTA assigned, then it no
longer will be considered in the initial RTA assignment part of the RTA Assignment
client.

The initial RTA may not be possible to assign for some flights, depending on parameter
settings. For example, very short flights may land before an RTA can be assigned.
Therefore, it may not be feasible to assign an RTA to some flights. It is important that
this and other clients, as well as PNP, be robust to this and not assume that all flights
have RTAs. Flights without RTAs simply fly normally. Their arrival time is dictated by
the flight plan and environmental variables.

The RTA assignment logic is shown in Fig. 4. For eligible flights (i.e., those flights that
have not had an initial RTA assignment and have entered the RTA assignment distance or
time window), the RTA utility is used to determine a reasonable arrival window, defined
by the earliest and latest arrival times. The earliest arrival time is computed using only
speed control (no altitude or path control). An adaptable parameter (default is 20 minutes)
is added to this to obtain the latest ETA.

The algorithm next steps from this earliest to latest time, in increments of the airport
minimum time spacing. The airport minimum time spacing is a constant parameter,
specific for each airport, equal to the airports 15-minute time interval capacity divided by
900 seconds, to obtain the minimum time interval, in seconds, between operations.

When used at airports, this spacing parameter is not intended to represent the literal
spacing between operations. Clearly airports can operate with simultaneous operations on
different runways, for instance. Instead, this spacing parameter is merely a modeling
device to ensure that the airport is not overloaded in finite time windows, such as 15-
minute time intervals. Ultimately, this spacing parameter is intended for use with
waypoints, where it can represent the literal traffic spacing.

F-8

As the algorithm steps from earliest to latest time, it searches for a time point which is
conflict free. That is, a time point at which there is no other already scheduled operation
(departure or arrival) that is within the airport’s minimum time spacing of that time point.

When an open slot is found, it is assigned to the flight by modifying the flight plan. Also
the airport’s schedule list is updated. If no such open slot is found in the search, then the
RTA assignment failure is logged.

Loop through all Loop from earliest to
flights latest by MinSpacing
parameter
Continue Y
N Has flight Continue
?
departed Is candidate RTA
v Y within MinSpacing of
any existing RTA for
v RTA already this airport?
assigned?
N
N
N X 9 ?
In RTA window? Pass 57 test
Y End of Y
~ loop
RTA Utility: Assign this RTA.
Compu_te earliest Modify flight plan
ETA using speed using RTA utility.
control. Ad(:)Z(_) Log RTA Update schedule.
minutes to obtain assignment
latest ETA. failure
End

Figure 4 Initial RTA assignment logic.

Note that in the search for an open slot, flights with an already assigned RTA are not
modified. The only degree of freedom in this search is the own-ship RTA.

The initial RTA assignment logic also has a “5% test.” The purpose of this test is to build
into the schedule occasional open slots so that subsequent non conforming flights can be
handled more easily. In other words, a schedule that is not 100% fully packed with flights
can support subsequent delays with less disruption.

The 5% test is used for initial RTA assignments. It is not used for RTA reassignment,
when a flight is delayed due to RTA non conformance. In this test, a random number
generator (RNG) is used to occasionally skip an open slot, thus leaving it open. An
adaptable input threshold is used to specify the chances of passing the test. The test is
passed if the RNG produces a value that exceeds the input threshold. For instance, if the
RNG produces uniformly distributed random numbers in a range from 0.0 to1.0, then a

threshold value of 0.05 means that the test will be passed 95% of the time, and likewise it
will fail 5% of the time.

4.4 RTA conformance monitor

The RTA Assignment client also monitors the conformance of flights that already have
an RTA assignment. The conformance monitor has two components: the monitor
component and the reassignment component.

In this experiment, a flight may become out of conformance because it was maneuvered
to maintain separation (by the SA client) or to avoid weather (by the Weather Avoidance
client). In future experiments there may be other causal factors. For instance, forecast
errors in the en route winds may cause a sufficient error in the estimated time of arrival to
create an RTA loss of conformance. Note that in that hypothetical case, there was no
client action that caused the loss of conformance, and so it could not be anticipated. The
only way to check for such loss of conformance is to update the ETAs for all flights that
have an RTA assignment.

In this experiment, because loss of conformance can only be caused by client actions (SA
and Weather Avoidance clients), it is possible to know which flights are out of
conformance without computing their ETA. For instance, when clients cause a maneuver
that forces loss of conformance, the client could add the flight to a list of non conforming
flights. The RTA Assignment client could then simply consult that list. Whether or not
such a strategy should be used is a software engineering issue.

Conformance is judged to be lost when the ETA deviates from the RTA by a value
greater than an adaptable threshold parameter.

The RTA reassignment component uses logic similar to the initial RTA assignment logic
discussed above (see Section 4.3).

4.5 Schedule creation

In the RTA assignment logic above, it is implicit that there is a schedule for each airport,
consisting of a list of all the departure and arrival RTAs, which are currently assigned.
The RTA assignment logic consults the schedule in order to find an open slot. And once
an open slot is assigned, the schedule must be updated to include the new RTA that has
been assigned. So an RTA is not only stored in the flight plan of the flight, it also is
stored in the airport’s schedule. Therefore, in addition to the initial RTA assignment and
the RTA conformance, the RTA Assignment client also must use and maintain the
schedule for each airport.

The airport schedule may also be used and maintained by other clients and the PNP
servers. Therefore, This is a cross-cutting design issue. The details of how and where the
airport schedules are initially created, and subsequently managed, is a software
engineering design issue. Here we make several comments regarding the schedule.

F-10

For departures, the schedule departure times (SDTs) are immediately available from the
initial demand set. Therefore the airport schedule could be populated with all the
departures for the entire day at the beginning of the simulation. Or this process could be
done at regular intervals during the simulation, such as every two hours. At the extreme,
this could done in every 15 minute time interval, populating the schedule with only the
departures for the current time interval.

In general, as Fig. 5 illustrates, the closer to departure time and so the more frequent this
process is, the more it favors arrivals. On the other hand, departures will tend to have
more priority, over the arrivals, if this process is less frequent, and done over a longer
time window. We suggest a happy medium, that reflects operational procedures, where
this process is executed approximately one-two hours prior to departure. But a shorter
time may be desired to give arrivals higher priority.

Departures have Arrivals have
higher priority higher priority

| N
| r g

Departure time
Figure 5 Insertion time in airport schedule for departures influences relative priority.

Note that when an SDT is inserted into the schedule, assignment logic similar to that
discussed above in Section 4.1 is used. This is because the new SDT being inserted may
conflict with operations (departures or arrivals) already inserted into the schedule.

For arrivals, the schedule arrival times (SATs) are also available from the initial demand
set. But given the schedule uncertainties, the SAT probably should not be inserted into
the airport schedule. Instead, we wait until the RTA has been formally assigned, as
described above in Section 4.1. At that point the RTA is inserted into the airport
schedule, as indicated in Fig. 4.

4.6 Schedule maintenance

In addition to the initial insertion of the departure and arrival times (SDTs and RTAs,
respectively) into the airport schedule, the schedule also must be maintained as the day
evolves. In particular, anytime a departure or arrival time is modified, it must be done in
accordance with the airport schedule, ensuring the move is to an open slot. For arrivals,
this was discussed in Section 4.1. Departures may also have their (departure) time
modified. In this case it is not referred to as an RTA, but nonetheless it does occupy a slot
in the airport schedule, and so changes to the departure time requires schedule
maintenance.

In the current experiment, departure times are modified only by the ProbTFM client, in
the form of gate delays. In the future, other clients such as the airline operations center
(AOC) client could change departure times or even cancel flights.

Where and how the schedule maintenance is performed is a software engineering issue.

4.7 Discrete time versus continuous time

The airport schedule may be formatted in discrete or continuous time. In the discrete time
format, fixed time slots are computed and enforced using the airport minimum spacing
parameter. The continuous time format, on the other hand, allows for continuously
varying, arbitrary departure and arrival times. The only constraint is that the airport
minimum spacing is not violated. Figure 6 illustrates these two formats.

*H,’il Lm_jii ﬂﬂ,ﬂu gﬂuﬁ Lmj!:'

| | | | | | | N
| | | | | | | | s
T T Discrete time
Open Open
slot slot
#u,'!l Llﬂﬁi ﬂﬂ,ﬂﬂ wuﬁ Llﬂ'l!‘
| | | | | | N
| | | | | | el
T Continuous time
Open
“sl ot”

Figure 6 Discrete time versus continuous time schedule.

As Fig. 6 illustrates, in the discrete time format it is easier to maximize the use of airport
capacity. If all the slots are used, then the throughput equals the capacity. In the
continuous time format, on the other hand, there are packing issues. Departure and arrival
times that are not tightly packed create extra, unused, time in the schedule. This results in
fewer open slots, and lower throughput.

The continuous time format, however, supports variable airport minimum spacing that
can result from using a Pareto curve description of the capacity, or from environmental
impacts on the airport capacity. Such variations in airport capacity are difficult to support
with the discrete time format.

The choice of timing format is a software engineering issue.
4.8 Future enhancements

There are several enhancements that could be implemented in the future. Here are some
candidate enhancements:

e Move the RTA point from the airport to the terminal area metering fixes.

e Add en route winds and the effect of forecast error of these winds.

F-12

e Add time-varying airport capacity due to Pareto curve modeling or weather
effects.

e Improve the SA client algorithm.

F-13

5 Testing

This section describes the software testing for this implementation. Table 1 lists the tests.
Table 1 PNP SA client tests.

PNP Separation Assurance Client Tests

Requirements Qualification | Design Code Build
Traceability Traceability

1 The RTA Assignment client | Demonstration 1
shall schedule an initial
RTA for all feasible aircraft
at the arrival airport.

2 The RTA Assignment client | Demonstration 1
shall monitor RTA
conformance for all feasible
flights.

3 The RTA Assignment client | Demonstration 1

shall attempt to assign a
new RTA in the event a
flight cannot meet the
assigned RTA.

4 If the RTA Assignment Demonstration 1
client fails to successfully

assign an RTA to a flight,

that failure shall be logged
to the system.

5 The RTA Assignment client | Inspection 1
shall not interfere with the
operation of the other PNP
clients.

F-14

6 Conclusions

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced, cockpit-based, TFM concepts with separation
assurance. This includes both requirements and design considerations. This document
also presents design enhancements for the future, and testing to be conducted.

F-15

References

1. George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

2. George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic
meteorological forecasts in NAS-wide traffic flow management decision making," 13th
Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January, 2008.

3. Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air
Traffic Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV, January, 2008.

4. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington, DC,
December, 2007.

5. Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System
Performance Improvement With Four Dimensional Trajectories," AIAA Digital Avionics
Systems Conference (DASC), Dallas, TX, October, 2007.

6. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather
forecasts in future NAS," The 87th American Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

7. Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the
Presence of Inclement Weather and Other System Uncertainties," INFORMS Annual Meeting,
Pittsburgh, PA, November, 2006.

8. Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM
Evaluation Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR, October,
2006.

9. Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation
Tool and Experiment," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Baltimore, MD, May, 2006.

10. Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture
Strategies for Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics Systems
Conference (DASC), Crystal City, VA, October, 2005.

11. George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National
Airspace System in Heavy Weather," AIAA Aviation Technology, Integration and Operations
(ATIO) Forum, Arlington, VA, September 2005.

12. George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics
Systems Conference (DASC), Salt Lake City, UT, October, 2010.

13. Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake City,
UT, October, 2010.

F-16

14. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and
Evaluation of Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology,
Integration and Operations (ATIO) Forum, Dallas, TX, September 2010.

15. Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future
National Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO)
Forum, Dallas, TX, September 2010.

16. George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and
Traffic Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando, FL,
October, 2009.

17. Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation,"
AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

18. George Hunter, "Preliminary Assessment of Interactions Between Traffic Flow
Management and Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics
Systems Conference (DASC), St. Paul, MN, October, 2008.

19. George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of
NAS Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

20. George Hunter, "Sensitivity of the National Airspace System Performance to Weather
Forecast Accuracy," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Herndon, VA, May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and
Surveillance Conference (ICNS), Herndon, VA, May, 2007.

1214809-02

PNP Weather Avoidance Client and Display
Enhancements Requirements and
Engineering Design

Ben Boisvert
George Hunter

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:
NASA BOA: NNLO8AA17B/Task Order NNL10AC94T

March, 2012

Table of Contents

PNP WEATHER AVOIDANCE CLIENT AND DISPLAY ENHANCEMENTS

REQUIREMENTS AND ENGINEERING DESIGN........cccccciimmmininrennnnesnnnee 1
1 INTRODUCTION ...cooriiiiiiiiiiinnrrrr s nnssssss s assss s s s 3
2 BACKGROUND.......ccoemttirrriiissssn s annnes 4
2.1 PROBABILISTIC NAS PLATFORM.ccuvmiurmirinsiaetiseeesstseteeseeesssssiesssesssssaessssesesssaessssesessaesenans 4
2.2 PRELIMINARY TESTS..uueututuesteetseseseeseseesesssessesssessssesessssesssesessssessssssesssessssssessssssessssssasnssasaes 4
3 REQUIREMENTS. ...t 6
3.1 WEATHER AVOIDANCE CLIENT REQUIREMENTS........cucuuvuiuiimiaiisiiemiseiessiessassies s iessssesesseenas 6
3.2 PNP SERVER REQUIREMENTS.......cuviueetaiaiesiaseesisssistsesssessssssessse s sssaesenans 6
3.3 PNP DISPLAY REQUIREMENTS.cuuvueuieetaiaiesiaseseesssaeteesssesssssseesse s sesaesessaesenans 6
4 DESIGN CONSIDERATIONS....... .ot nnnes 7
4.1 WEATHER AVOIDANCE MANEUVER ARCHITECTUREcuvvrierrnieetescieneeeteesteessesesesssessnsesesssees 7
8.2 ROUTING c.cvuereetistteestseteestse b tsteessesebessts et s ettt s b ts ettt b ettt ts bbbttt 10
.3 DETAIL DESIGN. c..etetaeatetsesete ettt sttt bbbt 12
4.4 FUTURE ENHANCEMENTS ... nnnns 14
5 TESTING ..ottt 15
6 CONCLUSIONS ... ann e 17
REFERENCES ...t 18

G-2

1 Introduction

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced Weather Avoidance concepts in the context of
flight-deck-based traffic flow management. Section 2 describes the simulation
environment and preliminary work that has been done. Section 3 describes the
requirements for the software to support the upcoming NASA experiments. Section 4
describes design considerations and future enhancements. Section 5 lists the tests to be
performed. The document is closed with the conclusions in Section 6, followed by a list
of references.

G-3

2 Background

This section discusses the simulation tool to be used and preliminary tests that have been
conducted.

2.1 Probabilistic NAS Platform

In this engineering design, we use the Probabilistic NAS Platform (PNP) to implement
and test advanced Weather Avoidance concepts.

PNP has been developed as a platform to evaluate advanced NAS concepts.' ' PNP is a NAS-
Wide simulation that can be tailored to simulate current day or future scenarios. PNP is scalable
such that researchers can investigate various aspects of the NAS through multiple clients, as
depicted in Figure 1.

S
QPRI Graphical User Interface
/ﬂw\\ (// ~ Plan View Display
\ D)
— =L

2%y Reports [N RN BN Databa

PNP is a
NAS-wide
Probabilistic P | — Simulation
MATLAB® NAS Platform

Scripting

k Interface (PNP) Performance Data /

I
»

y
I

4 A 4

y

y v \ 4
'ATCClient| | TFMClient DACClient| AOC Client

Decision
making

Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.
2.2 Preliminary Tests
In previous efforts, we have conducted preliminary tests of weather avoidance, rerouting, and

gridding in PNP. Those efforts included basic weather cell identification and simple avoidance
routes, as shown in Figure 2.

% Plan View Display - Probabilistic NAS Platform

Figure 2 Screen shot of a weather avoidance reroute in the PNP environment.

These tests provided an initial successful integration with PNP. They also revealed that a
NAS-wide implementation requires substantial computational resources and that
visualization is critical to verification and validation.

G-5

3

Requirements

This section lists the software requirements, divided into the PNP Weather Avoidance
client, PNP server, and PNP display categories.

3.1 Weather Avoidance Client Requirements

1.
2.

9.

The client shall run periodically during the PNP simulation.

The client shall search all flights that have departed or are within a user-
specifiable time of departing to determine if the flight is projected to fly nearby
heavy convective weather.

The client shall determine how to modify the flight plan to avoid the weather.

The client shall evaluate several candidate gate delays or pre-departure reroutes in
a “what if” trial-planning approach.

The client shall assign gate delays.

The client shall evaluate several candidate in-flight reroutes in a “what if” trial-
planning approach.

The client shall assign reroutes.

The client shall create a report of metrics evaluating the success of the weather
avoidance algorithm.

The client shall log failed attempts to reroute flights around weather.

3.2 PNP Server Requirements

10. The PNP server shall report rerouting statistics based on the Required Time of

Arrival, Separation Assurance, and Weather Avoidance activities.

3.3 PNP Display Requirements

11. The PNP display shall incorporate Required Time of Arrival field into the Flight

Display Window.

12. The PNP display shall incorporate reroute type information (Separation

Assurance, Congestion, and Weather Avoidance) into the Flight Display Window.

G-6

4 Design Considerations

This section describes design considerations for the PNP Weather Avoidance client and
PNP server.

4.1 Weather Avoidance Maneuver Architecture
The Weather Avoidance client will be a client in the PNP client-server architecture as

illustrated in Figure 3. The Weather Avoidance client will communicate with the PNP
server using the SimObjects API.

=
PNP 5 We_ather
Server <“—P> < > Avoidance
2 Client

Figure 3 High-level Weather Avoidance architecture.

The Weather Avoidance client will request flight and reflectivity updates (NOWRAD)
from the server, based on the interval parameter. NOWRAD data are sent every 5
minutes, so an interval less than 5 minutes is not recommended. The Weather Avoidance
client will process the reflectivity image into a graphical cell representation that will be
used to reroute flights. Reroutes will be generated by the Weather Avoidance client and
sent to the PNP server for implementation, as illustrated in Fig. 4.

NOWRAD
Weather
PNP ol :
Flights Avoidance
Server .
Client
Reroutes

Figure4 Weather Avoidance message flow.

G-7

The PNP server will accept reroutes based on the reroute order of precedence listed in
Table 1.

Table 1 Reroute Precedence.

Separation Assurance Highest
Weather Avoidance High
RTA conformance Medium
Congestion Avoidance Lowest

4.1.2 Weather Forecasting

The Weather Avoidance client will use a nowcast and persistence forecast to predict
weather. The nowcast uses the current reflectivity image to represent the convective
weather for the current time period. The nowcast will be used to report the number of bad
weather flight incursions. The persistence forecast uses the current reflectivity image as
the forecast for the future time periods. Each forecast will have an adaptable parameter to
determine the coverage threshold. The PNP universal grid (4.1 nmi) will be used to
determine weather cell population coverage. The weather cell will be a hexagon creating
a honeycomb grid, as illustrated in Fig. 5.

Display - Probab []

i ::::ﬁ ﬂ:i
i " |
e

i SNuETIEN | H :
i i : ,J.}
I 11 l#{ :
FATJESLER LNLL L RHE .Pl:_:::l. Ranaa L

Figure 5 PNP Universal Grid and Weather Cells.

G-8

4.1.3 Weather Cell Management

The bad weather cells will be identified using the persistence forecast. A bad weather cell
is identified when the percentage of universal grid elements exceeds the coverage
threshold, as illustrated in Fig. 6. The weather cell hexagon has a radius of approximately
17.5 nmi. There are approximately 78 grid elements per weather cell. The universal grid
element is considered populated with bad weather if the universal grid element dbz value
is greater than 40 dbz.

{) — i () — {09;00:00.45/
\ o '\) h \
\ i \
\ \
\
A
\ \
\
\ A
Y
/ \ s \
A o
\ \
\ i\ \
\ \
N \ \ \
7\\\) 1
\ \ b
il
X
\ \
\
\
] ! \ L
\ \ \

Figure 6 Red Bad Weather Cells.

4.1.4 Weather Clustering

The bad weather cells will be correlated to form weather clusters, as illustrated in Fig. 7.
As neighboring bad weather cells are linked, they form the weather cluster. The
clustering of bad weather cells forms the representation of a storm, which then can be
avoided.

% Plan View Display - Probabilistic NAS Platform I_:“E|g‘
09:00:00 02/28/2012

'AC Filter On)

Figure 7 Weather Clusters.

4.2 Routing

The Weather Avoidance client will use both strategic and tactical routing using the persistence
forecast. The tactical routing occurs in the en route phase while the strategic routing occurs prior
to departure.

4.2.1 Tactical Routing

A flight will be considered for tactical routing if its tracks in the planning horizon
traverse bad weather cells. The planning horizon will consist of two
adaptable relative time parameters (start and end of the planning horizon). If
a flight is predicted to traverse a bad weather cell in the planning horizon,
then the first bad weather cell encountered is used to determine the weather
cluster. The neighboring good weather cells of the weather cluster will be
used as candidate reroute cells. These candidate cells will be passed into a
Dijkstra algorithm to determine the shortest path. This shortest path is then
spliced into the current flight plan to create a new reroute for the flight, as
illustrated in Fig. 8. Route optimization will be investigated to smooth
reroutes, reducing path length and complexity.

G-10

% Plan View Display - Probabilistic NAS Platform |:HE g|
"2 35:00503/01/2012
[

A

pX1967 CLE

Figure 8 Tactical Routing Around Bad Weather Cluster.

4.2.2 Strategic Routing

Pre-departure flights will be considered for strategic routing if their tracks are predicted
to traverse bad weather cells. The strategic routing algorithm will calculate how many
minutes a flight will encounter bad weather based on the persistence forecast. Then, the
strategic routing algorithm will calculate how many minutes a flight will encounter bad
weather using different routes. If an alternate route is available which encounters less bad
weather, then it is selected as a strategic reroute. If multiple city-pair routes are available
which encounter less bad weather, then the shortest among them will be chosen, as
illustrated in Fig. 9. The selected city-pair routes will be saved for an adaptable time
period. As routes are saved and reused over an adaptable time period, they will serve as
the “game-plan” for that time period.

G-11

Figure 9 Strategic Routing Around Bad Weather Cluster.

4.3 Detail Design
This section describes the detailed design of the weather avoidance client.

4.3.1 Main Executive Thread

The Weather Avoidance client consists of four main modules, as shown in Figure 10. The
Weather Avoidance client’s main executive will extend a Java thread. The thread will initialize
adaptation and start communications with the server. The main thread will use the SimObjects
API creating a client configuration object and registering for the Heartbeat, Command,
NOWRAD, pre-departure and en-route flight messages. The main thread will register callback
methods for every registered message. The heartbeat callback method will processes the
NOWRAD image file and create a forecast based on the nowcast and persistence forecast
coverage thresholds. If strategic routing is enabled, the flight manager will process all pre-
departure flights for strategic reroutes. If tactical routing is enabled, the flight manager will
process all en-route flights for tactical reroutes. The NOWRAD callback method will store the
current NOWRAD images for processing. The pre-departure and en-route flight callback
methods will store the flights in the flight manager. The Command callback method will process
all system commands. If reroutes are created by the routing managers, the main thread will create
a reroute plan and send it to the PNP server for processing.

Flight

h

Manager
h 4
Main Rauting
EEE— />
Exec Manager
&
Weather
g Cluster
Manager

Figure 10 Weather Avoidance Detail Design.
4.3.2 Strategic Routing Manager

The Strategic Routing Manager creates strategic reroutes, avoiding bad weather for pre-departure
flights, as shown in Figure 11. The manager calculates the flight minutes in bad weather based on
the forecast for a flight. Then, the manager evaluates alternative city-pair routes for that flight. If
the alternative routes have less flight minutes in bad weather, a reroute is recommended. If
multiple routes exist with less flight minutes in bad weather, the shortest reroute will be selected.
The selected route for a given city pair will be saved in the “game-plan.” The game-plan will
maintain these selected routes for an adaptable direction. Every pre-departure flight is evaluated
by the Strategic Routing Manager.

Game
Plan
¥
Strategic
Pre-Departure Weather ——Reroutes—»
Flights i
Avoidance

F 3

Weather City Pair

Clusters

Preferred
Routes

Figure 11 Strategic Routing.

G-13

4.3.3 Tactical Routing Manager

The Tactical Routing Manager creates tactical reroutes, avoiding bad weather for en-route flights,
as shown in Figure 12. The Tactical Routing Manager determines the flight minutes in bad
weather based on the forecast for a flight. Then, the manager evaluates rerouting based on buffer
cells using the Dijkstra algorithm. The first weather cluster that a flight encounters in the planning
horizon is identified. The buffer cells associated with the first weather cluster encountered are
considered candidate cells for the Dijkstra Algorithm. The first and last buffer cell and all their
associated neighbor cells are linked together to create a network for the Dijkstra algorithm. The
Dijkstra algorithm is executed, and the resultant path is used as a reroute. The Dijkstra path is
stitched into the current flight plan. Every en-route flight is evaluated by the Tactical Routing
Manager.

Weather
Clusters
Tactical
—En_raule_h Weather ——Reroutes—m
Flights i
Avoidance

Figure 12 Tactical Routing.

4.3.31 Route Optimization

The reroutes created by the Dijkstra algorithm may not be optimal. Smoothing may be achieved
by evaluating the route using the neighbor buffer cell of the first and last node of the reroute. The
smoothed reroute would then be verified that it does not encounter bad weather. If a smoothed
route encounters a bad weather cell, then it is rejected and the optimization process terminates.
4.4 Future Enhancements

This section describes enhancements that are outside the scope of this effort but may be
implemented in the future.

4.41 Perfect Time Varying Forecast
TBD
4.4.2 Strategic Reroutes Post Departure

TBD

5 Testing

This section describes the software testing for the PNP Weather Avoidance client, PNP
server, and PNP display enhancements. Table 2 lists the PNP SA client tests.

Table 2 PNP SA Client Tests.

PNP Weather Avoidance Client Tests

Requirements Qualification | Design Code Build
Traceability Traceability
1 The client will run Demonstration | Inspection Inspection 1
periodically during the PNP
simulation.
2 The client searches all Demonstration | Inspection Inspection 1

flights that have departed or
are within a user specifiable
time of departing to
determine if the flight is
projected to fly nearby
heavy convective weather.

3 The client determines how Demonstration | Inspection Inspection 1
to modify the flight plan to
avoid the weather.

4 The client will evaluate Inspection Inspection Inspection 1
several candidate gate
delays in a “what if” trial-
planning approach.

5 The client WIH assign gate Analysis Inspection Inspection 1
delays.
6 The client will evaluate Inspection Inspection Inspection 1

several candidate in-flight
reroutes in a “what if” trial-
planning approach.

7 The client will assign Analysis Inspection Inspection 1
reroutes.
8 The client will create a Analysis Inspection Inspection 1

report of metrics evaluating
the success of the weather

avoidance algorithm.

The client shall log failed
attempts to reroute flights
around weather.

Demonstration

Inspection

Inspection

10

The PNP server shall report
rerouting statistics based on
the Required Time of
Arrival, Separation
Assurance, and Weather
Avoidance activities.

Demonstration

Inspection

Inspection

11

The PNP display shall
incorporate Required Time
of Arrival field into the
Flight Display Window.

Demonstration

Inspection

Inspection

12

The PNP display shall
incorporate reroute type
information (Separation
Assurance, Congestion, and
Weather Avoidance) into
the Flight Display Window.

Demonstration

Inspection

Inspection

G-16

6 Conclusions

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced Weather Avoidance concepts. This includes
both requirements and design considerations. This document also presents design
enhancements for the future, and testing to be conducted.

G-17

References

1. George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August, 2009.

2. George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic
meteorological forecasts in NAS-wide traffic flow management decision making," 13th
Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January, 2008.

3. Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air
Traffic Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV, January, 2008.

4. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington, DC,
December, 2007.

5. Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System
Performance Improvement With Four Dimensional Trajectories," AIAA Digital Avionics
Systems Conference (DASC), Dallas, TX, October, 2007.

6. George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather
forecasts in future NAS," The 87th American Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

7. Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the
Presence of Inclement Weather and Other System Uncertainties," INFORMS Annual Meeting,
Pittsburgh, PA, November, 2006.

8. Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM
Evaluation Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR, October,
2006.

9. Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation
Tool and Experiment," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Baltimore, MD, May, 2006.

10. Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture
Strategies for Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics Systems
Conference (DASC), Crystal City, VA, October, 2005.

11. George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National
Airspace System in Heavy Weather," AIAA Aviation Technology, Integration and Operations
(ATIO) Forum, Arlington, VA, September, 2005.

12. George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics
Systems Conference (DASC), Salt Lake City, UT, October, 2010.

13. Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake City,
UT, October, 2010.

G-18

14. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and
Evaluation of Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology,
Integration and Operations (ATIO) Forum, Dallas, TX, September, 2010.

15. Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future
National Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO)
Forum, Dallas, TX, September, 2010.

16. George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and
Traffic Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando, FL,
October, 2009.

17. Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation,"
AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

18. George Hunter, "Preliminary Assessment of Interactions between Traffic Flow
Management and Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics
Systems Conference (DASC), St. Paul, MN, October, 2008.

19. George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of
NAS Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

20. George Hunter, "Sensitivity of the National Airspace System Performance to Weather
Forecast Accuracy," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Herndon, VA, May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and
Surveillance Conference (ICNS), Herndon, VA, May, 2007.

G-19

14809-22

PNP Enhanced Terminal Area Modeling
Requirements and Engineering Design

George Hunter

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:
NASA BOA: NNLORAA17B

November 30, 2012

Table of Contents

1 INErOAUCTION ...ttt e e e e e e e e areeetaeeenaaeeeans 3
2 Back@round.........c.oooiieiiiiiieii e 4
3 REQUITEIMENLSviieiiiieeeiie ettt e et e e e taeessraeeensaeesnsaeenans 8
4 Design CONSIAETATIONSccuviieriiieeiiieeiee et e eiee e tee et e e steeesaeeeaaeesssaeeessaeesssaeenans 9
5 Future enhanCementscccoiiiiiiiiiiiiic e 21
6 TSI . . ettt e et e et e st e et e e saaeebaeenbeenbeeenbeeseeearean 22
7 CONCIUSIONSviieeeie ettt ettt e ettt e ettt e et e e et eeeete e e etaeeebaeeeaaeesseeesaseeesaseeesaseeenns 23
RETOICICES ... et e et et e e et e e teeeeareeeeaseeeeasaeenns 24

H-2

1 Introduction

This document describes software and data enhancements required to support NASA air
traffic control experiments to evaluate advanced national airspace system (NAS)
concepts. In particular, this document describes the enhancements for improved terminal
area modeling in the Probabilistic NAS Platform (PNP).

Section 2 describes the simulation environment and provides an overview of the required
time of arrival (RTA) concept. Section 3 describes the requirements for the software.
Sections 4 and 5 describe design considerations and future enhancements, respectively.
Section 6 describes the tests to be performed.

H-3

2 Background

This section provides an overview of the enhanced terminal modeling to be implemented
and the PNP simulation tool.

2.1 Probabilistic NAS Platform

In this engineering design we use the Probabilistic NAS Platform (PNP) to implement
enhanced terminal modeling. We developed PNP [1-11], are actively maintaining it, and
actively use it for NASA, Joint Planning and Development Office (JPDO), and Federal
Aviation Administration (FAA) projects [12-23]. Figure 1 illustrates PNP’s client-server

architecture.

S
@ EERPREENY Graphical User Interface
\\ (l; Plan View Display
\;ﬁ D Reports |

(G .
- PNP is a
o NAs-wide
Probabilistic Simulation
LI NAS Platform
Scripting (PNP)
\ Interface J
< 4 4 A A >
y y v v
'ATCClient| | TFMClient | DACClient| AOC Client .
Decision
making
Langley SA Sensis ProbTFM UARC Market-Based TFM
Metron C2 SUNY Gaming

Figure 1 Probabilistic NAS Platform client-server architecture.
2.2 Overview of terminal area modeling

Terminal area modeling is a large problem. It may include, for instance, TRACON
(Terminal Radar Control) routing, final approach fix and wake vortex spacing, runway
occupancy, surface traffic, various weather impacts, airport configuration, separation
assurance, metroplex dependencies, wind effects on trajectories, various trajectory
prediction errors, and different environmental impacts. Figure 2 summarizes these models
and some respective metrics that could be used.

Modeling Functionality

TRACON
Queuing
Airport
config'on
assurnce
Trajec’ry
Emission
model

errors
Noise
model

Wake vortex

Runway occupancy

Runway dependencies
Runway reconfiguration

Trajectory uncertainty
Surface movement

Airport ceiling/visibility
TRACON congestion
TRACON weather

Metroplex interactions

Candidate Metrics

Fuel burn
Emissions

Noise

#Conflicts
#Vectors/Maneuvers
TRACON congestion

Figure2 Overview of terminal area modeling and metrics.

Figure 3 shows an example architecture of how these various models could interact.

TRACON
Routing
FAF
Spacing
Weather Wake Rurmway Dependent
Impact Spacing Occupancy Rurways.
Separation Winds Trajectory Metroghax Airport
Assurance Errors Dependencies Configuration

Surface
Traffic

Figure 3 Hypochart summarizing relationships between terminal area models.

In keeping with our “build-a-little, test-a-little” development approach, this contract does
not develop a complete terminal area for PNP. Instead, here we first select foundational
models and data that together provide a working, albeit limited, terminal capability. This
first set of models includes algorithms for realistic TRACON routings which are

H-5

smoothly integrated into existing flight plans, runway assignments and wake vortex
spacing. This work also includes the collection and use of NAS operational data at major
terminal areas to populate the models and obtain realistic results.

This design document establishes the requirements and specific design approach for each
of these models and data collection. Therefore, the focus and emphasis of our design
document is on these foundational models and data. However, we also consider the
greater context of terminal modeling, since it is crucial to design these models so that
they lay the groundwork for the other models.

We also ensure that our design approach is not tied to any particular algorithm or strategy
we implement. For instance, we will implement a runway assignment logic and algorithm
in Task 3, but alternative solutions can be used instead.

2.3 Limitations

As Section 2.2 discusses, terminal area modeling is extensive. In this effort we begin with
the important, foundational terminal area modeling components. We do not model,
however, several elements of the TRACON. These elements include:

e No modeling of the impact of convective weather on terminal area routes in the
TRACON and the extended terminal area.

¢ Limited modeling of site-dependent trends, such as how the runways at major
airports are divided between arrivals and departures.

e No airport reconfiguration model indicating when and how to reconfigure.
e No modeling of runway dependencies.

e No modeling of terminal area fuel burn.

e No modeling of terminal area emissions and noise.

e No modeling of terminal area safety considerations.

e No modeling of runway occupancy.

e No modeling of the surface movement phase.

.

Also, there are certain limitation within the modeling that is implemented in this work.
These limitations include:

e At this time metroplex interactions are not modeled.

e At this time runways may not serve both arrivals and departures within given 15
minute time slot.

e At this time airport reconfiguration events must occur on the 15 minute time bin
boundaries.

H-6

At this time airport reconfiguration events must be declared at least 45 minutes
prior to occurring.

At this time we do not adjust flights once they are within 30 minutes of landing
(30 minute freeze horizon).

H-7

3 Requirements

This section lists the software and data requirements, divided into the major task
categories.

3.1 User-specifiable terminal area routes

1. PNP shall be augmented with a new airport model that models the individual
runways and supports terminal area modeling including: terminal area routes,
separation assurance in the terminal area, runway balancing and wake vortex final
approach spacing.

2. Realistic arrival terminal routes (ATRs) and departure terminal routes (DTRs)
shall be derived for a common configuration at least three major airports.
3.2 Merge en route and terminal routes
3. Flights shall be assigned an initial ATR and DTR, which augment their flight
plan.

4. PNP clients shall be able to change (reassign) ATRs and DTRs to flights,
dynamically during the simulation run.

5. ATRs and DTRs shall be mergeable with the flight plan so that the new flight
plan includes an ATR and a DTR in addition to the original flight plan, and the
result is a realistic flight trajectory

3.3 Runway assignments

6. A new PNP client shall be created to assign runways dynamically to arrivals and
departures, accounting for the relative runway use.

3.4 Enforce wake spacing

7. A new PNP client shall be created that enforces a minimum spacing between the
consecutive arrivals and consecutive departures, for each runway.

8. A wake vortex minimum spacing utility shall be used to determine realistic wake
vortex separation minimums.

3.5 Operational terminal area data

9. Airport site specific data shall be collected, processed and analyzed to support the
creation of realistic terminal area modeling.

H-8

4 Design considerations
This section describes the design considerations for the major tasks.
4.1 User-specifiable terminal area routes

In this task, we modify PNP to allow the user to specify detailed arrival and departure
routes and their associated runways for any airport in the simulation. This tasks includes
the following subtasks:

e Define a new PNP airport model to support terminal area routes and wake vortex
spacing.

e Populate the new PNP airport models, for particular airports, with the necessary
data.

4.1.1 Airport runway model

In PNP, airports have been defined as a node, where the airport capacity is modeled as a
Pareto curve indicating how the arrival and departure capacities are related, in different
conditions. We now introduce an enhancement to the airport model which models the
specific runways at an airport. We refer to the original model as the node model, and the
new model as the runway model.

All airports will continue to be modeled using the node model, as before. But now, an
airport’s model may be augmented with the runway model. Therefore, the runway model
is an optional fidelity enhancement.

Why is the runway model optional? Ultimately we intend to create runway models for
many of the airports in PNP. We believe this runway model will be important for the
larger airports, but likely will not be important for the smaller airports. Also, initially we
likely will create runway models for a limited number of airports. Therefore, we make the
runway model optional because (i) we do not believe it is required for the smaller airports
and (i1) we want to test and evaluate this feature with our initial airport runway models.

Why does the runway model augment the node model rather than replace it? Even if a
runway model exists for an airport, there may be clients that perform traffic planning
using a node model. This is because the node model tends to be strategic and the runway
model tends to be tactical. The node model is important for long term TFM planning, say
several hours into the future. In this timeframe, overall airport loading is managed, even
though specific runway assignments are unknown. In fact making specific runway
assignments in the strategic time frame could be a meaningless exercise. Therefore the
node model is available to strategic planners, such as the ProbTFM client, and the runway
model is available to tactical planners, such as the RunwayAssignmentAndSpacing client
(Section 4.4). Note that the node model can be adjusted if it does not accurately match the
runway model. Also, strategic planners, such as ProbTFM, can follow a more loose TFM
policy. In this case the node model would have less influence.

Details of the airport runway model. In the runway model, an airport has one or more
configurations. In each configuration, a set of runways is defined and for each and every
runway, arrival terminal routes (ATRs) and departure terminal routes (DTRs) are defined.
During the PNP simulation, runways are dynamically assigned to serve as either an
arrival or a departure runway. A runway may only serve as an arrival or a departure
runway in a given time bin (a future enhancement is to allow for mixed usage runways).
Obviously when a runway serves as an arrival runway, then the ATRs that lead to it are
used, and the DTRs that come from it are not used. Likewise when a runway serves as a
departure runway, then the ATRs that lead to it are not used, and the DTRs that come
from it are used.

Arrival runways are defined by two waypoints: the outer marker and the runway
threshold. The outer marker is 5 nmi upstream from the runway threshold. All ATRs
must terminate with the outer marker and runway threshold waypoints, associated with
the runway the flight is using. The use of these two waypoints, rather than merely a single
waypoint at the runway, ensures that flights are properly lined up on the final approach.

Likewise, departure runways are defined by two waypoints as well: a point on the
runway, such as the runway threshold, and a departure fix located approximately 3 nmi
from the runway, in the direction that the flights depart. Table 1 summarizes the
parameters in the runway model.

Table 1 Airport runway model parameters.

Runway model parameters

Number of configurations defined.

For each configuration, number of runways.

For each runway, the number of ATRs and DTRs.

For each ATR, the strategic RAI (Section 4.3.1).

For each ATR, the tactical RAI (Section 4.3.1).

For each route, the number of waypoints.

For each route, the index or identifier of the runway it uses.

For each waypoint, the latitude, longitude and optionally the
altitude values.

Note that a given metering fix may have multiple ATRs which appear identical, except
that toward the end they fly to a different outer marker/runway combination. Also, a
given metering fix may have multiple ATRs which fly to the same outer marker/runway,
but use different routes to get there.

H-10

For graphical display purposes, the runway model may also contain geometrical data of
the airport and terminal area, such as the runway boundaries and TRACON boundary.

4 1.2 Candidate route construction methods and method selection

This section discusses how we construct terminal area routes. We describe three
candidate methods for constructing terminal area routes and explain how we use a
combination of them.

Published routes. Published terminal area routing data, such as the standard departure and
arrival routes (i.e., SIDs and STARs) are a valuable source of information on how flights
approach and depart major airports. These routes, however, often do not provide the
complete trajectory from the airport to the en route airspace. For example, Fig. 4 shows
the SIDs and STARs for the Dallas-Ft. Worth (DFW) airport.

08:45:00 10/23/2012

ILBR

ADD1 RLA,
DVL

MYN

0BLY

TRISS

DUMPY

ELYN ASPA

(AC Filter On)

Figure4 DFW STARs (red) and SIDs (blue).

Figure 4 shows that the SIDs and STARs, and in particular the STARs, do not provide the
detailed TRACON routings leading to the DFW airport.

Previous studies. Another source of terminal area routing data are the previous studies
that have constructed such routes for various purposes. In fact we at Saab-Sensis have
been heavily involved in airport modeling, including the terminal area routes. Figure 5
shows an example of south flow routes for both DFW arrivals and departures we have
constructed.

W/
1

EL—;j =<
i

\J/

Figure 5 Example of previously derived DFW arrival (red) and departure (blue) routes
for the south flow configuration. [24]

While the Fig. 5 routing data are of the appropriate level of detail and accuracy for our
requirements, this is unfortunately the exception rather than the rule. In our literature
search of both published and unpublished terminal routing data, we found data with a
wide range of completeness and level of detail. What we did not find is a database of
terminal area routes for most or all of the major airports, with the Fig. 5 level of detail,
and for the major configurations used. While previous work can assist us in particular
cases, such as in this DFW example, it is a limited resource.

Automated analysis of radar data. We can design terminal area routes empirically using
an automated analysis of radar tracking data. There are two major challenges with this
approach: reconstructing the trajectories and identifying nominal routes.

Our radar tracking data sources are ASDI and ASDE-X, neither of which provide a
complete radar track from airport runway to the TRACON boundary. ASDI tracking data
sometimes cuts off in the TRACON. In such cases it does not include the entire
trajectory, all the way to, or from, the runway. This occurs, for instance, when an arrival
descends and goes over the horizon, when observed from an en route tracking radar.
ASDE-X tracking data, on the other hand, includes the segment of the flight near the
airport but may cut off in the middle of the TRACON.

Therefore, to reconstruct a complete radar track from airport runway to the TRACON
boundary, we could identify flights in the ASDE-X and ASDI tracking data, associate the
same flight in those two different data sources, and combine those two radar tracks to
form a single track. Of course, in general, the two different radar tracks overlap, or there
is a gap between them. So the process of combining the two radar tracks is complicated.

H-12

The second challenge is to identify nominal routes. That is, given a large number of radar
tracks for arrivals and departures from several weeks or months of ASDI and ASDE-X
tracking data, we must identify a small set of standard arrival and departure routes. And
for each route we must identify the runway used.

One method to identify these nominal routes is to cluster the radar tracks, and select the
centroid track within each cluster. Such clustering requires that we define a difference
metric, that quantifies the distance between routes. One method that has been used with
success is to draw straight lines between (i) the two initial waypoints and (i1) the two final
waypoints, of the two respective tracks. This produces a polygon and the difference
metric is computed as the area of the polygon.

Once the tracks have been clustered, the centroid track of each cluster is found as the
track that has the minimum sum of root mean square distances to all the other tracks in
the cluster.

There are several complications to such clustering methods. First, the all-against-all
distances must be computed between all the radar tracks. Next the number of expected
clusters must be guessed. And the clusters need to be evaluated manually before used.
Small clusters may be rejected and clusters may inadvertently include radar tracks that
clearly are not using the same route. This can occur, for example, if the number of
specified clusters is too small. So several cluster runs are typically needed to ensure
reasonable results. Also, the final centroid track selected may need to be smoothed.

Our route construction method. The three different methods discussed above can all assist
us in creating terminal area routes, but they all have important drawbacks as well. The
published routes often do not provide complete TRACON routes. Previous studies are of
inconsistent detail, fidelity and coverage. And the automated analysis of radar data
presents several complexities.

After examining these three possible methods, we concluded that the best approach is to
construct the ATRs and DTRs manually using an all-source approach. Previous studies
can provide valuable input data for certain airports, but in most cases our baseline
approach is to synthesize the published SIDs and STARs with our radar data in a manual
analysis.

In this approach we examine (i) the published route data and (ii) archived radar data. By
looking at both sources we use engineering judgment to derive a set of arrival and
departure routes representative of the typical routings used in practice. In this approach it
is important that the archived radar data are selectively graphed so that the graph shows
typical routes. In particular, we narrow the time window of the data such that it represents
only a single airport configuration. Also, we graph only arrivals or only departures, on
one particular graph. Figure 6 shows an example 5-hour time window of DFW south flow
radar tracks for arrivals.

H-13

(AC PEPrer 0
Figure 6 DFW sample arrival radar tracks from ASDI, 16:00-21:00, 5/18/2012.

Radar data from a long time window is often confusing. Such graphs include both
arrivals and departures from multiple configurations, and the many anomalous routings
that are used, for example when weather impacts the terminal area. Therefore it is
important to use graphs of selected radar data. We use these graphs, in conjunction with
the published routes to synthesize a set of representative, realistic, ATRs and DTRs in
different configurations. We also use our geographic airport runway data to construct the
runway and final/departure approach fix waypoints.

In this approach we use what we refer to as a fixed route method. A variable route
contains segments that may vary. For instance, the downwind leg of an ATR may vary in
length, which in turn causes the final approach leg to vary. This can be used to control the
outer marker arrival time and the final approach spacing. Also, turns can vary which
alters the subsequent segments as well. Variable route schemes add complexity both to
the route construction process and to the algorithms using the routes. For example,
geometrical calculations and logic are required to compute the route given the settings for
the variable segments.

Fixed routes, on the other hand, have no variable segments. The geometry of fixed routes
is constant. To model routing variations, such as the final approach extensions just
described, one must use multiple fixed routes.

Therefore, in our set of ATRs for a given airport configuration, we include both (i) the
different ATRs that come from the different metering fixes and (ii) the minor differences
that a particular route can have. For these minor differences, we construct different
routes. These differences are typically toward the end of the route, as the flight
approaches the airport. For example, a particular ATR may use a final approach

H-14

extension, as discussed, or it may feed multiple runways. In either case, we create
multiple ATRs to represent these differences. As we construct these routes, we populate
their RAI mappings (Section 4.3.1).

Once constructed, these routes may be used in PNP by inserting the list of waypoints into
the flight plan for each flight. Obviously the DTR would be inserted at the beginning of
the flight plan route, and the ATR at the end. Or, instead of inserting the terminal routes,
pointers may be inserted into the flight plan indicating which routes are used. In addition
to the waypoints, the particular runway that is used is also stored, as part of the DTRs and
ATRs. This provides the runway identity to clients that perform terminal area rerouting,
runway balancing and spacing.

4.2 Merge en route and terminal routes

In this task, we will develop a method of merging en route trajectories with the ATRs and
DTRs resulting in seamless trajectories from en route to the ground.

A typical demand set contains a wide variety of en route trajectories, some of which may
not be well aligned with the ATR or DTR to which the flight is assigned. In such
instances, merger logic is needed to modify the initial or final en route segment so that it
does smoothly proceed from and proceed to the DTR and ATR, respectively. Simply put,
some adjustment may be required to ensure a smooth transition between the en route
trajectory and the TRACON trajectory. We offer two solutions to this merger problem.

421 Great circle routes

A straightforward merging strategy is simply not to use the filed flight plan route.
Instead, the aircraft flies a great circle route, connecting the DTR and ATR.

4.2.2 Filed flight plan routes

Great circle routes are a straightforward solution to the merger problem, but in some
studies the filed flight plan route will be preferred. In that case, we merge that route with
the DTR and ATR by trimming each end of the filed flight plan route, if necessary, so
that it does not overlap with the two terminal routes. We do this by ensuring that the
distance, from the airport, to the first waypoint in the filed flight plan is at least 1.5 times
the distance, from the airport, to the final waypoint in the DTR.

Similarly, at the other end we ensure that the distance, from the airport, to the final
waypoint in the filed flight plan is at least 1.5 times the distance, from the airport, of the

first waypoint in the ATR?. If either of these conditions are not met, then the filed flight
plan route is trimmed until the condition is met.

Note that we do not allow round-robin flights, which otherwise could pose difficulties for
this logic. Also, flights of very short distance could pose difficulties as their departure
and arrival routes could overlap. In this case all the flight plan waypoints should be
trimmed. In any case, when there are no waypoints in the final flight plan route, then the
logic reverts to the 4.2.1 great circle strategy.

4.3 Runway assignments

In this task, we create the terminal area route architecture that will be used in the
RunwayAssignmentAndSpacing client (Section 4.4).

4.3.1 Arrivals

For each airport configuration, each ATR has an identifier, such as an index. For
example, for N ATRs the index could have values 1 through V, so that the ATRs are
numbered 1 through N. All flights in PNP always have an assigned ATR. A flight’s initial
ATR is assigned off-line, prior to the PNP run, and stored in the input demand set. Any
logic may be used to determine the best ATR for the flight. For instance, the ATR that is
closest to the flight’s great circle route may be selected.

During the PNP simulation, clients may change a flight’s ATR assignment. To assist
clients with ATR selection, we introduce the concept of the route availability index
(RAI). The RAI is an index that points to a list of preferred ATRs for that flight. At any
given simulation time, during the PNP simulation, clients may use a flight’s RAI to fetch
the list of preferred ATRs.

Where does a flight’s RAI come from? The RAI value comes from the ATR that the
flight is assigned to. Every ATR has two RAIs associated with it: the strategic RAI and
the tactical RAI. Clients may use both these values, as described below.

Why do ATRs have two RAI values? The purpose of the strategic RAI is both to save
compute time and add realism. For instance, an en route flight from the northeast may
need to be reassigned to a different ATR. Such a route reassignment may be needed for
runway balancing or separation. But when evaluating the alternatives, ATRs from the
southwest (on the opposite corner of the TRACON) should not be considered. In fact, we
would like to narrow the list of eligible routes to only the other northeast ATRs. This
saves compute time and adds realism. Therefore, the strategic RAI for a northeast arrival

% The value of 1.5 is tentative.

H-16

route, for example, points to a list which contains all the ATRs from the northeast, but no
other ATRs.

But when the flight is closer to the destination airport (such as when the flight is inside or
near the destination TRACON), then reassignments should be narrowed to an even
shorter list of ATRs that are very similar to the assigned ATR. For instance, such a
tactical reassignment could be limited only to ATRs that are identical to the assigned
route, except for minor variations at the end of the route, such as final approach
extensions or a switch to a neighboring runway. The tactical RAI points to a list of these
candidate ATRs. Therefore, whereas the purpose of the strategic RAI is both to save
compute time and add realism, the tactical RAI has the additional purpose of facilitating
last-minute delays or runway changes.

To summarize, every arrival route has two RAI values, the strategic RAI and the tactical
RAL The strategic RAI points to a list of ATRs that are similar to the route at the
strategic level. The tactical RAI points to a list of ATRs that are similar to the route at the
tactical level.

What are the ground rules for using the RAIs? In general, clients are responsible for
ensuring realism and feasibility when reassigning ATRs to flights. For instance, if a en
route flight’s current great circle distance to the destination airport is shorter than that of
the initial waypoint of an ATR (i.e., the flight is currently “inside” of the ATR), then the
flight probably should not be switched to that ATR.

To assist clients, the strategic and tactical RAlIs adhere to a simple ground rule. For the
strategic RAI, it points to ATRs that are feasible when the flight’s great circle distance to
the destination airport is greater than 50 nmi. For the tactical RAI, it points to ATRs that
are feasible when the flight’s great circle distance to the destination airport is greater than

20 nmi°.

In this current version of PNP we implement both the strategic and tactical RAIs
(Section 4.1), but in this version we do not use the tactical RAIs in the client decision
making. The tactical RAIs are available for future enhancements in the client decision
making.

4.3.2 Departures

For each airport configuration, as with ATRs, each DTR has an identifier such as an
index. For N DTRs, the index could have values 1 through N. All flights in PNP always
have an assigned DTR. A flight’s initial DTR is assigned off-line, prior to the PNP run,
and stored in the input demand set. Any logic may be used to determine the best DTR for
the flight. For instance, the DTR that is closest to the flight’s great circle route may be
selected. During the PNP simulation, clients may change a flight’s DTR assignment.

? The value of 20 and 50 nmi are tentative.

4.4 Enforce wake spacing

In this task, we develop a client that performs both runway assignments and spacing for
both arrivals and departures at an airport. The client’s name is
RunwayAssignmentAndSpacing and it evaluates upcoming arrivals and departures at an
airport. For arrivals the client adjusts the ATRs and outer marker arrival times. For
departures the client adjusts the departure times and runway assignments. The departure
runway assignments are changed by assigning a different DTR. These adjustments are
made to balance the runway use and maintain proper final approach spacing for arrivals
and runway spacing for departures.

The RunwayAssignmentAndSpacing client function logic is as follows.

The client operates on one airport at a time. It operates on a future time window defined
by user specifiable start and stop times, relative to the current time. Default values are 30
and 45 minutes. Therefore the default time window consists of the third time bin into the
future (or equivalently, the second time bin following the current time bin).*

The client fetches the list of all arrival and all departure flights scheduled to arrive and
depart, respectively, at the airport, in the time window. Narrivals is set to the number of
arrivals and NDepartures is set to the number of departures.

The client fetches the airport configuration defined for this time window. Because
reconfiguration events must occur at the boundaries of time bins, the client is guaranteed
that the configuration will be constant for the current run. NRunways is set to the number
of runways.

The client assigns each runway to be either an arrival or departure runway. First, it
computes the number of desired arrival and departure runways as follows:

NArrivalRunways = (float (NArrivals)/float (NDepartures+NArrivals))*NRunways;
if (NArrivalRunways >= NRunways) NArrivalRunways = NRunways - 1;
NDepartureRunways = NRunways - NarrivalRunways;

Next the client assigns each runway to be either an arrival or departure runway, such that
the total number of arrival runways equals NarrivalrRunways and the total number of
departure runways equals NDepartureRunways. Ideally site adaptation information
would be used to follow runway assignment trends at each airport. For now, we make the
specific runway assignments at random.

* Note that it is possible that very short flights may depart inside this 30 minute time window.

H-18

Now the client is ready for runway balancing and spacing. The client first handles
arrivals and then departures (although this ordering is arbitrary).

The client loops through all arrival flights, in order of their scheduled arrival time at the
outer marker.” For each flight, if its ATR leads to a runway which currently is assigned as
a departure runway, then the route’s strategic RAI is used to find a different ATR which
leads to an arrival runway. The flight is assigned this ATR. At this time, when multiple
ATRs are available, any of the ATRs may be selected.

For that assigned runway, the time spacing between the flight and the preceding flight (on
the same runway) is computed, at the outer marker.

For the given aircraft types, the minimum required wake vortex spacing is computed.

If there is no spacing violation (i.e., if the computed spacing is greater than the minimum
required spacing), then execution goes back to the top of the loop, and the next flight is
considered.

If there is a spacing violation, then the route’s strategic RAI is used to find an alternate
ATR with no spacing violation. Of the available alternatives, the ATR is selected which
gives the flight the earliest arrival time at the outer marker.

If no such alternative ATR is available (i.e., all the alternate ATRs also have spacing
violations), then the ATR with the smallest spacing violation (i.e., the least difference
between the computed spacing and the minimum required spacing), is selected. Then the
RTA utility is used to delay the flight such that the outer marker spacing will meet the
minimum required spacing.

If the RTA fails, then we simply use the ATR with the smallest spacing violation.
Execution goes back to the top of the loop, and the next arrival flight is considered.

Next the client loops through all departure flights, in order of their scheduled departure
times at the runway. For each flight, if its DTR uses a runway which currently is assigned
as an arrival runway, then the flight is assigned to a departure runway. At this time, when
multiple runways are available, any of the runways may be selected. And the DTR, from
the selected runway, is selected using the same logic as in the initial route assignment
(e.g., select the DTR that is closest to the flight’s great circle trajectory).

For the assigned runway, the time spacing between the flight and the preceding flight (on
the same runway) is computed, at the runway.

> This scheduled arrival time could be in reference to the runway, rather than the outer marker, if
necessary.
® This estimated arrival time could be in reference to the runway, rather than the outer marker, if
necessary.

H-19

For the given aircraft types, the minimum required wake vortex spacing for departures is
computed. For now, we can use the same spacing computation used for arrivals.

If there is no spacing violation (i.e., if the computed spacing is greater than the minimum
required spacing), then execution goes back to the top of the loop, and the next departure
flight is considered.

If there is a spacing violation, then the other departure runways are considered, using the
scheduled departure time. Any one of the available runways where there is no spacing
violation (i.e., the computed spacing is greater than the minimum required spacing) is
used. The selection can be random. A new DTR is assigned, corresponding to the new
runway assignment.

If no such alternative runway is available (i.e., all the alternate runways also have spacing
violations), then the runway with the smallest spacing violation (i.e., the least difference
between the computed spacing and the minimum required spacing), is selected. Then the
flight’s departure time is delayed such that the runway spacing will meet the minimum
required spacing. A new DTR is assigned, corresponding to the new runway assignment.

Execution goes back to the top of the loop, and the next departure flight is considered.

Note that for both the arrivals and departures, the first (earliest) arrival and departure, at
each runway, will require the corresponding last flight from the previous time bin, in
order to compute the spacing. Note also that if the runway has switched from a departure
to an arrival runway, or vice versa, due to a reconfiguration event or merely due to a
runway assignment change, then there is no preceding flight.

Note that, as mentioned in the above algorithm, reconfiguration events are restricted to
occur at the boundaries between time bins, so there is no need to consider the possibility
of a reconfiguration event in this client. Also reconfiguration events must be declared at
least 45 minutes in advance, so the client has the correct configuration to work with.

Finally, note that a wake vortex minimum separation requirement utility is required to
compute the minimum inter arrival spacing for arrivals and departures. As an
intermediate solution, we can use the same wake vortex minimum separation
requirements for departures as for arrivals.

4.5 Operational terminal area data

In this task, we collect and process the various airport and terminal area data. The design
considerations have already been discussed in the previous sections.

H-20

5 Future enhancements

This section lists enhancements that are outside the scope of this effort but may be
implemented in the future. There are many such enhancements. Here we list the major
items which these enhancements would support:

e Allow for mixed use runways (i.e., both arrivals and departures in the same time
bin).

e Adjust TRACON trajectories (e.g., adjust routes or apply speed or altitude
control) for flights that are currently within the TRACON to support final
approach spacing management and/or for separation assurance within the
TRACON.

e Model the impact of convective weather on terminal area routes in the TRACON
and the extended terminal area.

e Incorporate site-dependent trends, such as runway and metering fix use.
e C(Create an airport reconfiguration model based on airport-specific trends.
e Add trajectory uncertainty.

e Model runway dependencies.

e Model terminal area fuel burn.

e Model terminal area emissions and noise.

e Model terminal area safety considerations.

e Model metroplex interactions.

e Model runway occupancy.

e Include surface movement phase.

H-21

6 Testing

Each of the requirements in Section 3 will be verified either by demonstration, analysis or
inspection.

H-22

7 Conclusions

This document describes software enhancements required to support NASA air traffic
control experiments to evaluate advanced terminal area concepts in a NAS-wide context.

H-23

References

L.

10.

11.

12.

13.

George Hunter, "Testing and Validation of NextGen Simulators," AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

George Hunter, Kris Ramamoorthy, "Integration of terminal area probabilistic
meteorological forecasts in NAS-wide traffic flow management decision making," 13th
Conference on Aviation, Range and Aerospace Meteorology, New Orleans, LA, January,
2008.

Kris Ramamoorthy, George Hunter, "The Integration of Meteorological Data in Air Traffic
Management: Requirements and Sensitivities," 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, January, 2008.

George Hunter, Ben Boisvert, Kris Ramamoorthy, "Advanced Traffic Flow Management
Simulation Experiments and Validation," 2007 Winter Simulation Conference, Washington,
DC, December, 2007.

Kris Ramamoorthy, George Hunter, "Evaluation of National Airspace System Performance
Improvement With Four Dimensional Trajectories," AIAA Digital Avionics Systems
Conference (DASC), Dallas, TX, October, 2007.

George Hunter, Ben Boisvert, Kris Ramamoorthy, "Use of automated aviation weather
forecasts in future NAS," The 87th American Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

Kris Ramamoorthy, George Hunter, "Probabilistic Traffic Flow Management in the
Presence of Inclement Weather and Other System Uncertainties," INFORMS Annual
Meeting, Pittsburgh, PA, November, 2006.

Kris Ramamoorthy, Ben Boisvert, George Hunter, "A Real-Time Probabilistic TFM
Evaluation Tool," AIAA Digital Avionics Systems Conference (DASC), Portland, OR,
October, 2006.

Kris Ramamoorthy, George Hunter, "A Trajectory-Based Probabilistic TFM Evaluation
Tool and Experiment," Integrated Communications, Navigation and Surveillance
Conference (ICNS), Baltimore, MD, May, 2006.

Kris Ramamoorthy, George Hunter, "Avionics and National Airspace Architecture
Strategies for Future Demand Scenarios in Inclement Weather," AIAA Digital Avionics
Systems Conference (DASC), Crystal City, VA, October, 2005.

George Hunter, Kris Ramamoorthy, Joe Post, "Evaluation of the Future National Airspace
System in Heavy Weather," AIAA Aviation Technology, Integration and Operations (ATIO)
Forum, Arlington, VA, September 2005.

George Hunter, "Probabilistic Forecasting of Airport Capacity," AIAA Digital Avionics
Systems Conference (DASC), Salt Lake City, UT, October, 2010.

Poornima Balakrishna, George Hunter, "Preliminary NextGen Collaborative Air Traffic
Management Analysis," AIAA Digital Avionics Systems Conference (DASC), Salt Lake
City, UT, October, 2010.

H-24

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, "Development and Evaluation
of Market-Based Traffic Flow Management Concepts," AIAA Aviation Technology,
Integration and Operations (ATIO) Forum, Dallas, TX, September 2010.

Huina Gao, George Hunter, "Evaluation of User Gaming Strategies in the Future National
Airspace System," AIAA Aviation Technology, Integration and Operations (ATIO) Forum,
Dallas, TX, September 2010.

George Hunter, "Meta Simulation Results for Simultaneous Dynamic Resectorization and
Traffic Flow Management," AIAA Digital Avionics Systems Conference (DASC), Orlando,
FL, October, 2009.

Huina Gao, George Hunter, "Future NAS-Wide User Gaming Preliminary Investigation,"
AIAA Digital Avionics Systems Conference (DASC), Orlando, FL, October, 2009.

George Hunter, "Preliminary Assessment of Interactions Between Traffic Flow Management
and Dynamic Airspace Configuration Capabilities," AIAA Digital Avionics Systems
Conference (DASC), St. Paul, MN, October, 2008.

George Hunter, "Toward an Economic Model to Incentivize Voluntary Optimization of
NAS Traffic Flow," AIAA ATIO Conference, Anchorage, AK, September, 2008.

George Hunter, "Sensitivity of the National Airspace System Performance to Weather
Forecast Accuracy," Integrated Communications, Navigation and Surveillance Conference
(ICNS), Herndon, VA, May, 2008.

Kris Ramamoorthy, Ben Boisvert, George Hunter, "Sensitivity of Advanced Traffic Flow
Management to Different Weather Scenarios," Integrated Communications, Navigation and
Surveillance Conference (ICNS), Herndon, VA, May, 2007.

George Hunter, Ben Boisvert, "Modeling and Simulation of Interactions Between Traffic
Flow Management and Separation Assurance," AIA4 Modeling and Simulation Conference,
Portland, OR, August 2011.

George Hunter, Ben Boisvert, Ty Marion, Jerry Smith, (in press) "Traffic Flow Management
and Separation Assurance Simulation Experiment," 4144 Digital Avionics Systems
Conference (DASC), Williamsburg, VA, October 2012.

Sebastian Timar, Nadia Bess, “ACES-TME KDFW Terminal Airspace and Surface Design,”
Saab-Sensis Corporation, draft.

H-25

14809-01

Upgrades to the Probabilistic NAS Platform
Air Traffic Simulation Software

Software Development Plan

Ben Boisvert
Sensis Corporation

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681

Under:
NASA BOA: NNLOSAA17B

November, 2010

TABLE OF CONTENTS

T S COPE ... e ————————— 3
1.1 SOFTWARE DEVELOPMENT PLANuutiiiiiaiiiieiisiiscie ettt et 3
1.2 PROJECT OVERVIEW ...oeieiiiiiiiiiisiaieietee st s et 3
1.3 SYSTEM OVERVIEWcouiiiuiniiiiiiescicie ittt 3
1.4 DOCUMENT OVERVIEW.......ouiuiuieitiiiaieieteteseescie s s se sttt se st s st s s 3
1.5 SOFTWARE MANAGEMENT/ORGANIZATIONovumeririmiuemtiisiseeeiesessesessseesesesssssssasiesesessessssscsesesssnans 4
1.6 SOFTWARE PROCESSES.....evvtuemirtuetetetitatetaeteseesttsteetesesststssseeebess st teesese st ststscee bt et ssstatiesesenesnsanans 4
1.7 SOFTWARE PROCEDURES.......ouvvertsrenerestreesssseieneseeseesssesesens st et s sesess st s sasesscesses s senessesssesssisens 5

2 SOFTWARE DEVELOPMENT (LIFE-CYCLE MODEL)ccccccmrerrminninneennseennnns 6
2.1 REQUIREMENTS DEVELOPMENTcuiuuieietisiaiaiiteeseessesie st bbb 7
2.2 SOFTWARE DESIGN w..couviuieiitiiisticieie ettt ettt 7
2.3 SOFTWARE TESTING wecvuvuvuiuieiiteteistaeieteseeseses s ittt s e b et b et 10
2.4 SOFTWARE OPERATIONS, MAINTENANCE, AND RETIREMENT.....c.c.cvuiimiuiierniiiseeeienensesesssceesesensesnneeees 11

3 SUPPORTING SOFTWARE LIFE-CYCLE ...t 11
3.1 SOFTWARE CONFIGURATION IMANAGEMENTcutuutttenistateeietesseseststecbetessesesessaesesessssestasieiesessenescaes 11
3.2 RISK IMANAGEMENT w.covtaiaettetetests ettt ettt bbbttt b ettt bbb sttt benes 12

4 CONCLUSIONS ...t n e 12

1 Scope

This document addresses the requirements set forth in the NASA Procedural Requirements (NPR)
Document 7150.2A. This NPR imposes requirements on procedures, design considerations,
activities, and tasks used to acquire, develop, assure, and maintain software created and acquired
by or for NASA programs.

1.1 Software Development Plan

This Software Development Plan (SDP) establishes the plan for software implementation, test,
and qualification for the Upgrades to the Probabilistic National Airspace System(NAS) Platform
(PNP) Air Traffic Simulation Software under the NASA BOA: NNLOSAA17B.

1.2 Project Overview

The objectives of this effort are to upgrade and enhance the functionality of PNP to support the
research requirements of the Systems and Portfolio Analysis (SPA) Research Focus Area (RFA) of
NASA’s Airspace Program Systems Analysis Integration and Evaluation (SAIE) Project. The
milestones supported by this work are:

1. SAIE.SPA.4.01 Portfolio Analysis

2. SAIE.SPA.3.03 System Level Benefits Assessments of Combined Concepts
3. SAIE.SPA.4.02 Design Study 2

4. SAIE.SPA.2.05 System Constraints, Demand/ Capacity Analysis

1.3 System Overview

The Probabilistic NAS Platform (PNP) is both a research tool and a decision support platform to
analyze air traffic and traffic flow management (TFM) issues. Real-time PNP provides
meteorological data and traffic advisories in which an operator or Air Traffic Manager can make
more informed and accurate decisions. Playback PNP evaluates current or future TFM concepts
using projected or actual traffic demands sets with recorded historical meteorological data. The
PNP system is to be upgraded to support Separation Assurance procedures. A Separation
Assurance client is to be created to test and demonstrate separation assurance functionality in
PNP.

1.4 Document Overview

This SDP defines the processes to be followed for all software activities necessary to accomplish
the development.

1.5 Software Management/Organization

Sensis management/organization is a matrix of many professionals from different organizations.
System Engineering will be responsible for the algorithmic and system design of this project.
Network & Hardware Support will be responsible for the setting up of the repository and any
hardware acquisitions necessary to complete this project. Integration and Test will be
responsible for the project integration and test into the baseline PNP system. Software will be
responsible for the development, documentation, test, quality, and delivery of the products on
this project.

George Hunter
Sr. Scientist

Mike LeClair
Network Administrator

Paul Davis
Deputy Directory.

Erin Gambucci
Software Manager

Nate Mittler Ben Boisvert DiegoEscala
Software Engineer Sr. Software Engineer Software Engineer

Randy Chapin
Sr. Stoff Engineer

Figure 1: Sensis Matrix Organization for the Upgrades to the Probabilistic NAS Platform Air
Traffic Simulation Software

1.6 Software Processes

Sensis will follow the following processes in line with the SDP described in NPR-7150.2A.

1.6.1 Requirements Phase

e System Engineering will develop an Engineering Design Document (EDD). The EDD
conforms to an internal Sensis template which has been used for several years.

I-4

e Software Engineering will develop a Software Requirements Document (SRD)
and Software Requirements Specification (SRS) according to the guidance provided by
NPR-7150.2A.

e SRD and SRS will be peer reviewed and delivered to NASA for approval

1.6.2 Design Phase

Software Engineering will develop a Software Design Document (SDD) including a
Interface Design Description (IDD) according to the guidance provided by NPR-7150.2A
e Software Engineering will review SDD for EDD compliance
o SDD will be peer reviewed and delivered to NASA for approval

1.6.3 Coding Phase

e Software Engineering will develop code according to the SDD
e Software Engineering will generate the software reports and update the software users
manual as needed

1.6.4 Testing Phase

System/Software Engineering will develop a Software Test Plan with Software Test
Procedures

1.6.5 Delivery Phase
e Software Engineering will package the software, manuals, and reports into a deliverable
package
e Software Engineering will deliver deliverable to NASA for deliverable acceptance.

1.7 Software Procedures

Sensis will follow the following procedures in line with the established Sensis processes.

1.7.1 Requirements Phase

e All requirements documents will be identified in the SDP

e All documents will be developed in MS-Word adhering to any required contractual
format requirements.

e All documents must be peer reviewed

1.7.2 Design Phase

e All design documents will be identified in the SDP

e All documents will be developed in MS-Word adhering to any required contractual
format requirements.
e All documents must be peer reviewed

1.7.3 Coding Phase

e Software code will be developed in the Intelli) IDE using the Sensis template.

Software code will be controlled by subversion.

Software unit tests will be written in JUnit.

Software issues will be tracked using JIRA.

Software performance issues will be analyzed with the YourKit profiler.

e Software quality will be monitored with Sonar.

e All software documents/reports will be identified in the SDP

e All software documents/reports will be developed in MS-Word adhering to any required
contractual format requirements.

1.7.4 Testing Phase

e All testing documents/reports will be identified in the SDP
e All testing documents/reports will be developed in MS-Word adhering to any required
contractual format requirements.

1.7.5 Delivery Phase

e Software Engineering will package the software, manuals, and reports into a deliverable
package
e Software Engineering will deliver deliverable to NASA for deliverable acceptance.

2 Software Development (Life-Cycle Model)

Sensis will use an incremental (Multi-build) development life-cycle. The incremental
development life-cycle is a variation of the traditional waterfall development life-cycle.
Incremental development determines user needs and defines system requirements up front,
then performs the rest of development in a sequence of builds. The first build incorporates part
of the planned capabilities, the next build adds more capabilities, and so on, until the system is
complete. The approach is best suited to projects in which the requirements are well defined
and understood and the design and technology are proven and mature.

Tablel: Build Schedule

Build Description Date

1 SA Client Mar 2011
2 Stratway integration Jun 2011
3 Final Delivery Sep 2011

The advantages of the incremental development life cycle include:
e Reduced risk of schedule slips, requirements changes, and user acceptance problems

1-6

e Increased manageability

Feedback from early builds can be incorporated into later builds

End user / requirements changes can be incorporated before final version is delivered
User validation of the product as it is being developed

Deferred implementation of unstable requirements until after issues have been resolved
e Early operational training on interim versions of the product

e Early validation of operational procedures

o Well-defined checkpoints with customer and end users

2.1 Requirements Development

Sensis will create a Software Requirements Document (SRD). Sensis will identify, develop,
document, approve, and maintain software requirements based on analysis of customer
requirements, customer feedback, and the operational concepts. Sensis will perform software
requirements analysis based on the requirements. The software requirements analysis
determines the requirement's correctness, consistency, completeness, feasibility, and
verifiability. The software requirements analysis activities include the allocation of functional,
non-functional, and performance requirements to functions in a requirements matrix for
tractability.

2.1.2 Software Requirements Specification

The SDD will include a Software Requirements Specification (SRS) Section. The SRS contains:
e CSCl requirements
e (Qualification provisions (e.g., demonstration, test, analysis, inspection).
Bidirectional requirements traceability.
e Requirements partitioning for phased delivery.

2.1.3 Requirements Management

Sensis will manage changes to the software requirements via versions of the Software
Requirements Document. Cost, technical, and schedule impacts will be analyzed and reflected in
the software schedule as needed. Sensis will identify and initiate corrective actions, and track
requirements until inconsistencies are resolved. Sensis will perform requirements validation to
ensure that the software will perform as intended. The acceptance test plan will be the vehicle
to perform requirements validation.

2.2 Software Design

Sensis will create a Software Design Document (SDD) that defines the software architecture,
components, modules, interfaces, and data for the software to satisfy the requirements. The
Software Design Document will consist of software architectural and detailed design. Computer
software configuration items (CSCls) will be identified and requirements will be mapped to

these CSCls. Sensis will perform and maintain bidirectional traceability between the software
requirements and the software design.

2.2.1 Software Design Document

The Software Design Document describes the design of a CSCI. It describes the CSCl-wide design
decisions, the CSCl architectural design, and the detailed design required to implement the
software.

The SDD will include a Software Design Description Section. The Software Design Description
contains:

e (CSCl architectural design.

e (CSCl decomposition and interrelationship between components.

2.2.2 Interface Design Description

The SDD will include an interface design description section. The Interface Design Description
describes the interface characteristics of CSCl's developed on this project. The Interface Design
Description contains:
e Type of interface to be implemented.
e Specification of individual data elements.
e Specification of communication methods that the interfacing entities will use for the
interface.

2.2.3 Software Implementation

Sensis will implement the software design into software code. Sensis will ensure that Sensis
software coding methods, standards, and/or criteria are adhered to and verified. Sensis will unit
test the software that is developed for this project. Sensis will perform and maintain
bidirectional traceability from the software design and the software code. Sensis will perform
software peer review/inspection on developed code and unit tests. Sensis will create a user
manual for the separation client. Sensis will create Software Version Document (SVD) for each
software release. Sensis will release software reports for every software release.

Existing tools that Sensis will utilize in its development:

o IntelliJ IDEA IDE — Intelli) automates coding standardization and syntax checking for the
Java programming language.

e JUnit — A unit test framework for the Java programming language.

e YourKit Profiler - A profiling framework to analyze CPU and memory usage.

e JIRA — An issue and project tracking framework for software development teams to
improve code quality and the speed of development.

e Sonar - An open source quality management platform, dedicated to continuously
analyze and measure technical quality, from the project portfolio to the class method.

224

Software Peer Review/Inspection Report

Sensis will perform and create software peer review/inspection reports.

The Software Peer Review/Inspection Report contains:

2.2.5

Identification and review/inspection time and date.

Summary on total time expended on review/inspection.

Participant information.

Total number of defects found.

Peer review/inspection results summary (i.e., pass, re-inspection required).
Listing of all review/inspection defects.

Software User Manual

Sensis will update the software user manual.

The software user manual contains:

2.2.6

e Software summary.

e Access to the software: first-time user of the software, initiating a session, and
stopping and suspending work.

e Assumptions and limitations.

Software Version Description

The software version description identifies and describes a software version. The description is
used to release, track, and control a software version.

The Software Version Description contains:

227

Full identification of the system and software.

Executable software.

Instructions for building the executable software.

Software product files

Change requests and/or problem reports implemented in the current software version
since the last Software Version Description was published.

Software Reports

Sensis will provide software reports at the end of each software release. The software metrics
report provides data to the project for the assessment of software cost, technical, and schedule
progress.

The software metrics report contains:

Number of requirements included in a completed build/release (planned vs. actual).
Number of software Problem Reports/Change Requests (new, open, closed, severity).
Number of requirements verified.

e Results from static code analysis tools.

2.2.8 Software Quality

Sensis will provide software quality reports at the end of each release. The software quality
report provides data to the project for the assessment of quality.

The software quality report contains:
e Lines of code/Classes
e Rule of compliance/Violations
e Comments/Duplications
e Complexity
e Package tangle index
e Code coverage

2.2.9 Software Safety

This program is classified as CLASS D and not Safety Critical therefore no safety plan will be
developed.

2.2.10 Software Security and Privacy

Sensis maintains an Export Control System and the Stratway software is being controlled under
that system.

2.3 Software Testing

Sensis will perform testing to verify the software functionality and remove defects. Sensis will
perform software testing as defined in the Software Test Plan. The Software Test Plan will
consist of Software Test Procedures that verify requirements. Sensis will evaluate test results
and document the evaluation. Sensis will document defects identified during testing and track
to closure. Sensis will update Software Test Plan(s) and Software Test Procedure(s) to be
consistent with software requirements. Sensis will perform and maintain bidirectional
traceability from the Software Test Procedures to the software requirements. Sensis will ensure
that the software system is validated on the targeted platform.

2.3.1 Software Test Procedures

The Software Test Procedures describe the test preparations, test cases, and test procedures to
be
used to perform qualification testing of a CSCl or a software system or subsystem.

The Software Test Procedures contain:
e Test preparations, including hardware and software.
o Test descriptions

1-10

e Requirements traceability.
e I|dentification of test configuration.

2.3.2 Software Test Report

The Software Test Report is a record of the qualification testing performed on a CSCl, a software
system or subsystem, or other software-related item.

The Software Test Report contains:
e Qverview of the test results.
e Detailed test results.
e Testlog.

2.3.3 Verification and Validation

Sensis will perform verification and validation at the unit level. Unit tests will be automated
through the use of JUnit. JUnit forces a complete test to be identified automate the verification
and validation of the outputs.

2.4 Software Operations, Maintenance, and Retirement

Sensis will complete and deliver the software product to the customer with appropriate
documentation to support the operations and maintenance phase of the software's life cycle.

3 Supporting Software Life-Cycle

This section describes the processes and procedures in place to support the software life-cyle.

3.1 Software Configuration Management

Sensis will develop a Software Configuration Management Plan that describes the functions,
responsibilities, and authority for the implementation of software configuration management
for the project. Sensis will track and evaluate changes to the software. Sensis will use version
control to manage all configuration items developed for this project. Sensis will establish and
implement procedures controlling each type of configuration item developed for this project.
Sensis will prepare and maintain records of the configuration status of configuration items per
software release. Sensis will establish and implement procedures for the storage, handling,
delivery, release, and maintenance of deliverable software products. Sensis will create Software
Change Request/Problem Reports.

3.1.1 Software Change Request/Problem Report

The Software Change Request/Problem Report shall contain:

1-11

Identification of the software item.

Description of the problem or change to enable problem resolution or justification for
and the nature of the change, including: assumptions/ constraints and change to correct
software error.

Originator of Software Change Request/Problem Report and originator's assessment of
priority/severity.

Description of the corrective action taken to resolve the reported problem or analysis
and evaluation of the change or problem, changed software configuration item,
schedules, cost, products, or test.

Life-cycle phase in which problem was discovered or in which change was requested.
Approval or disapproval of Software Change Request/Problem Report.

Date problem discovered.

Status of problem.

Configuration of system and software when problem is identified (e.g., system/software
configuration identifier or list of components and their versions).

Any workaround to the problem that can be used while a change is being developed or
tested.

3.2 Risk Management

Sensis will identify, analyze, plan, track, control, communicate, and document software risks
that put contract milestones at risk.

3.2.1 Software Peer Reviews/Inspections

Sensis will perform and report on software peer reviews/inspections for:

4

Software Requirements Document.
Software Design Document.

Software Test Plan.

Software code as developed on this project.

Conclusions

This document serves as the software development plan for the implementation, test, and
qualification for the upgrades to the PNP Air Traffic Simulation Software under the NASA BOA:
NNLO8SAA17B.

1-12

Modeling and Simulation of Interactions Between
Traffic Flow Management and Separation Assurance

George Hunter” and Ben Boisvert®
Sensis Corporation, Campbell, CA, 95682

The integration of strategic and tactical actions in simulations of the
national airspace presents several challenges. Yet such an integration is
important for design evaluation and assessment of interactions between
strategic and tactical decision making. Here we describe our modeling and
integration of traffic flow management and separation assurance decision
making in a national airspace simulation. We also present preliminary
simulation results regarding the interaction between these two decision

makers.
Nomenclature

ATC = Air traffic control
ATM = Air traffic management
CPMF = Capacity probability mass function
DAC = Dynamic airspace configuration
LPMF = Loading probability mass function
NAS = National air space
NextGen = Next generation NAS
PMF = Probability mass function
PNP = Probabilistic NAS Platform
SA = Separation assurance
TFM = Traffic flow management
P = Trial plan

I. Introduction

Air traffic management services are often confronted with high-demand scenarios. Because
excessive delays are costly to users, there is a substantial on-going effort to use intelligent
strategies that minimize system delays even when demand is high. These intelligent strategies use
models of system dynamics, forecasts of the system demand and capacity, and automated
decision making tools. There is a spectrum of such decision making tools, ranging from the
tactical to the strategic level. At the tactical end of the spectrum, a key function is to help

7 Senior Scientist, 1700 Dell Avenue, Campbell, CA, member, AIAA.
¥ Senior Engineer, 2017 Cunningham Drive., #407, Hampton, VA 23666.
J-1

maintain separation between aircraft. At the strategic end of the spectrum, a key function is to
help manage demand with strategic rerouting or delays, or manage capacity with airspace
redesigns.

While these disparate and wide ranging decision support tools can provide substantial
efficiency gains, they also can present complex challenges and opportunities for ATM designers.
For instance, different tools, and their underlying strategies, may interact in unforeseen ways,
causing unintended consequences. A TFM tool may resolve demand overloads assuming a
particular airspace design while a completely separate airspace design tool is implementing a new
airspace geometry. Because both the TFM and DAC decision support tools are strategic and so
share a common time frame, they are particularly amenable to unintended feedback influences.
[1]

But interactions between different decision making functions may also present opportunities.
For instance, in recent years substantial progress has been made in the modeling and design of
advanced, NextGen separation assurance decision support tools and methods. [2-12] Such
improved tactical decision making may assist the strategic TFM decision making because demand
need not be so tightly managed. The purpose of TFM is to manage demand so system loading is
manageable at the tactical level. TFM creates the strategic plans so that ATC is not overwhelmed.
But if tactical ATC functions are more robust, then a looser TFM policy may be possible. So
there is a relationship with potential opportunities between the strategic and tactical decision
making. Although they operate on very different time scales, they are not independent of each
other.

Although it is usually not quantified, TFM decision making necessarily defines a given policy
which determines how strictly demand is managed. A loose TFM policy reduces strategic delay at
the cost of increasing the expected demand-to-capacity ratio in the NAS. A tight TFM policy, on
the other hand, increases strategic delay in order to decrease the expected demand-to-capacity
ratio in the NAS.

Although this concept of a TFM policy often goes unspoken, it is quite real and it defines how
the strategic planning deals with uncertainties. There is substantial uncertainty in demand-to-
capacity projections over the strategic TFM planning time frame (e.g., six hours into the future).
These uncertainties arise from both demand and capacity unknowns. Capacity uncertainty is due
primarily to meteorological phenomena which are difficult to predict accurately. These
meteorological phenomena can degrade both airport and airspace capacities, and they can also
lead to demand uncertainties. For instance, flight delays from earlier in the day can cascade and
cause delays or cancellations later in the day. And once airborne, en route winds may influence
flight times differently than forecasted. Aside from meteorological effects, demand uncertainties
also arise from a variety of factors in the user operations, such as mechanical problems or crew
scheduling disruptions.

Given these substantial uncertainties in the projected loading and demand, there can be
significant uncertainty in the forecasted demand-to-capacity ratio, or congestion. Therefore a zero
tolerance TFM policy (i.e., the tightest TFM policy), in which strategic TFM initiatives are used
to ensure zero probability of future congestion, would be intolerably expensive in terms of delay.
This is because infeasible levels of delay would be required to ensure that even the worst-case
demand and capacity scenarios cannot result in any congestion.

Therefore a zero tolerance TFM policy in today’s system is not practical. Either the
forecasting uncertainties need to be reduced or a looser TFM policy is required. In the former,
reduction of capacity uncertainty is not likely to be practical, and reduction in loading uncertainty
reduces efficiency. This is because last-minute decision making is compromised. Such loading
uncertainty allows for efficient decision making, for instance, by not forcing users to commit to a
particular plan.

J-2

On the other hand, today’s NAS allows for over-scheduling practices and demand levels are
sufficiently high that overloading of surface and airspace resources would be inevitable if the
traffic was not managed. Therefore a zero management (i.e., open-loop) TFM policy in today’s
system is also not practical.

Given these realities, the NAS implicitly uses a medium TFM policy. The NAS TFM policy is
not overly tight as in the zero tolerance policy. Nor is the NAS TFM policy overly loose as in the
zero management policy, allowing traffic to freely flow with no restrictions on demand. The
NAS’s use of a medium TFM policy means there is a finite probability of local overloading that
must be handled by local TFM initiatives or ATC SA functions.

A key question is: What are the tradeoffs between TFM policy and the ATC solution?
Advanced ATC SA capabilities are on the horizon, but what opportunities will they present at the
strategic level? Specifically, will such advanced NextGen SA capabilities accommodate a looser
TFM policy? If so, what reduction in the strategic TFM delay can be expected? And how does
that TFM delay reduction compare with delays caused by the advanced ATC SA capabilities?

Here we assemble the modeling and simulation platform required to address these questions.
To investigate these issues we need explicit representations of both the tactical and strategic
decision making, in a full, NAS-wide, simulation. These simulations are required to evaluate and
verify the interactions in detail, and this raises the problem of combining fast and slow
phenomena in the same simulation. Combining such widely disparate time scales, in a large-scale
(NAS-wide) simulation can substantially increase the computer resources required.

In this paper we present our design and implementation of a NAS-wide simulation that
provides sufficient fidelity to model both the tactical and strategic decision makers and their
intersections, but avoids unnecessary details that would intolerably escalate the compute
requirements. Our simulation has both real-time and fast-time modes. Finally, we present
preliminary experimental results and conclusions obtained from using our simulation with a
mature probabilistic traffic flow management decision support tool and a simple separation
assurance tool.

II. Probabilistic NAS Platform Simulation

For our simulation we use the Probabilistic NAS Platform environment. [13-31] Figure 1
shows the high level PNP architecture. The PNP architecture is convenient for this effort because,
as Fig. 1 shows, all decision making is segregated into clients that attach to the PNP server. PNP
itself models the NAS and its dynamics, but makes no decisions. It provides NAS data to the
decision-making clients, and accepts decisions from those clients.

J-3

\

S)
@ — —> Graphical User Interface
NS ~ Plan View Display
Q) L

——f

bl NAS Platform

= s

N .
27 PNP is a
S B Shm—— - Flight Dat. NAS-wide
Probabilistic G e

Scripting

\ Interface (PNP) Performance Data /

P o

< A A A a2 .

v !

| ATC Client ~ TFM ;:lient\ ' DAC élient\ - AoC

y

Client
fen ‘ Decision
making

Figure 1. High level PNP architecture including typical decision making clients.

PNP can be run in a real-time mode or a playback mode. In the real-time mode,
meteorological and traffic data feeds supply current information that PNP uses to model the state
of the NAS. To propagate aircraft trajectories, PNP uses PointMass, [32] a fast and accurate
trajectory predictor.

In playback mode ProbTFM runs in fast-time using archived weather and traffic data. The
weather data are selected from a list of historical days from which the meteorological data have
been archived. The traffic data, on the other hand, may either represent an historical day, or a
future demand day. For example, a day in the year 2014 can be run, with a hypothetical fleet mix
such as an increase in the very light jets.

The input data are read in by the PNP data processor. The data processor reads, parses, and
processes these data. Downstream of the data processor, the PNP modules are mode insensitive.
Those processes operate in the same way, regardless of whether the real-time or the fast-time
mode is run, and regardless of data source.

The PNP real-time mode can be used to generate real-time, automated TFM advisories. Both
the real-time and the fast-time modes can be used as a development environment for ATM
researchers to experiment and evaluate candidate decision support tools or other technology or
infrastructure enhancements.

Another key input to PNP is the airspace definitions data. We use current NAS airspace
definitions; however, user-defined airspace definitions can instead be input to PNP. Therefore,
ATM researchers can experiment with new airspace designs, and even dynamically redesigned
airspace geometries.

III. Traffic Flow Management Client

For the TFM decision support tool we use ProbTFM which stochastically models both system
capacity and loading forecasts, as functions of both weather and traffic uncertainties. These
capacity and loading forecasts are modeled as probability mass functions (CPMFs and LPMFs,
respectively). ProbTFM computes CPMFs and LPMFs for all NAS capacity elements, in 15
minute time intervals, for the future hours of the day. The CPMF and LPMF, for a particular
capacity element and time window, are compared to derive a non dimensional congestion cost.

J-4

The total congestion cost for a flight is then tallied according to the NAS capacity elements it
transits.

This congestion computation uses our congestion cost function. Equation (1) shows that this
sector congestion cost (SCC) function is a modified convolution of the CPMF and LPMF.

e — L‘ L‘\l_J))\Ll lVll'\l))_/l lVll'\J) (1)

i=Lmin j=Cmin

For example, Fig. 2 illustrates a notional LPMF which slightly overlaps its corresponding
CPMF. If there was no overlap then the SCC computed in Eq. (1) would be zero. The slight
overlap, however, introduces a small SCC.

Example LPMF and CPMF

0.35

0.3 1 W Loading M

B Capacity

0.25 A

Frequency
©
[\S]
Il
1

0.15
0.1 A
0.05 H
0
172 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20
Sector load/capacity (ops)

Figure 2. Notional LPMF and CPMF with slight overlap.

In Fig. 2 the distance between the LPMF mean value and CPMF mean value is four
operations. As Fig. 3 shows, the greater the overlap the greater the congestion cost. The cost
grows as the LPMF slides to greater values or, equivalently, the CPMF slides to lower values.

Load Capacity
Zero
cost
¥
Capacity Load Large
/ cost

0 Max Capacity

15092 Buyseaiou|

Figure 3. Congestion cost model from Eq. 1.

J-5

Inherent in our congestion cost model is the forecast accuracy, for both the CPMF and LPMF.
The congestion cost model is based on PMFs, and the accuracy of the forecast is imbedded in the
PMFs. Therefore the congestion cost accounts for forecast accuracy. The model can be used for
any look ahead time (LAT) or for current time (where the PMF becomes a spike at the known
value).

With our models of the weather impact on NAS capacity, we use the Eq. (1) cost function to
evaluate the congestion cost at airports and in the NAS airspace, in future time intervals. We use
these costs, in turn, to evaluate the congestion cost of each departing flight. High congestion cost
flights typically are involved in more than one area of congestion. Thus, the NAS congestion is
reduced more efficiently by resolving the high cost flights first. Figure 4 illustrates the high-level
ProbTFM logic.

Evaluate all . . Reevaluate
upcoming NAS Sort depa_rtures by Highest cost Resolve r_nghest remaining
congestion cost > Threshold? cost flight

departures Yes departures

Figure 4. ProbTFM high-level logic for managing demand in congestion scenarios.

As Fig. 4 shows, inherent in the ProbTFM logic is a TFM policy setting. Flight congestion
costs, computed from Eq. (1), are compared with a threshold value. This threshold value is a user-
specified input the defines the TFM policy. A low threshold results in a tight TFM policy, as even
minor levels of forecasted congestion will trigger strategic delays. A high threshold, on the other
hand, results in a loose TFM policy, as significant levels of forecasted congestion are required to
trigger strategic delays.

IV. Separation Assurance Client

In our PNP separation assurance client all aircraft always have an associated trajectory plan.
The trajectory plan may be retrieved for any flight using a query command, and the current
location of the aircraft is identified. To perform a maneuver the trajectory plan is replaced with a
new one.

Within the trajectory plan, we separate the horizontal and vertical plane information into two
different components. The vertical plane component specifies a series of segments with speed /
altitude target states that are to be achieved at the completion of the segment. For instance,
consider an aircraft that is currently in a constant speed, level cruise phase segment.

Now consider an altitude maneuver consisting of a descent followed by a level segment, and
finally a climb that returns to the original altitude. This would be achieved by inserting three new
segments. The three new segments would (i) descend to a target altitude, (ii) remain level at that
altitude, and (iii) then climb to the original altitude. The flight would then resume its level cruise
phase segment. Speed changes may be implemented in the same way.

These turn, altitude and speed maneuvers can be tested in a trial planning algorithm. That is,
rather than implementing a new trajectory plan, one can be hypothesized. We implement this
architecture as illustrated in Fig. 5.

Probabilistic
NAS Platform

Request New FP

SA
Client

Trajectory
Predictor

Figure 5. High level separation assurance maneuver architecture with trial plan
capability.

As Fig. 5 shows, the SA client requests flight plans from PNP. The client then uses the data to
derive new flight plans for one or more flights which resolve predicted conflicts. As part of this
computation the SA client uses the Trajectory Prediction service to obtain detailed trajectory data
based on the flight plans. The trajectory data indicate the predicted trajectory path. Figure 6
shows a more detailed chart of this architecture.

Separation assurance client
Trial flight plan Conflict
e resolution
PNP T_’
5
Conflict
Flight e detection

&p{ans data /
\i Initial

Trajectory — Trial run
predictor

Modified flight plans

Initial flight plans

Figure 6. Detailed separation assurance maneuver architecture.

The eight steps identified in the Fig. 6 architecture are described in Table 1.
Table 1. Major steps in PNP separation assurance client.

St The SA client requests the flight plans of all flights within a specified distance or
Bl time of the flight of interest.

J-7

PNP returns the requested flight plans which the SA client sends to the Trajectory
Predictor service.

The SA client will also send the flight plans to the Conflict Resolution module for its
reference.

The Trajectory Predictor service returns the trajectory data calculated from the flight
plans. These data extend only to the specified look ahead time frame. The SA client
sends these data to the Conflict Detection module.

The Conflict Detection module returns the point of closest approach (PCA) and loss
and gain of separation event data which the SA client sends to the Conflict Resolution
module and to PNP. The SA client also sends the trajectory data (see Step 4) to the
Conflict Resolution module for its reference.

The Conflict Resolution module computes trial-run resolution maneuvers and their
associated flight plan modifications. The SA client sends the new flight plans to the
Trajectory Predictor service.

The Trajectory Predictor service returns the trajectory data calculated from the flight
plans. These data extend only to the specified look ahead time frame. The SA client
sends these data to the Conflict Resolution module, as trial plan results.

The Conflict Resolution module iterates through Steps 6 and 7 as necessary. Note
that as part of its evaluation of the trial plan, the Conflict Resolution module performs a
conflict detection check between the modified flights and all other flights. For instance,
if two flights are modified, then each one must be checked against all other flights in the
set. A possible strategy for performing these checks is to use the Conflict Detection
module. After the trial planning process is complete, the Conflict Resolution module
returns its final new flight plans. The SA client returns these to PNP for processing and
incorporation into the simulation.

Within this SA client we implemented a simple conflict resolution algorithm for purposes of
investigating the TFM-SA interactions described in Section I. Our conflict resolution algorithm
uses flight intent data in both the detection and resolution functions. Also, conflicts in terminal

arcas arc

ignored as we are not using a detailed terminal area model. The resolver uses single

aircraft maneuvers rather than coordinating maneuvers of both aircraft.

When
merge, cr

conflicts are detected the conflict resolution algorithm categorizes them as either a
oss or head-on geometry, as illustrated in Fig. 7.

0¢

(g} 0092

(ﬁsﬁoos
e NG
> Waou
. (;;no7z
Merging Crossing Head-on

Figure 7. Conflict resolver encounter geometry categories.

The conflict resolver then uses a trial planning procedure to evaluate the candidate maneuvers.
A speed reduction is the first preference, followed by an altitude reduction, followed by right and

left turns.

J-8

40000
0522
33333 15?
/ 26667
% 0532
gzmoc 1
y C \. 1
1 13333 \
4
Speed maneuver « Altitude maneuver = mme Heading maneuver

Figure 8. Candidate maneuvers in order of preference, left to right.

The speed maneuver is used only in a merging geometry. Otherwise, all the candidate
maneuvers are possible for the different geometries, as illustrated in Fig. 9.

Speed Altitude Left turn Right turn
Merging \/ \/ \/ \/
Crossing \/ \/ \/
Head-on \/ \/ \/

Figure 9. Encounter geometries and permissable candidate maneuvers.

V. Experiment Results

We used the SA and TFM clients described above in the PNP NAS-wide simulation to make a
preliminary investigation of the interactions between these tactical and strategic decision making
functions. For this experiment we used November 16, 2006, a Thursday, as our scenario day. The
traffic demand is heavy in this scenario (60,404 flights) with intense convective weather activity
in the eastern NAS, as shown in Fig. 10.

Figure 10. November 16, 2006: NexRad Reflectivity, 1600Z.

In this experiment we set our adaptation parameters to run the conflict resolver every five
minutes in the simulation time and to detect and resolve conflicts over a 15 minute time horizon.
We set the minimum horizontal separation to 5 nmi and the minimum vertical separation to
1000 ft.

As Fig. 11 shows, slightly less than 10% of the resolutions were speed maneuvers and the
remainder were roughly equally divided between altitude and turn maneuvers.

J-9

Conflict Resolver Maneuvers
50

| 11-16-08 vix
40
=
€ 10
=
]
c
3
Z
¢ 20
w
10
O ,J T T T
Speed Altitude Right turn Left turn

Figure 11. Frequency of the four different SA maneuver types.

As discussed in Section I, the TFM policy determines the demand-to-capacity levels which the
tactical ATC functions must accommodate. If these levels are relatively high then the tactical
ATC must exert more control to maintain separation. Figure 12 shows how the tactical loading
varies with TFM Policy in this experimental scenario.

6000

5500 ‘\

5000 ——SA, 11-16-06WX|7
@ \
3 4500
§
= 4000
0
]
2 \
o 3500
(] \

3000 j—-_'——-—-—-___.

2500

| Loose <——— TFM Policy ——— Tight |
2000 T T T T T
0 2 4 6 8 10 12

Average TFM strategic delay (minutes)

Figure 12. NAS congestion, accounting for weather impacts on capacity, versus TFM
policy.

Figure 12 shows that the tactical loading drops off rapidly as the TFM moves from an open-
loop policy to even a very loose policy. The use of small amounts of strategic delay is quite
efficient in managing the forecasted demand-to-capacity ratios. In a heavy weather and traffic
scenario such as this, however, additional tightening is likely to be required in order for
congestion to reach manageable levels.

Figure 13 shows how the SA conflict resolution count varies with the TFM policy. The figure
shows the expected trend that as TFM policy is loosened the increased loading shown in Fig 12
translates into increased conflicts and therefore increased resolutions.

J-10

Strategic vs Tactical Tradeoff

19500
19000 4 ——11-16-06 wx|—
Iy
c
S
=4
3 18500
0
&
<
L]

*®
18000 —
Loose < TFM Policy——— Tight |
17500 : : : : :

0 2 4 6 8 10 12

Average TFM strategic delay (minutes)

Figure 13. SA conflict resolution count versus TFM policy.

Although the number of resolutions required increases as the TFM policy is loosened, Fig. 13
shows that the rise is not dramatic. Over the span of 10 minutes of strategic TFM delay, the
resolution count varies by about 5%. This resolution count of about 20k translates into additional
delay minutes. So in addition to the strategic delay that results from the TFM policy, there is also
a tactical delay component. But whereas the strategic TFM delay decreases as the TFM policy is
loosened, the tactical SA delay increases.

This suggests a tradeoff between the strategic TFM delay and the tactical SA delay. Our
results suggest this tradeoff is dominated by the reduction in the strategic TFM delay for two
reasons. The first reason is that the tactical SA delay is about an order of magnitude less than the
strategic TFM delay, as Fig. 14 shows.

Strategic vs Tactical Delay Tradeoff

0.4
035 EEEE
=
.E. 0.3
-
[}
< 0.25
-
E o ——11-16-06 wx, SA+ delay | |
.§ . ——11-16-06 wx, SA total delay
g 0.15
01 I
| Loose <———— TFM Policy——— Tight |
0.05 . ' ' ‘ '
0 2 4 6 8 10 12

Average TFM strategic delay (minutes)

Figure 14. SA tactical delay for positive and total delay cases, versus TFM strategic
delay.

We divide the tactical SA delay into two categories: resolutions with positive delay (SA+) and
resolutions with negative delay. Resolutions with positive delay add about a minute of flight time,

J-11

on average. This translates into about 0.3 minutes of delay per total number of flights (60,404 in
our scenario), as shown in Fig. 14. This level of delay is minor compared to the strategic TFM
delay.

The second reason why the tradeoff between strategic TFM delay and tactical SA delay is
insignificant is that SA resolutions with negative delay further reduce the tactical delay
substantially. As Fig. 14 shows, when these negative delay, flight time reductions, are accounted
for, the total tactical delay reduces from about 0.3 to about 0.1 minutes, a reduction of a factor of
three.

VI. Conclusion

In this paper we discuss fundamental TFM concepts which relate the TFM policy to demand-
to-capacity levels in the NAS and in turn the tactical ATC workload. We also discuss how the
TFM policy relates to the interaction between strategic TFM and tactical SA decision making in
the NAS. To investigate these TFM-SA interactions, we implement a simulation environment to
run TFM-SA integration experiments, using a simple SA conflict resolution algorithm.

We use this simulation tool to perform a preliminary investigation of the fundamental TFM-
SA interaction issue of delay tradeoff. Specifically, if advanced NextGen SA capabilities
accommodate a looser TFM policy, then what reduction in the strategic TFM delay can be
expected? And how does that TFM delay reduction compare with delays caused by the tactical
SA capabilities? Finally, what is the overall system delay reduction offered by NextGen SA
tools?

Our results suggest that the strategic TFM delay reductions offered by a looser TFM policy are
substantially greater than the tactical SA delay increases incurred. For instance, an aggressive
loosening of TFM policy would reduce the TFM delay by five minutes per flight or more. Such a
strategic delay reduction would induce only about 0.3 minutes of tactical delay per flight, as a
result of conflict resolutions that add positive delay. And when negative delay resolutions are
included, the tactical delay per flight reduces to about 0.1 minutes per flight. Therefore the
tactical delay increase can be an order of magnitude less than the strategic delay decrease.

Therefore, from a system delay reduction perspective, local ATC SA functionality that allows
for a looser TFM policy could provide significant delay reduction savings. Obviously there are
many other factors to consider in implementing such a NextGen functionality such as operational,
procedural and safety. But given that those issues are adequately addressed, ATC SA
functionality has substantial delay savings potential.

Note that this conclusion does not hinge on substantially higher traffic levels in the future.
With modest growth or even in today’s system, demand/capacity imbalances, requiring TFM
delay, are common. Such TFM delay has the potential for reduction, by TFM policy loosening
made possible by ATC SA enhancements.

Further investigation is required to determine the specific levels of TFM loosening that can be
achieved with the ATC SA enhancements that are on the horizon. To investigate this and other
more detailed questions we need a higher resolution conflict resolution algorithm or settings. For
instance, we would need to increase the SA client run frequency from once very 5 minutes to a
faster rate, so conflicts are not missed.

Acknowledgments

The authors would like to thank Jeremy Smith, Ty Marien and Patricia Glaab for their
guidance, suggestions and oversight of this project. The authors would also like to thank WSI, a
meteorological data supplier to the government and commercial markets, for its data

J-12

contributions. The authors would also like to thank Mitre for its contributions to the ProbTFM
LPMF model.

References

1. George Hunter, “Meta Simulation Results for Simultaneous Dynamic Resectorization and Traffic Flow
Management,” 414A Digital Avionics Systems Conference, Orlando, FL, October, 2009.

2. Robert Vivona, David Karr, David Roscoe, “Pattern-Based Genetic Algorithm for Airborne Conflict
Resolution,” AIAA Guidance, Navigation and Control Conference, Keystone, CO, August, 2006.

3. Cesar Munoz, Ricky Butler, Anthony Narkawicz, Jeffrey Maddalon, George Hagen, “A Criteria Standard for
Conflict Resolution: A Vision for Guaranteeing the Safety of Self-Separation in NextGen,” NASA TM-2010-216862,
October, 2010.

4. David Wing, Jennifer Murdoch, James Chamberlain, Maria Consiglio, Sherwood Hoadley, Clay Hubbs,
Michael Palmer, “Function Allocation with Airborne Self-Separation Evaluated in a Piloted Simulation,” International
Congress of the Aeronautical Sciences, 2010.

5. Huabin Tang, John Robinson, Dallas Denery, “Tactical Conflict Detection in Terminal Airspace,” Journal of
Guidance, Control, and Dynamics, 34:2, pp. 403-413, March-April, 2011.

6. Todd Lauderdale, Andrew Cone, Aisha Bowe, “Relative Significance of Trajectory Prediction Errors on an
Automated Separation Assurance Algorithm,” Ninth USA/Europe Air Traffic Management Research and Development
Seminar, 2011.

7. David Blum, David Thipphavong, Tamika Rentas, Ye He, Xi Wang, Elisabeth Pate-Cornell, “Safety Analysis
of the Advanced Airspace Concept using Monte Carlo Simulation,” AIAA Guidance, Navigation, and Control
Conference and Modeling and Simulation Technologies Conference, Toronto, Canada, August, 2010.

8. David Thipphavong, “Accelerated Monte Carlo Simulation for Safety Analysis of the Advanced Airspace
Concept,” 10th AIAA Aviation Technology, Integration, and Operations Conference, Fort Worth, TX, September, 2010.

9. Russell Paielli, “Tactical Conflict Resolution using Vertical Maneuvers in Enroute Airspace,” AI4A Journal
of Aircraft, 45:6, November-December, 2008.

10. Heinz Erzberger, “The Automated Airspace Concept,” Fourth USA/Europe Air Traffic Management
Research and Development Seminar, 2001.

11. Andrew Lacher, David Maroney, Andrew Zeitlin, Unmanned Aircraft Collision Avoidance — Technology
Assessment and Evaluation Methods,” Mitre, July 2008.

12. Andrew Zeitlin, Michael McLaughlin, “Safety of Cooperative Collision Avoidance for Unmanned Aircraft,”
25th Digital Avionics Systems Conference, Portland OR, October 2006.

13. George Hunter, “Probabilistic Forecasting of Airport Capacity,” 4IAA Digital Avionics Systems Conference,
Salt Lake City, UT, October, 2010.

14. Poornima Balakrishna, George Hunter, “Preliminary NextGen Collaborative Air Traffic Management
Analysis,” AIAA Digital Avionics Systems Conference, Salt Lake City, UT, October, 2010.

15. Huina Gao, George Hunter, Frank Berardino, Karla Hoffman, “Development and Evaluation of Market-
Based Traffic Flow Management Concepts,” 4144 Aviation Technology, Integration and Operations Forum, Dallas,
TX, September 2010.

16. Huina Gao, George Hunter, “Evaluation of User Gaming Strategies in the Future National Airspace System,”
AIAA Aviation Technology, Integration and Operations Forum, Dallas, TX, September 2010.

17. Huina Gao, George Hunter, “Future NAS-Wide User Gaming Preliminary Investigation,” AI4A4 Digital
Avionics Systems Conference, Orlando, FL, October, 2009.

18. George Hunter, “Preliminary Assessment of Interactions Between Traffic Flow Management and Dynamic
Airspace Configuration Capabilities,” 4144 Digital Avionics Systems Conference, St. Paul, MN, October, 2008.

19. George Hunter, “Toward an Economic Model to Incentivize Voluntary Optimization of NAS Traffic Flow,”
AIAA Aviation Technology, Integration and Operations Forum, Anchorage, AK, September, 2008.

20. George Hunter, “Sensitivity of the National Airspace System Performance to Weather Forecast Accuracy,”
Integrated Communications, Navigation and Surveillance Conference, Herndon, VA, May, 2008.

21. Kris Ramamoorthy, Ben Boisvert, George Hunter, “Sensitivity of Advanced Traffic Flow Management to
Different Weather Scenarios,” Integrated Communications, Navigation and Surveillance Conference, Herndon, VA,
May, 2007.

22. George Hunter, “Testing and Validation of NextGen Simulators,” AIAA Modeling and Simulation
Conference, Chicago, IL, August 2009.

23. George Hunter, Kris Ramamoorthy, “Integration of terminal area probabilistic meteorological forecasts in
NAS-wide traffic flow management decision making,” [3th Conference on Aviation, Range and Aerospace
Meteorology, New Orleans, LA, January, 2008.

J-13

24. Kris Ramamoorthy, George Hunter, “The Integration of Meteorological Data in Air Traffic Management:
Requirements and Sensitivities,” 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January, 2008.

25. George Hunter, Ben Boisvert, Kris Ramamoorthy, “Advanced Traffic Flow Management Simulation
Experiments and Validation,” 2007 Winter Simulation Conference, Washington, DC, December, 2007.

26. Kris Ramamoorthy, George Hunter, “Evaluation of National Airspace System Performance Improvement
With Four Dimensional Trajectories,” AIAA Digital Avionics Systems Conference, Dallas, TX, October, 2007.

27. George Hunter, Ben Boisvert, Kris Ramamoorthy, “Use of automated aviation weather forecasts in future
NAS,” The 87th American Meteorological Society Annual Meeting, San Antonio, TX, January, 2007.

28. Kris Ramamoorthy, George Hunter, “Probabilistic Traffic Flow Management in the Presence of Inclement
Weather and Other System Uncertainties,” INFORMS Annual Meeting, Pittsburgh, PA, November, 2006.

29. Kris Ramamoorthy, Ben Boisvert, George Hunter, “A Real-Time Probabilistic TFM Evaluation Tool,” 4/44
Digital Avionics Systems Conference, Portland, OR, October, 2006.

30. Kris Ramamoorthy, George Hunter, “A Trajectory-Based Probabilistic TFM Evaluation Tool and
Experiment,” Integrated Communications, Navigation and Surveillance Conference, Baltimore, MD, May, 2006.

31. Kris Ramamoorthy, George Hunter, “Avionics and National Airspace Architecture Strategies for Future
Demand Scenarios in Inclement Weather,” AI4A Digital Avionics Systems Conference, Crystal City, VA, October,
2005.

32. James Phillips, “An Accurate and Flexible Trajectory Analysis,” World Aviation Congress, Anaheim, CA,
October, 1997.

J-14

NAS-WIDE TRAFFIC FLOW MANAGEMENT CONCEPT USING REQUIRED
TIME OF ARRIVAL, SEPARATION ASSURANCE AND WEATHER ROUTING

George Hunter and Benjamin Boisvert Sensis Corporation, Campbell, VA
Jeremy Smith and Ty Marien, NASA Langley Research Center, Hampton, VA

Abstract

Substantial research efforts in recent years have
investigated advanced planning and decision support
tools for the National Airspace System. These tools
range from the tactical to the strategic level and
include conflict detection and resolution, weather
vectoring, traffic spacing, flight conformance
monitoring, dynamic airspace configuration, and
traffic flow management. Research efforts have also
investigated how these different capabilities may
work together. Here we construct a system-wide
simulation with several prototype decision support
tools, of varying levels of fidelity, to investigate their
interactions and the resulting system-wide
performance. Our initial experimental architecture
consists of separation assurance, traffic spacing using
required time of arrival, tactical weather vectoring,
conformance monitoring, strategic weather routing
and traffic flow management using gate delay only.

Introduction

Service providers in the national airspace (NAS) are
often confronted with high-congestion scenarios
caused by high demand, capacity disruptions, or a
combination of the two. Such high-congestion
scenarios often result in costly delays. Therefore
users and NAS policy makers are interested in
several different NAS enhancements to help expedite
traffic flow in such scenarios. These enhancements
impact the flight deck avionics as well as the ground-
based airline operations centers and the air traffic
management service providers. For instance, these
enhancements include increased information flow
and collaboration between these entities, improved
avionics and flight-deck decision support tools,
improved navigation capabilities, advanced traffic
flow management (TFM) [1], dynamic airspace
configuration [2], flight-specific weather routing,
flight plan conformance monitoring, inter-aircraft
spacing management and advanced separation
assurance technologies [3-5].

K-1

These advanced technologies and strategies use
models of system dynamics, forecasts of the system
demand and capacity, and automated decision
making tools. There is a spectrum of such decision
making tools, ranging from the tactical to the
strategic level. At the tactical end of the spectrum,
decision making tools may help maintain separation
between aircraft. At the strategic end of the spectrum,
decision making tools may help manage demand with
strategic rerouting or delays, or manage capacity with
airspace redesigns.

While these wide ranging enhancements can provide
substantial efficiency gains, they also present
challenges for ATM designers. First, these different
tools, and their underlying strategies, may interact in
unforeseen ways, causing unintended consequences.
For instance, a traffic flow management tool may
resolve demand overloads assuming a particular
airspace design while a completely separate airspace
design tool is implementing a new airspace geometry.
Because both the TFM and DAC decision support
tools are strategic and so share a common time frame,
they are particularly amenable to unintended
feedback influences. This TFM-DAC interaction is
the subject of on-going research to understand its
effects and to design mitigation strategies [6-7].

Interactions between tactical tools, such as separation
assurance, and the strategic tools are more
straightforward since their time constants are so well
separated. Indeed, designers of these tools often can
initially ignore the other, or treat it as a simple first-
order effect. Ultimately, however, more detailed
treatment is required, for interactions between the
tactical and strategic levels can be significant. For
instance, at the strategic level, a TFM decision
support tool requires forecasts of system capacity.
But airspace capacity can depend on how traffic
patterns are controlled at the tactical level, by
separation assurance tools, for instance. This
dependency on the tactical solution can be even more
pronounced in the presence of heavy weather.

Recently studies have begun to examine interactions
between such temporally segregated tools. We found,
for instance, that a successful implementation of a
tactical separation assurance capability substantially
off-loads the strategic TFM initiatives. In one
experiment we found two orders of magnitude
leverage. That is, TFM delay could be reduced by
about 100 times the delay introduced by the tactical
separation assurance tool [8].

Here we describe new enhancements to our
simulation which help to explore and evaluate these
interactions: a traffic spacing tool which uses
required time of arrival (RTA) and flight-specific
strategic and tactical weather rerouting. These
capabilities can be used to model flight-deck based
decision making which may interact with ground-

B

NAS

Database

Flight Data

(PNP)

Weather
Data

Performance
Data

Probabilistic
NAS Platform

based systems. In this paper we present our models of
these capabilities. Our next step is to exercise our
simulation to evaluate the performance of these
capabilities combined with other decision support
tools. For our initial experiments we use the
Probabilistic NAS Platform (PNP) simulation. Our
initial experimental architecture consists of (i)
strategic probabilistic TFM in the pre departure phase
to reduce forecasted airport overloads, (ii) strategic
weather rerouting in the pre departure phase to avoid
major weather systems, (iii) tactical weather
rerouting to take advantage of available airspace in
the vicinity of convective weather, (iv) en route
separation assurance and (v) traffic spacing at the
departure and arrival metering fixes using RTA.
Figure 1 illustrates our simulation system. Our
simulation has both real-time and fast-time modes.

Outputs

MATLAB
Scripting
Interface

Graphical
L User

\ Interface _

REPORTS

Probabilistic
TFM
Client

Separation
Assurance
Client

Dynamic
Airspace
Client

Figure 1. PNP Architecture

This architecture attempts to achieve safe weather
routes and separation standards with a minimum of
delay and congestion. The metering spacing is
enforced on all departure and arrivals. Departure and
arrival metering fixes are used to determine the
spacing. Traffic separation is accomplished through
conflict detection and resolution. Safe weather routes

K-2

Weather
Avoidance
Client

Metering Spacing &
Conformance Client

avoid heavy weather. Traffic Flow management is
regulated by using forecasted probabilistic airport
capacities. And conformance monitoring corrects for
forecasted loss of spacing due to weather rerouting or
separation assurance maneuvers.

RTA-based Traffic Spacing Concept

The RTA-based traffic spacing concept performs
departure and arrival spacing at the metering fix.
Departure spacing is assigned pre-departure, while
arrival spacing is assigned en-route.

Metering Spacing

The RTA-based traffic spacing client requires all
flights to be assigned a departure and arrival metering
waypoint.

Departure Spacing

This concept manages departures by slotting flights
by the departure metering fix crossing time. A flight
is slotted when an open slot exists for its departure
metering fix crossing time. If the slot is not available
for that metering fix and crossing time, the next
available slot for that metering fix is used. A pre-
departure delay is created to adjust the metering
crossing time. Figure 2 illustrates how the departure
spacing concept handles a test case of ten duplicate
flights, which originally had identical metering fix
L

scheduled crossing times, from BWI to ATL.
g T 9,

Figure 2. Departure Spacing

Arrival Spacing

The RTA-based traffic spacing concept manages
arrivals by slotting flights by the arrival metering fix
crossing time. This is done when a flight enters the
freeze horizon zone. The freeze horizon zone is a
configurable distance from the arrival airport. A
flight is slotted when an open slot exists for its
current arrival metering fix crossing time. If the slot
is not available for that metering fix and crossing
time, maneuvers are attempted to find an available
slot. Three maneuvers are executed in the following
order: descent profile modification, speed control,
and path stretch.

K-2

The descent profile maneuver attempts to adjust the
speed profile to obtain a flight window in which the
arrival metering fix can be crossed. Likewise the
speed control maneuver adjusts the cruise speed and
the path stretch maneuver uses dog-leg maneuvers.
Figure 3 shows a path stretching test case of ten
duplicate flights from BWI to ATL which required
delay to meet their metering fix RTA assignments.

Figure 3. Path Stretch Maneuvers

The flight window obtained from a maneuver is used
to find an arrival slot. If an arrival slot is not
available the failure to obtain slot is logged and the
flight continues as scheduled. Note that flights are
slotted based on their performance in their flight
envelope not the next available arrival slot.

Conformance Spacin

The RTA-based traffic spacing concept performs
conformance monitoring, based on the estimated
arrival metering fix crossing time. If a flight’s
estimated crossing time loses conformance then the
flight is re-sequenced based on its flight window and
the next available arrival time slot.

Separation Assurance Concept

The Separation Assurance Concept [8] is a first-order
tool that attempts to separate aircraft based on
separation standards. The separation standards
consist of the following configurable items: conflict
detection look-ahead time, minimum horizontal
separation distance, minimum vertical separation
distance, and conflict resolution criteria. Conflict
detection of aircraft is accomplished by an N-squared
search. The closest conflict to each aircraft is
addressed, unless it has been previously solved by the
other conflict aircraft, then the next closest conflict is

addressed. Note the optimal solution is not
calculated. The conflict calculates the loss of
separation (LOS), point of closest approach (PCA)
and gain of separation (GOS) time and distance based
on the aircraft’s current position and predicted
trajectory, as illustrated in Fig. 4.

Figure 4. LOS, PCA, and GOS

A trial planner is used to evaluate four maneuvers in
the following priority: speed control, altitude change,
right turn, and left turn. The speed control maneuver
reduces the current speed to avoid the conflict.
Similarly the altitude change maneuver changes the
current altitude and the left and right turns change the
horizontal path to avoid the conflict, as illustrated in
Fig. 5. The resulting flight plan change is evaluated
to confirm that the conflict is averted and no new
conflicts arise. If a resolution is not found, then the
failure is logged and the flight continues on its
current trajectory.

B ﬁ / x

Figure 5. Left Turn Conflict Resolution

1504

Probabilistic TFM Concept

The Probabilistic TFM concept [9-14] is a traffic
flow management tool capable of tracking,
forecasting and resolving NAS congestion. Its

algorithms determine which flights are critical to the
congestion problem, and the best TFM strategy for
resolving NAS congestion.

The ProbTFM algorithms are stochastic in that they
account for the inherent uncertainties in the NAS
demand and capacity, rather than using deterministic
approximations. This is important as both demand
and capacity forecasts can have substantial
uncertainty. ProbTFM models and accounts for these
uncertainties in its solution. The Probabilistic TFM
concept is used to delay departures based on airport
congestion, as illustrated in Fig. 6.

I

Figure 6. Newark (EWR) Airport Congestion

ProbTFM models both system capacity and
loading forecasts as functions of both weather and
traffic uncertainties. These capacity and loading
forecasts are modeled as probability mass functions
(CPMFs and LPMFs, respectively). ProbTFM
computes CPMFs and LPMFs for all NAS capacity
elements, in 15 minute time intervals, for the future
hours of the day. The CPMF and LPMF, for a
particular capacity element and time window, are
compared to derive a non dimensional congestion
cost.

This congestion computation uses a modified
convolution of the CPMFs and LPMFs, as shown in
Eq. (1). The total congestion cost for a flight is then
tallied according to the NAS capacity elements it
transits.

(M

oee —

L‘ L‘\l__/))\bllVlJ'\l})_/llVll'_/)

i=Lmin j=Cmin

For example, Fig. 7 illustrates a notional LPMF
which slightly overlaps its corresponding CPMF. If
there was no overlap then the SCC computed in
Eq. (1) would be zero. The slight overlap, however,
introduces a small SCC.

Example LPMF and CPMF

@ Loading
W Capacity

0.35

L

12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20
Sector load/capacity (ops)

Figure 7. Notional LPMF and CPMF with slight
overlap.

As Fig. 8 shows, the greater the overlap the
greater the congestion cost. The cost grows as the
LPMF slides to greater values or, equivalently, the
CPMF slides to lower values.

Load Capacity -
ero
cost
/y\]
(1]
8
' [
o
S
/X\ :
[x]
Q
@
-~
Large

cost

Capacity /\ Nd

Max Capacity

Figure 8. Congestion cost model from Eq. 1.

Inherent in our congestion cost model is the
forecast accuracy, for both the CPMF and LPMF.
The congestion cost model is based on PMFs, and the
accuracy of the forecast is imbedded in the PMFs.
Therefore the congestion cost accounts for forecast
accuracy.

With our models of the weather impact on NAS
capacity, we use Eq. (1) to evaluate the congestion
cost at airports and in the NAS airspace, in future
time intervals. We use these costs, in turn, to evaluate
the congestion cost of each departing flight. High

K-4

congestion cost flights typically are involved in more
than one area of congestion. Thus, the NAS
congestion is reduced more efficiently by resolving
the high cost flights first. Figure 9 illustrates the
high-level ProbTFM logic.

Sort departures by Highest cost
congestion cost > Threshold? 7
es

No

Reevaluate
remaining
departures

Evaluate all
upcoming NAS
departures

Resolve highest
cost flight

Figure 9. ProbTFM high-level logic for managing
demand in congestion scenarios.

As Fig. 9 shows, inherent in the ProbTFM logic is
a cost threshold. Flight congestion costs, computed
from Eq. (1), are compared with the threshold value.
This threshold value is a user-specified input the
defines the TFM policy. A low threshold results in a
tight TFM policy, as even minor levels of forecasted
congestion will trigger strategic delays. A high
threshold, on the other hand, results in a loose TFM
policy, as significant levels of forecasted congestion
are required to trigger strategic delays.

Weather Rerouting Concept

The weather rerouting concept attempts to avoid
airspace that contains heavy convection. The concept
uses variable-sized polygons to model the airspace.
The current reflectivity image, or nowcast, represents
the convective weather for the current time period.
The nowcast is used to report the number of
hazardous-weather flight incursions. The concept
also uses a weather forecast for the future time
periods. Each forecast has an adaptable parameter to
determine the coverage threshold. The PNP universal
grid (4.1 nmi) is used to determine weather cell
population coverage. The weather cell is a hexagon
creating a honeycomb grid, as illustrated in Fig. 10.

==

Figure 10. PNP Universal Grid and Weather Cells

The hazardous weather cells are identified using the
persistence forecast. A hazardous weather cell is
identified when the percentage of universal grid
elements exceeds the coverage threshold, as
illustrated in Fig. 11 as red hexagons. The weather
cell hexagon size is configurable. The universal grid
element is considered populated with hazardous
weather if the universal grid element reflectivity is
greater than 40 dbz. The hazardous weather cells are
correlated to form weather clusters, as illustrated in
Fig. 11. As neighboring hazardous weather cells are
linked, they form the weather cluster. The clustering
of hazardous weather cells forms the representation
of a storm, which then can be avoided. The neighbor
cells are identified to seed a Dijkstra algorithm to
calculate the shortest path around a weather cluster,
as illustrated in Fig. 11 as blue hexagons.

K-5

Figure 1 1. Weather Cluster
Routing

The weather rerouting concept uses the weather
forecast to compute both strategic and tactical
routing. The tactical routing occurs in the en route
phase while the strategic routing occurs prior to
departure.

Tactical Routing

A flight is considered for tactical routing if its tracks
in the planning horizon traverse hazardous weather
cells. The planning horizon consists of two adaptable
relative time parameters (start and end of the
planning horizon). If a flight is predicted to traverse a
hazardous weather cell in the planning horizon, then
the first hazardous weather cell encountered is used
to determine the weather cluster. The neighboring
clear weather cells of the weather cluster are used as
candidate reroute cells. These candidate cells are
passed into a Dijkstra algorithm to determine the
shortest path. This shortest path is then spliced into
the current flight plan to create a new reroute for the
flight, as illustrated in Fig. 12. Route optimization is
used to smooth the initial vectoring around a weather
cluster. The number of acceptable route waypoints is
configurable. This parameter controls path length and
complexity.

Figure 12. Tactical Rerouting

Strategic Routing

Pre-departure flights are considered for strategic
rerouting if their tracks are predicted to traverse
hazardous weather cells. The strategic routing
algorithm calculates how many minutes a flight will
encounter hazardous weather based on the forecast.
Then the strategic routing algorithm calculates how
many minutes a flight will encounter hazardous
weather using different routes, as illustrated in

Fig. 13. If an alternate route is available which
encounters less hazardous weather, then it is selected
as a strategic reroute. If multiple city-pair routes are
available which encounter less hazardous weather,
then the shortest among them is chosen, as illustrated
in Fig. 14. The selected city-pair routes are saved for
an adaptable time period. As routes are saved and
reused over a configurable time period, they serve as

the “game-plan” for that time period.
o & A0

The city-pair routes were created based on ASDI
routes collected over several days. Thousands of
routes were then analyzed and paired down by their
arc deltas.

Figure 14. Strategic Reroute Selection

Probabilistic NAS Platform

For our simulation we use the Probabilistic NAS
Platform environment [15-17]. The PNP architecture
is convenient for this effort because, as Fig. 1 shows,
all decision making is segregated into clients that
attach to the PNP server. PNP itself models the NAS
and its dynamics. It provides NAS data to the
decision-making clients, and accepts decisions from
those clients.

PNP can be run in a real-time mode or a playback
mode. In the real-time mode, meteorological and
traffic data feeds supply current information that PNP
uses to model the state of the NAS. To propagate
aircraft trajectories, PNP uses PointMass, a fast and
accurate trajectory predictor [16,18].

In playback mode ProbTFM runs in fast-time using
archived weather and traffic data. The weather data
are selected from a list of historical days from which
the meteorological data have been archived. The
traffic data, on the other hand, may either represent
an historical day, or a future demand day which has
been modeled. For example, a day in the year 2014
can be run, with a hypothetical fleet mix such as an
increase in the very light jets.

The input data are read in by the PNP data processor.
The data processor reads, parses, and processes these
data. Downstream of the data processor, the PNP
modules are mode insensitive. Those processes
operate in the same way, regardless of whether the

real-time or the fast-time mode is run, and regardless
of data source.

The PNP real-time mode can be used to generate
real-time, automated TFM advisories. Both the real-
time and the fast-time modes can be used as a
development environment for ATM researchers to
experiment and evaluate candidate decision support
tools or other technology or infrastructure
enhancements.

Another key input to PNP is the airspace definitions
data. We use current NAS airspace definitions;
however, user-defined airspace definitions can
instead be input to PNP. Therefore, ATM researchers
can experiment with new airspace designs, and
dynamically redesigned airspace geometries as well.

The Probabilistic NAS Platform is responsible for
sector and airport congestion accounting. Sectors can
have a reduced capacity due to weather coverage as
illustrated in Fig 15.

The Probabilistic NAS Platform receives all flight
updates from all the concepts and determines the
hierarchy of which flight updates is executed. The
flight update priority is separation assurance, weather
avoidance, spacing, and congestion management.

- L
Conclusions

This paper describes an RTA-based traffic spacing
and weather rerouting concepts and how they could
fit within a candidate system architecture. The other
system components include conflict detection and
resolution, flight conformance monitoring, and traffic
flow management using gate delay only.

Figure 15. Sector CongestionAcknowledgements

The authors would also like to thank WSI, a
meteorological data supplier to the government and
commercial markets, for its data contributions. The

authors would also like to thank Mitre for its
contributions to the ProbTFM LPMF model.

References

[1] Federal Aviation Administration, Air Traffic
Organization, “Traffic Flow Management in the
National Airspace System,” October 2009.

[2] P. Kopardekar, K. Bilimoria, B. Sridhar, “Initial
Concepts for Dynamic Airspace Configuration,” 7¢h
AIAA Aviation Technology, Integration and
Operations Conference, Belfast, Northern Ireland,
September 2007.

[3] David Wing, Jennifer Murdoch, James
Chamberlain, Maria Consiglio, Sherwood Hoadley,
Clay Hubbs, Michael Palmer, “Function Allocation
with Airborne Self-Separation Evaluated in a Piloted
Simulation,” International — Congress of the
Aeronautical Sciences, 2010.

[4] Huabin Tang, John Robinson, Dallas Denery,
“Tactical Conflict Detection in Terminal Airspace,”
Journal of Guidance, Control, and Dynamics, 34:2,
pp- 403-413, March-April, 2011.

[5] Todd Lauderdale, Andrew Cone, Aisha Bowe,
“Relative Significance of Trajectory Prediction
Errors on an Automated Separation Assurance
Algorithm,” Ninth USA/Europe Air Traffic
Management Research and Development Seminar,
2011.

[6] George Hunter, “Preliminary Assessment of
Interactions Between Traffic Flow Management and
Dynamic Airspace Configuration Capabilities,” A/44
Digital Avionics Systems Conference (DASC), St.
Paul, MN, October, 2008.

[7] George Hunter, “Meta Simulation Results for
Simultaneous Dynamic Resectorization and Traffic
Flow Management,” AIAA Digital Avionics Systems
Conference (DASC), Orlando, FL, October, 2009.

[8] George Hunter, Ben Boisvert, “Modeling and
Simulation of Interactions Between Traffic Flow
Management and Separation Assurance,” AIAA
Modeling and Simulation Conference, Portland, OR,
August, 2011.

[9] Kris Ramamoorthy, Ben Boisvert, George Hunter,
“A Real-Time Probabilistic TFM Evaluation Tool,”

AIAA Digital Avionics Systems Conference
(DASC), Portland, OR, October, 2006.

[10] George Hunter, Ben Boisvert, Kris
Ramamoorthy, “Use of automated aviation weather
forecasts in future NAS,” The 87th American
Meteorological Society Annual Meeting, San
Antonio, TX, January, 2007.

[11] George Hunter, Kris Ramamoorthy, “Integration
of terminal area probabilistic meteorological
forecasts in NAS-wide traffic flow management
decision making,” 13th Conference on Aviation,
Range and Aerospace Meteorology, New Orleans,
LA, January, 2008.

[12] Huina Gao, George Hunter, Frank Berardino,
Karla Hoffman, “Development and Evaluation of
Market-Based Traffic Flow Management Concepts,”
AIAA Aviation Technology, Integration and
Operations (ATIO) Forum, Dallas, TX, September
2010.

[13] George Hunter, “Probabilistic Forecasting of
Airport Capacity,” AIAA Digital Avionics Systems
Conference (DASC), Salt Lake City, UT, October,
2010.

[14] Kris Ramamoorthy, George Hunter, “Toward an
Empirical Estimation of Weather Impact on Airport
Capacity,” AIAA Aviation Technology, Integration
and Operations (ATIO) Forum, Indianapolis, IN,
September 2012.

[15] Kris Ramamoorthy, George Hunter, “Evaluation
of National Airspace System Aggregate Performance
Sensitivity,” AIAA Digital Avionics Systems
Conference (DASC), Dallas, TX, October, 2007.

[16] George Hunter, Ben Boisvert, Kris
Ramamoorthy, “Advanced Traffic Flow Management
Simulation Experiments and Validation,” 2007
Winter Simulation Conference, Washington, DC,
December, 2007.

[17] George Hunter, “Testing and Validation of
NextGen Simulators,” AIAA Modeling and
Simulation Conference, Chicago, IL, August 2009.

[18] James Phillips, “An Accurate and Flexible
Trajectory Analysis,” World Aviation Congress,
Anaheim, CA, October, 1997.

31st Digital Avionics Systems Conference
October 14-18, 2012

K-8

PNP Developer’s Guide

Creating and Using Clients with the SimObjects API

8/17/2011
Sensis Corporation

Table of Contents

INTRODUCGCTIONccceiiiiiiieii it s s rress s s s s esss s s s s sn s s s s s s nass s s s snnsssssrsnnsssssrnnnsssssrnnnnsnnsrnnnn 3
PNP OVERVIEW.......coceiiiiiitei ittt reass s s s mas s s sms s s e s s s sm s s s nm s s s nnss s e nnsssennsssennssrennsnns 4
SWV ARCHITECTURE eeuutteeureesuteeeteeessseesseeessseesssessssseesssessnsssesssessnsssesssessnsesssssessssessnsssssssessnssessseesnsessssessnsnes 4
PINP SERVER ..vteuteteutee sttt etteesteeestteeseteeestaeessteesnsseesaseessseessssessaseeensseesnsaessseessseeenseeessseesnsseesnsessnssessnsenensseenns 5

LD s s PP P PO PPPTPPPPPPPPPP 5
PN CLIENTS. ettt ettee ettt ettt e ste e ettt e sateeebeeesabeeesbteesabeesabeeeasbeesabeeensseesabaeensseesaseeensaeeasseesnsseesaseesnsseesnsaeensseanns 6
THE PNP COMMUNICATIONS CYCLE “vtteuveerureeeieeesteessueeesiseesseeessseessessnseeesssessssseesssessnssessssessssseenssessssesssssessses 7
THE SIMOBUJECTS APl ...ttt rrsesss s s s s s s smnsss s s s s nns s s s s s nnnssssesnnnssssennnnes 8
IVIESSAGING ...veeuveeeeteeeuteeesteeestesestseessseeassaeasssesansseessseeansaeeassaeaaseeansseesnsasanssaesssaeansesaassaeasssesnsaeanssaesnsanesnsenans 8
DYNAMIC CLIENTS ¢eteuttteeuteeetreesutesessseessseeasesasssesaasseessseeasseseassesasesasssessssesasssessssessnsssesssessssssssnsesansesesssesessesnns 8
CREATING A PINP JAVA CLIENT ..ettieetieeeteeeetteeetteeesteeesaveeeseeessesssesaasssesssesasseesssaeasssesssesansssessseesnsasessseesnsenans 9
REGQUITEM LIDIQIIES ...ttt e et e ettt e e et e e e et a e e e ata e e e s tseaeeaataeaeesasssaaesssseeanaases 9
Connecting to PNP from @ JAVQA CHENTccccueeeeeeieeeeeeeeee et eetteeeetaee e et taes e e s ttta e e e saeaaeesaseeaeas 10
5ending data froOM YOUT CHENT............cccveeeeeeeeeeeeee ettt e et e ettt e e e et e e e et a e e eertaaeesreeas 13
Responding to PNP heartbeat MESSAGESccuueeeeecueeeeeiieeseesiieeeaesiseeeesiseeeeasissesesssssesesasssssasssssees 13
INTERACTING WITH PINP ...ttt sttt ettt et et e s tte e st eetaeesateeeaeeessbeeenteeessseesnseeessseesnseeenseesnseeenseenn 13
The BAtCARESPONSE MESSUGEcc..vveeeeeeieeeeeteeeeeetteeeeeeteeeeeatteeeeattsae e e e ttaseaeasssaaesasssaaessssseaesassaaesiens 13
(D=3 1o VLo I e 1 1 XSS 14
REIOULING FIIGRATS ...ttt ettt e ettt e e ettt e e ettt e e ettt a e e s ss e s e e et eaeeasssesasassenaeas 14
BEST PRACTICES FOR DEVELOPING PINP CLIENTS .. .vetetveeeireeeteeesteeeteeesiaeessseeessseesssesenseeesnsessssseesssessnsessssessnsees 15
GLOSSARY ...ceiiiiiiieir st s s ress s s s rna s s s e e nas s s e nna st e e naa st e e nnaL e rnnanrrrnnanerennnnaerrnnan 16
APPENDIX A: CONFLICT DETECTION AND RESOLUTION........ccccetrmmirrenrrreneeeenns 17

L-2

Introduction

This PNP Developer’s Guide focuses mainly on the development of PNP clients. The PNP clients model NAS
decision making such as in traffic flow management, airspace reconfiguration and user operations. The PNP
clients may be created in various computer languages, and during a simulation run they may dynamically enter
and exit the run.

L-3

PNP Overview

SW Architecture

PNP is a server, and clients can dynamically enter and exit during the run, using the PNP interface. Clients can
request a variety of data messages, and can return to PNP modifications, including flight plan modifications and
airspace (sector) redesigns.

Graphical User Interface

. Plan View Display
NAS o
L e Reports Database 5
o -)
Flight Data =
e ‘_l =
Probabilistic =
Weather Data =
Scripting [PR NAS Platform |} 5
aall Performance Data
- i)
Y 3
= 4
MATLAB® Client [lil Java Client | Client =
As Middleware > =
: =
o
a3
) &

(Any Language)

L4

PNP Server

The PNP server provides data to clients using the SimObjects API. The following sections describe methods of
requesting data from PNP and the types of data that may be requested by clients.

Data
PNP uses several types of data. These include meteorological data provided by WSI, including radar reflectivity,
winds, and ceiling and visibility. PNP also uses NAS airspace data, airport location and capacity, demand set

data containing flight data sets (FDSs), and BADA aircraft performance data. Please refer to the PNP User
Agreement for data use requirements.

L-5

PNP Clients

PNP clients model NAS components. By connecting to the server and registering with PNP, a client can request
the data it needs to model NAS components and decision making.

Clients may be written in either Java or MATLAB, and may be standalone or middleware. Standalone clients
perform all processing themselves, whereas middleware clients gather data from PNP, run an external program
to process the data, and send the results back to PNP.

Whether a client is Java or MATLAB, standalone or middleware, it will need to follow these three basic steps:

Step 1: Step 2: Step 3:
Register with | Request Data Handle Data

PNP Updates Updates

L-6

The PNP Communications Cycle

The PNP server communicates with clients in a synchronous cycle. As PNP advances time in the simulation, it
will periodically reach a time at which messages need to be sent to its clients. At each time point when the PNP
server needs to send messages, it will send the appropriate messages, send a heartbeat message to the clients,
and wait for the receiving clients to respond. Only after all receiving clients have responded will the PNP server
continue to advance time. This asynchronous communications cycle ensures repeatability of the simulation, and

is illustrated in Figure 2.

Advance Time

. Send
Wait for messages for

response i
P interval

=
heartbeat

Figure 2. The PNP Communications Cycle

L-7

The SimObjects API

SimObjects is the PNP API. It uses TCP/IP to transfer messages between PNP and its clients.

Messaging

The SimObjects API consists of over forty messages, which are used to transfer data between PNP and its
clients.

Messages in PNP exist as Serializable Java classes named after the data they contain.
PnpFlightDetails, for example, contains a list of flights and information pertaining to those flights. All
message classes exist in the package pnp.share.network.messages.

Please refer to the SimObjects API documentation for details on API messages.

Dynamic Clients
Clients in PNP are referred to as dynamic because they can enter the simulation at any time. When connecting to
PNP, each client specifies its configuration parameters, along with its data requirements. This provides for a

flexible client/server architecture, where the server does not require advance knowledge of its clients, but can
provide targeted data to each client based on its requirements.

L-8

Creating a PNP Java Client

Required Libraries

The following libraries need to be included by a Java client.

Library Use

pnp_common.jar Contains shared APl messages
commons-logging-api.jar Used for error logging
commons-logging-av.jar Used for error logging
log4j-1.2.9.jar Used for logging

seagull-common.jar

Contains many utility functions utilized by several API messages

seagull-position.jar

Contains classes for defining position data

seagull-units.jar

Used by position classes for specifying position units

L-9

Connecting to PNP from a Java client
Connecting a client to PNP is easy and requires only three steps.

Step 1: Register for Messages

In order to connect and register with PNP, a client must create and send a list of message requests to PNP. These
requests specify the messages PNP should send to the client, as well as how often each message should be sent.
To create a message request, simply register for messages using the MessageRegistryManager singleton. Three
parameters are required to register a message:

» The class of the API message object

» The interval, in minutes of simulation time, at which PNP is to send the message to the client

» An object implementing the ApiListener interface to invoke when the requested message type is
received

The ApiListener interface contains only one method, which will be called when the requested message is
received. The only parameter of the actionPerformed method is the message object. The signature of the method
is:

void actionPerformed (Object 0);

Example
The following example requests a list of all enroute flights every 15 minutes:
/**
* Register for messages desired to be received from PNP
*/
private void registerForMessages()
{

// We'd Like to receive all messages at 15-minute 1intervals
int interval = 15;

MessageRegistryManager registry = MessageRegistryManager.instance();

// Register for messages
registry.register(PnpEnrouteFlightDetails.class, interval, m_MessageHandler);

}

In this example, m_MessageHandler is an ApiListener object. In your client, you may use the same ApilListener
to handle many messages, or you may use different ApiListeners for different messages or sets of messages. It is
up to you.

Step 2: Create a Client Configuration Object

Now, you need to create a ClientConfiguration object to tell PNP a little bit about your client. Some rudimentary
information is required, such as the name of your client, so that PNP knows how to list your client in the System
Monitor. Other settings in the configuration object are optional, and you may use these as required by your
client.

A full description of the methods in ClientConfiguration is available in the Javadoc for the API, available in the
doc/ directory of your PNP release.

To create a basic ClientConfiguration object, simply call the constructor of ClientConfiguration with the name

of your client as the only parameter.
// Create a configuration object for this client
ClientConfiguration config = new ClientConfiguration("My First Client");

L-10

Step 3: Initialize the Connection

Once the client configuration object has been created, the connection with the server can be initiated. To start
the connection, simply create a PupFlightDetailsDescr object and use it to call the inif method to start the
connection.

The PnpFlightDetailsDescr object simply gives the PNP server some guidance as to what information to
include in flight data sent from the server to the client. This allows the server to optimize network usage by not
sending data to the client that the client doesn’t need.

Example

The following example creates a PnpFlightDetailsDescr that requires that only the sector schedule data be filled

out for flight objects sent by the server.
// Set up the flight details descriptor
PnpFlightDetailsDescr flightDetailsDescr = new PnpFlightDetailsDescr();
flightDetailsDescr.setSectorScheduleFlag(true);

At this point, we are ready to connect to the PNP server. To do this, simply call init:
// Connect to PNP
init(pnp_server_name, config, flightDetailsDescr);

Here, pnp _server _name is the network name of the host computer on which PNP is running, and config is the
ClientConfiguration object.

Real-world Example

The following is a real-world example of code used to connect a client to the PNP server, and shows how all the
pieces fit together to establish the client-server connection.

public LpThread(String serverName)

{
m_ServerName = serverName;
registerForMessages();
initPnpConnection();
}
/**
* Connect to the PNP server
*/
private void initPnpConnection()
{
// Obtain the name of the PNP server to connect to
String pnp_server_name = m_ServerName;
// Create a configuration object for this client
ClientConfiguration config = new ClientConfiguration("LP Solver Gateway");
config.setDatalLookaheadTimeBinOffset((int) m_LookaheadTime.as(Units.Minutes) / 15);
// Set up the flight details descriptor
PnpFlightDetailsDescr flightDetailsDescr = new PnpFlightDetailsDescr();
flightDetailsDescr.setSectorScheduleFlag(true);
// Connect to PNP
init(pnp_server_name, config, flightDetailsDescr);
}
Ve
* Register for messages desired to be received from PNP
*/
private void registerForMessages()
{

// We'd Like to receive all messages at 15-minute intervals
int interval = 15;

MessageRegistryManager registry = MessageRegistryManager.instance();

// Register for messages
registry.register(PnpAtGateFlightDetails.class, interval, m_MessageHandler);
registry.register(PnpEnrouteFlightDetails.class, interval, m_MessageHandler);

registry.register(Heartbeat.class, interval, m_MessageHandler);
registry.register(Sync.class, interval, m_MessageHandler);

registry.register(SectorIdMap.class, interval, m_MessageHandler);
registry.register(SectorNameMap.class, interval, m_MessageHandler);
registry.register(SectorMxMap.class, interval, m_MessageHandler);
registry.register(SectorCount.class, interval, m_MessageHandler);
registry.register(SectorWxCoverage.class, interval, m_MessageHandler);
registry.register(SectorRxReduction.class, interval, m_MessageHandler);

L-12

registry.register(AirportCapacities.class, interval, m_MessageHandler);
registry.register(AirportFlightRules.class, interval, m_MessageHandler);

registry.register(TerminalConditions.class, interval, m_MessageHandler);

Sending data from your client

Sending data from a client to the PNP server is easy. The OCMM contains a send method which will send any
message to PNP. The message will be a Serializable object from the pnp.share.network.messages package of
PNP.

Using the class from the previous section, the following method could be used to send messages back to PNP:
private void send(Object message)

{
}

m_Client.send(message);

Responding to PNP heartbeat messages

Once the PNP server has sent all requested messages to your client for the given interval, it will send a

Heartbeat message to your client, and will await a response before moving the simulation forward. The

purpose of this is to keep the simulation synchronous and repeatable. The client should only respond after it has

processed all of the data it has received for that interval.

To respond to the heartbeat message, the client need only send a HeartbeatResponse message to the server:
send(new HeartbeatResponse())

Interacting with PNP

A client can interact with PNP by modifying flights. PNP clients can delay or reroute flights, and the following
sections explain how to do just that.

The BatchResponse Message

All delays and reroutes are performed using the BatchResponse message. The BatchResponse message allows a
client to specify which (if any) flights to delay or reroute. This message should be sent to PNP once the client
has received a Heartbeat message and has done all of its processing.

The BatchResponse message contains the following constructor:

public BatchResponse(int dstId,
Map<Integer, Short> delayMap,
Map<Integer, ReroutePlan> rerouteMap,
Map<Integer, ReroutePlan> inflightRerouteMap)

m DstId = dstId;

m_DelayMap = delayMap;

m_RerouteMap = rerouteMap;
m_InflightRerouteMap = inflightRerouteMap;

L-13

Delaying Flights

The delay map in the BatchResponse is a map that is ordered by flight ID. Each flight ID maps to a short value
specifying the number of minutes by which to delay the flight. PNP will apply the specified delay to each flight
in the delayMap provided.

Rerouting Flights

Flight reroutes fall into two categories:

e Pre-departure reroutes, applied to flights that have not yet departed
o Inflight reroutes, applied to flights that are already enroute

As with delays, the maps specified for reroutes are keyed by flight ID. The ReroutePlan provided simply
contains the new list of 3-dimensional positions, listed at one-minute intervals, for each flight. The rerouteMap
specifies any pre-departure reroutes requested by the client. The inflightRerouteMap specifies any inflight
reroutes requested by the client.

All reroutes requested by the client are implemented by PNP.

L-14

Best Practices for developing PNP clients

In order to make the best use possible of PNP and SimObjects, the following have been identified as best
practices to follow when creating clients for PNP:

Create separate threads for processing vs. connection management

A PNP client performs whatever simulation tasks are appropriate for it. While it is performing this
processing, it may need to send or receive messages from PNP. Keeping the communications handling
code in a separate thread from the processing code allows messages to be sent and received while the
processing code is running. This added flexibility significantly enhances the capability of any client
developed in this way.

Send all processing results to PNP before sending a HeartbeatResponse

A HeartbeatResponse tells PNP that your client has finished its processing. Once PNP has received
this message, it continues advancing time, and will send a new set of messages to your client for
processing. If the client has not finished sending its results to PNP before it receives the new data, the
repeatability of the simulation may be affected, as the order in which messages are sent and received
may change if the same simulation is run again. Additionally, if the client’s internal data are not cleared
before the new data are received, the client may end up with incorrect data. To ensure against this, the
client should wait until after sending all its results before sending the HeartbeatResponse message.

L-15

Glossary

API Application Programming Interface

NAS National Airspace System

OCMM Object Client Message Manager. Utility for managing a client’s data connection
with PNP.

PNP Probabilistic NAS Platform

SimObjects The PNP API

L-16

Appendix A: Conflict Detection and Resolution

Some client applications detect airspace conflicts, or imminent losses of separation between aircraft. The PNP
Plan View Display (PVD) is capable of depicting conflicts, as well as losses of separation, when data on such
events are supplied by a client.

Conflict-related APl Messages

The PNP API contains two messages that may be used by clients for pointing out airspace conflicts and losses of
separation. These are:

« ConflictList
The ConflictList message contains a list of Conflict objects, each representing an imminent loss of
separation between two aircraft.

s LosList
The LosList message contains a list of LossOfSeparation objects, each representing a current loss of
separation between two aircraft.

Both of these messages are documented in the API JavaDoc documentation contained in the doc/ folder of your
PNP release.

Display of CD&R Information

When a conflict or loss of separation is sent from the client to the server, the server will display the conflict on
the PVD for the duration of the time bin. This information is cleared by the server at the end of the time bin, at
which it is allowed to expire if not re-sent by the client. This behavior exists because conflicts or losses of
separation may be resolved during the time bin. Therefore, a client that detects conflicts and loss of separation
(LOS) events must re-send all conflict and LOS information at every time bin during which the conditions are
active.

L-17

Probabilistic NAS Platform

User Guide

v1.5

8/16/2011
Sensis Corporation

Base of Aircraft Data (BADA,)............. 14

TABLE OF CONTENTS PNP SERVER PARAMETERS.....cvvvvvrvrvenrrennnnns 15

INTRODUCTION............cceneniee. 4 Control Parametersccccueeunn. 15
SCOPE ..o 4 Knob Parameters...............ccccvvvveene. 16
Weather Parameters........................ 18

SOFTWARE ..., 5
Display Parameters..............cccccueeeunn. 19
ARCHITECTURE 1eeuveeteestrestreereereesreessnesaneeans 5 Dataset Parameters... ... 21
DESIGN c.vveereecteeeteeetreeveeereesreesreesraeereenveens 6 Airspace Parameters 22
R =1 4= GO 6 Output PAIAMELOSnnnnnseseooseseii 23

ClieNtS ..o 7
OUTPUTS ... 25

Probabilistic TFM (ProbTFM) Client......7
weather avoidance (WAC) Client 7 REPORTS ceeiit ettt e eaa e 25
Airline Operations (AOC) Client............. 7 Summary Report.........ueeeeeeeeevvveennans 25
Ground Delay Program (GDP) Client....7 Sector Information Report................. 12
Separation assurance (SA) Client 7 AtGate Sector Loading Report........... 28
Required time fo arrival (RTA) Client....7 Enroute Sector Loading Report.......... 28
Dynamic airspace (DAC) Client............. 8 De/ay REPOIT ..., 30
WSI ClIENt v.vovevverrrssesssseeeeeeeeeereeeeeenee 8 Departure REpOrt..........cooooovvvvvvvvvvveee 31
IVIESSAGES ..eeveveeveeeeeeeeeeeeseeeessessesseeseseeene 7 Reroute Reportcoocevvvviniinnene. 33
Request MeSSAGES..........ccceeveeveevevenn.. 8 MxMap Sector Capacity Report......... 33
Response MeSSages.............cocuevevnn.. 10 WxMap Sector Capacity Report......... 34
Airport Capacity Report..................... 35

INPUTS....corrcr e 10
TAF REPOI e, 35
DATA SETS et eeeeeeeiiiee e e 10 METAR REPOI ..o, 36

Directoriescccccceveevvveeiiiieninininnnnnn, 10
RUNNING PNP......coeeereeeee 38

FILES tvveveeeeteeieesteesieesieeseresve e eee e seees 12
Flight Data Setsc.cocoevevevrveren. 12 EXPERIMENTS ..ieeeiiviiieneeeeeevnniiineeeeeeennnnnas 38
Sector Geometries and Monitor Alert Simulation Parameter Files................ 38
POrAMEters........ccoeeeeeeeveveeeverrenenn 13 Client Parameter Files........................ 38
AIRSPACE Data Setsooovveee... 14 Experiment Definition Files................ 38

Schedule Definition Files..................... 38
INITIAL STARTUP....ceetieiieniie st 39
Navigation: File Selection................... 39
Navigation: Menu Usage.................... 40
Navigation: Toolbar Usage................. 42
Navigation: File Manipulation............ 42
CREATING A NEW EXPERIMENT ...oovvveerennnnn 45
OPENING AN EXPERIMENT ..c..veeureerreerenneennne 46
SAVING AN EXPERIMENTovvuveeieenieenneneenns 47

DELETING AN EXPERIMENT ...evvvevvveeenenenenennns 48

RUNNNING AN EXPERIMENT ...cevvvvevenenenenennns 49
SCHEDULING EXPERIMENTScevvvvvvvvrernenennns 50
ANALYZING EXPERIMENTS ...cvvvvvereeernrnrnennnnns 51
APPENDICES ...coiiiiieieeeeeeeeeiiieeeeeee e eenees 52

APPENDIX A: TRAJECTORY MODEL

INITIALIZATION it 52
APPENDIX B: MATLAB SUPPORT..........uuueee 54
APPENDIX C: CLEANUP ..cooviiiiiieeeee e e 55

INTRODUCTION

The Probabilistic NAS Platform (PNP) is both a research tool and a decision support platform to analyze
air traffic and traffic flow management (TFM) issues. Real-time PNP provides real time meteorological
data and traffic advisories in which an operator or Air Traffic Manager can make more informed and
accurate decisions. Playback PNP evaluates current or future TFM concepts using projected or actual
traffic demands sets with recorded historical meteorological data.

SCOPE

This document guides the PNP user in the design and execution of PNP simulations.
Topics covered include:

«» Software Overview
¢ Configuring PNP

+* Running PNP

SOFTWARE

ARCHITECTURE

The PNP software has a client/server architecture. PNP supports multiple clients. Clients may be distributed locally
or remotely. As Figure 3. PNP Architecture illustrates, these processes communicate with one another via the
SimObjects API.

SimObjects coordinates the exchange of data between the PNP server and its clients in the form of serialized Java
objects. Data integrity is assured through the use of TCP/IP communications on dedicated socket channels. PNP
clients may dynamically join a simulation, and use a subscribe mechanism to request periodic, customized data
updates from PNP.

Clients may be developed in Java or MATLAB. Additionally, external, third-party software may be integrated into a
PNP simulation through the use of a dedicated middleware client, which communicates both with the external
software using any desired mechanism, and with PNP server using the SimObjects API.

=
@ _ Graphical User Interface
>~ /"\ ‘ gl Plan View Display _ i
\ \(NAS 2
>
([@.4——‘ L ammmey] Reports Database 7y
c~ 7]
t | 4_'_ Flight Data 3
s c
e A Probabilistic Weather b)
Scripting NAS Platform S
o Performance Data |
o
0
0,
As Middleware =
3
=
a

External Client
(Any Language)

Figure 3. PNP Architecture

DESIGN

SERVER

The PNP executive is the server. It is responsible for the execution and flow control of the system. The PNP
executive manages communications, airport capacities, sector definitions (geometries/capacities/monitor alert
parameters), display updates, flights (trajectory models/persistence), and weather models.

Communication PVD
Manager
A
Airport Flight
Manager Manager
S
-
Sector Weather
Manager Manager
J w J

Figure 4. PNP Server Design

CLIENTS

The PNP architecture is scalable and supports an unlimited number of clients. Clients may be created using Java or
MATLAB, and communicate with PNP using the SimObjects API. PNP’s client-server architecture is plug-and-play,
so PNP requires no advance knowledge of clients. Clients are added to a PNP simulation by specifying the
configuration file for each client to be run. Each client’s configuration file specifies how to run the client, so once
the configuration file is specified, PNP requires no knowledge about the client.

When a client joins the PNP simulation, it registers with PNP and specifies what types of data it will require, and at
what intervals. Clients may request many types of airspace data, including traffic and weather data. See the
SimObjects APl documentation for details.

Clients may process data received from PNP and take action that directly affects the simulation. Clients may delay
or reroute flights, or modify the airspace. See the SimObjects APl documentation for details.

PROBABILISTIC TFM (PROBTFM) CLIENT

The Probabilistic TFM Client determines delays and reroutes to reduce congestion by creating a probabilistic
distribution based on sector and airport congestion.

WEATHER AVOIDANCE (WAC) CLIENT

The Weather Avoidance Client determines delays and reroutes to avoid congestion and weather based on sector
loading and reflectivity data. (Work in progress)

|AIRLINE OPERATIONS (AOC) CLIENT

The Airline Operations Client determines delays and reroutes based on airline schedules and operational mode.

‘GROUND DELAY PROGRAM (GDP) CLIENT

The Ground Delay Program Client determines delays based on airport congestion.

|SEPARATION ASSURANCE (SA) CLIENT

The Separation Assurance Client determines reroutes based on loss of separation events.

| REQUIRED TIME FO ARRIVAL (RTA) CLIENT

The Required Time of Arrival Client determines reroutes based on meeting scheduled RTAs. (Work in progress)

DYNAMIC AIRSPACE (DAC) CLIENT

The Dynamic Airspace Client determines sectors (subsectors) definitions and capacities.

WSI CLIENT

The WSI Client sends live weather products to the PNP Server.

MESSAGES

The messages in the system are serialized objects. The following section identifies the current messages in the
system.

REQUEST MESSAGES

Request Messages

Message Type Source
PNP Flight Details Server
Sector Loading Server
Airport Loading Server
Airport Conditions Server
Airport Capacities Server
Reroute Request Client
Sector Geometries Server

Heartbeat

Server

RESPONSE MESSAGES

Response Messages

Message Type Source

Delays Client

Reroutes Client

Reroute Response Server

Sector Data Client
See SimObjects APl documentation for complete details

INPUTS

DATA SETS

PNP requires the following data sets to define its airspace and aircraft.

DIRECTORIES

The PNP directory structure contains six sub-directories, as shown in Fig. 4. The bin directory contains the
command files necessary to run the software. The log directory contains the runtime output and error logs. If a
user wants to report a problem with the system, it is necessary that all the log directory files be forwarded to the
PNP maintenance staff. The lib, pnplib, and resource directories contain the files necessary to run the PNP
application.

M-10

& C:\Program Files',Sensis Corporation’,Probabilistic NAS Platform 2 I Dlﬂ
File Edit View Favotites Tools Help | a"
@Back - '_g') - I? |/'_)Search |\ Folders | _‘5 B x n | -
Address IE| :\Program Files\Sensis Corporation\Probabilistic NAS PlatForm j Go
[ame = | Size | Type | Date Modified
\Chbin Fil= Folder 12/20/2007 3:48 PM
Chdata File Folder 12/20/2007 3:47 PM
kb File Folder 12/20/2007 3:48 PM
Shlog File Folder 1/15/2008 3:47 FM
5 prplib File Folder 12/20{2007 3:45 PM
\gresources Fil= Folder 12{20/2007 3:47 PM
'L_'})] jogl.dil 284 KB Application Extension 8f17/2007 9:24 aM
@ joal_awt.dl 20KE Application Extension 8/17/2007 9:24 AM
@ jogl_cg.dll 112KE Application Extension 8/17/2007 9:24 AM

 DATA

The data directory contains information necessary for PNP to run, as well as data required to seed the PNP
application.

BADA

The bada subdirectory contains all the files necessary for the trajectory engine to fly aircraft. The trajectory engine
uses these BADA performance data to calculate the exact position of each aircraft at every minute of the
simulation, giving a high-fidelity representation of all the traffic in the NAS.

CONFIG

The config subdirectory contains information necessary to configure PNP. This information includes specifications
on available clients, as well as other data required to run PNP. When adding a client to PNP, the clients.cfg file
must be updated to reflect changes to the list of clients.

DISPLAY

The display subdirectory contains initialization files used to configure the PNP displays.

INI

The ini subdirectory contains initialization files used to configure the PNP server as well as its clients. Each client
has a unique set of configuration commands. Please refer to the documentation for each client for instructions on
how to properly configure it.

PVD

M-11

The pvd subdirectory contains all the files necessary to display objects on the PVD.

REPORTS

The reports subdirectory holds all the runtime reports that are generated. The runtime reports use the comma-
separated values file format (.CSV) that stores tabular data. This format is commonly acceptable by any
spreadsheet application, word processor, and MATLAB.

SECTORMAPPING

The sectormapping subdirectory contains all the files necessary to define the sectors of the system. PNP is
installed with sector data from January, 2007. However, the user may provide a different set of sector data, and
configure PNP to use those data. Please refer to the Airspace Parameters section of this document for details on
how to configure PNP sector data parameters.

FILES

FLIGHT DATA SETS

The FDS Analysis is used to analyze future and current air traffic modeling. AvDemand is used to generate flight
data sets for PNP experiments. The flight data set format is tabular data used to capture a flight with the following
fields:

Field Name Used by PNP? Example Value
Flight ID 34

Airline v AAL234/009
Aircraft Type v B752

M-12

Departure Airport v LAX

Arrival Airport v MIA

Original Fixes v 2037/7104 2018/6970 2010/6840 1950/6600
1909/6377 1857/6179 1836/5989 1751/5406
1569/4907 1548/4817

Modified Fixes

Cruise Altitude v 350

Cruise Speed v 452

Scheduled Gate Departure Time 10

Gate Departure Trigger Time -1

Gate Ground Delay Departure Time -1

Updated Gate Departure Time v 810

Flight Plan Trigger Time -1

Flight Cancelled Flag 55

SECTOR GEOMETRIES AND MONITOR ALERT PARAMETERS

These data sets create the sectorization for PNP.

Airspace Data Sets

M-13

Data Sets Directory

Sector Mapping C:\ARCHIVE\AIRSPACE\sectormapping

AIRSPACE DATA SETS

The airspace data sets are used to create the airspace for PNP. The NFDC data sets are provided by the FAA every
56 days. The City Pairs data sets were data mined from historical ASDI routes. The AvDafif data sets were obtained
from the National Geospatial-Intelligence Agency. The Airport Mapping datasets were created by Sensis Systems
Engineers. The custom data sets have been created to fill gaps in the airspace definition. These data sets are used
to define PNP’s airspace.

Airspace Data Sets

Data Sets Directory

NFDC C:\ARCHIVE\AIRSPACE\nfdc
Fallingrain C:\ARCHIVE\AIRSPACE\fallingrain

City Pairs C:\ARCHIVE\AIRSPACE\citypairs
AvDafif C:\ARCHIVE\AIRSPACE\avdafif

Airport Mapping C:\ARCHIVE\AIRSPACE\airportmapping
Custom C:\ARCHIVE\AIRSPACE\custom

BASE OF AIRCRAFT DATA (BADA)

The BADA data is used by the Sensis Trajectory model to simulate aircraft performance.

M-14

PNP SERVER PARAMETERS

The PNP Server parameters control the runtime attributes of the experiment. The parameters control what FDS,
weather, sectors, and airspace data an experiment utilizes. The parameters control the speed, display, and models
utilized in an experiment.

The various PNP Server parameters are specified in the PNP Server initialization (.ini) file and are broken up into
parameter sets. The following sections describe the PNP Server parameter sets found in the PNP initialization file.

CONTROL PARAMETERS

Control parameters provide basic connection and initialization information for PNP Server. These parameters do
not typically change between experiments, and are meant to be used to standardize a set of runs and ensure that
some basic parameters are used across several sets of runs.

Control Parameters

Field Name Field Description Default Value

starttime The starttime parameter specifies the start time used to 07:45
begin processing the FDS air traffic dataset. This is the start
time of the simulation.

playbackruntime The playbackruntime parameter specifies the number of 24
hours of flights from the FDS to process. A value of 24, for
example, will simulate 24 hours of departures. The
simulation runs until all aircraft have landed.

fdsoffset The fdsoffset parameter specifies the number of hours to 8
offset the processing to the FDS. This is used to compensate
for time discrepancies in the FDS such as time zones. For
example, if an FDS was created with departure times local to
the GMT-8 (Pacific) timezone, the departure times in the
flight need to be offset by +8 hours to convert them to GMT,
in which PNP operates.

M-15

fasttimeflag

The fasttimeflag parameter determines the speed of the true
PNP clock during playback. If this flag is set to true, PNP will

use 100% of the CPU and run as fast as possible. Note: This

will make the PVD interaction slower and less responsive.

Setting the flag to false allows the system to attempt to run

in uniform time.

KNOB PARAMETERS

Knobs represent a series of parameters that can be adjusted to tweak the behavior of the simulation.

Knob Parameters

Field Name

lookaheadtime

airportcapacitymultiplier

sectorcapacitymultiplier

greatcircleroute

pointmasstrajectory
model

Field Description Default Value

Specifies the number of hours of departures to pre-load in 2
advance of the current simulation time. This allows

predictive algorithms (such as the at-gate loading counter)

to have visibility into future NAS loading

The factor by which to multiply all airport capacities 1.0

The factor by which to multiply all sector capacities 1.0

Specifies whether to disregard filed flight plan routes and false
use great circle routes instead

Specifies whether PNP should use the Point Mass false
trajectory model for aircraft simulation

L] When set to true, PNP will use the point mass
model, which is fast and has high accuracy.

- When set to false, PNP will use the kinematics
model, which is ultra fast and has slightly lower
accuracy

M-16

M-17

WEATHER PARAMETERS

The weather parameters control how PNP processes weather data.

Weather Parameters

Field Name Field Description Default Value
Weather Timestamp The Weather Timestamp Offset parameter contains the 0
Offset number of hours to offset the processing on the WSI archive

data. This is used to compensate for time discrepancies in
the WSI recorded archive.

reflectivityflag The Reflectivity parameter instructs the PNP to enable true
processing of reflectivity data

Propagate Intervals The Propagate Intervals parameter instructs the PNP to use 4
a reflectivity persistence forecast for X time intervals, when
forecasting convection. The persistence forecast is
sometimes more desirable than forecast polygons.

The recommended use of persistence is at least one hour (an
entry of 4).

forecast The forecast parameter instructs the PNP to process the WSl fa|se
forecast convection polygons and make the forecast
available to clients.

The forecast convection polygons obtained from WSI are
applied to same grid as the sectors. The percentage grid
coverage is computed per sector. This convection forecast
coverage is prorogated forward based on the convection
time window provided by WSI.

windsflag The Winds parameter instructs the PNP to process the WSI false
wind data. The winds data are used by the trajectory

M-18

models.

metarreportsflag The METAR parameter instructs the PNP to process the true
Aviation Routine Weather Reports.

tafreportsflag The TAF parameter instructs the PNP to process the true
Terminal Area Forecasts.

DISPLAY PARAMETERS

The display parameters affect the amount of information that is shown on PNP’s graphical display during a

simulation.

Display Parameters

Field Name Field Description Default Value

pvdlevel The PVD Level parameter specifies the amount of 0
information to show on the display. Acceptable values range
from 0 to 3, where a value of 0 disables the PVD entirely,
and a value of 3 enables the display of all available

information.

0 No PVD

1 PVD with airport & sector
congestion only.

2 PVD with congestion and
aircraft only.

3 Interactive mode. PVD
with congestion, aircraft,
and weather. *Note: The
system runs slower as the

M-19

chart

datestring

processor is freed to

update the PVD requests.

The Chart parameter specifies whether a statistics chart
should be shown during the simulation. The chart contains
real-time statistics on delays, reroutes, and number of flights
processed.

The Date String parameter specifies the date string to be
shown at the top-right corner of the PVD (if the PVD is
shown). This date should match the date of the simulation
data being processed.

true

M-20

DATASET PARAMETERS

The Dataset parameters control which files PNP uses as its source for weather and traffic data. Note that all
directory definitions use the double-backslash (\\) to separate directories. Double backslashes are necessary for

the proper operation of PNP.

Dataset Parameters

Field Name

wsiarchive

avdemandinputfile

airportcapacityfile

tafairportfile

Field Description

The WSI Archive parameter is the
directory of the WSI archive to be
processed. The WSI Archive contains all
the weather data. If a user wants to run
with weather, this field needs to contain
the WSI Archive and the appropriate
Weather Parameters must be selected.

The AvDemand Input File parameter is
the directory and filename of the Flight
Data Set (FDS) file containing all the
planned flights for the simulation.

The Airport Capacity File parameter is
the directory and filename of the airport
capacity definitions.

The TAF Airport File parameter is the
directory and filename of the terminal
airports of interest.

Default Value

\\ARCHIVE\\AIRSPACE\\airportmapping\\
2007_baseline_capacities.csv

\\ARCHIVE\\AIRSPACE\\airportmapping\\
2006_taf_airports.csv

M-21

AIRSPACE PARAMETERS

The airspace parameters control which files PNP uses as its source for airspace data. Note that all directory
definitions use the double-backslash (\\) to separate directories. Double backslashes are necessary for the proper
operation of PNP.

Airspace Parameters

Field Name

sectoraltitudelmits

supersectorfile

highsectorfile

lowsectorfile

traconfile

sectorcapacityfile

Field Description

The Sector Altitude Limits parameter is
the directory and filename of the sector
altitude limit definitions.

The Super Sector File parameter is the
directory and filename of the super
sector geometry definitions.

The High Sector File parameter is the
directory and filename of the high sector
geometry definitions.

The Low Sector File parameter is the
directory and filename of the low sector
geometry definitions.

The TRACON Geometries File parameter
is the directory and filename of the
TRACON geometry definitions.

The Sector Capacity File parameter is the
directory and filename of the sector
capacity definitions.

Default Value

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_sector_altitude_limits.csv

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_01_18_sectors_super.dat

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_01_18_sectors_high.dat

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_01_18_sectors_low.dat

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_01_18_tracon.dat

\\ARCHIVE\\AIRSPACE\\sectormapping\\
2007_sector_capacities.dat

M-22

OUTPUT PARAMETERS

The Output parameters specify what data should be output by PNP.

Output Parameters

Field Name

description

experiment

flightdataoutput

flightplanreroutesoutput

sectorloadingoutput

airportloadingoutput

sectorcapacityoutput

Field Description

A description of the experiment

The name of the experiment

The Flight Data parameter instructs PNP whether to
generate flight details data or not.

The Flight Plan Reroutes Output parameter instructs PNP
whether to generate flight plan reroutes or not.

The Sector Loading Output parameter instructs PNP whether
to generate sector loading data or not.

The Airport Loading Output parameter instructs PNP
whether to generate airport loading data or not.

The Sector Capacity Output parameter instructs PNP
whether to generate sector capacity data or not.

Default Value

true

true

true

true

true

M-23

airportcapacityoutput The Airport Capacity Output parameter instructs PNP true
whether to generate airport capacity data or not.

M-24

OUTPUTS

The PNP generates several reports that can be used for analysis and post processing by other applications. These
reports are described in the following sections.

REPORTS

SUMMARY REPORT

The Summary Report is generated by the Flight Data Set (FDS) Analysis. This report contains the following fields:

Description
Experiment The name of the expirement
TotalDepartures Total number of departures
TotalMxCongestion Number of airspace congestion events based on sector MAP value
AvgMxCongestion Average airspace congestion per congestion event based on sector MAP value
TotalWxCongestion Number of airspace congestion events based on weather reduced MAP value
AvgWxCongestion Average airspace congestion per congestion event based on weather reduced MAP
value
AirportMxCongestion Number of airport congestion events based on airport capacity
AirportAvgMxCongestion Average airport congestion per congestion event based on airport capacity
AirportWxCongestion Number of airport congestion events based on weather reduced airport capacity

M-25

AirportAvgWxCongestion

Average airport congestion per congestion event based on weather reduced airport
capacity

DepartureDelayCount

The number of pre-departure delays

PreDepartureDelay

The total minutes of pre-departure delays

AvgPreDepartureDelayCount

Average delay per pre-departure delay

PreDepartureRerouteCount

The number of pre-departure reroutes

PreDepartureRerouteDelay

The total minutes of flight time added for pre-departure reroutes that increase flight
time

PreDepartureRerouteNegativeDelay

The total minutes of flight time savings for pre-departure reroutes that reduce flight
time

PreDepartureRerouteAvgDelay

Average flight time difference per pre-departure reroute

InflightRerouteCount

The number of in-flight reroutes

InflightRerouteDelay

The total minutes of flight time added for in-flight reroutes that increase flight time

InflightRerouteNegativeDelay

The total minutes of flight time savings for in-flight reroutes that reduce flight time

InflightRerouteAvgDelay

Average flight time difference per in-flight reroute

TotalDelayCount

Total number of delay events

TotalDelay Total minutes of flight time delay
AvgDelay Average minutes of delay per departure
FuelBurn Total fuel burn (pounds)

M-26

Date Date of experiment

Runtime Runtime of experiment

WxDate WSI Archive directory

Descr Descriptive test to track experiments
Revision Software revision

M-27

SECTOR INFORMATION REPORT

The Sector Information Report maps the sector column in the AtGate Sector Loading, Enroute Sector Loading,
WxMap Sector Capacity, and MxMap Sector Capacity Reports to a sector name.

ATGATE SECTOR LOADING REPORT

The AtGate Sector Loading Report is generated by the FDS Analysis. This report contains the sector loading for
every time interval of runtime.

Description

Interval Interval value (0-95)

Sectorl Number of aircraft that are at the gate and

contribute to this sector’s loading

Sector ... Number of aircraft that are at the gate and

contribute to this sector’s loading

Sector 9999 Number of aircraft that are at the gate and

contribute to this sector’s loading

ENROUTE SECTOR LOADING REPORT

The Enroute Sector Loading Report is generated by the FDS Analysis. This report contains the sector loading for
every interval of runtime.

M-28

Description

Interval Interval value (0-95)

Sectorl Number of aircraft that are enroute and contribute to this sector’s loading
Sector ... Number of aircraft that are enroute and contribute to this sector’s loading
Sector 9999 Number of aircraft that are enroute and contribute to this sector’s loading

M-29

DELAY REPORT

The Delay Report is generated by the FDS Analysis. This report contains aircraft delay information.

Description

flightindex Internal PNP id to track flights

aircraftid Aircraft flight identifier

orig Departure airport

dest Arrival airport

bin The departure interval based on wheels off time (0- 95).

predictedCost

Predicted cost

maxGPCvalue

Gross Predicted Cost

BNSI1 Bin number sector for the maxGPCIndex = 0
BNSI2 Bin number sector for the maxGPCIndex = 1
BNSI3 Bin number sector for the maxGPCIndex = 2
sectorload Number of aircraft in departure sector

delaylnMinutes

Total minutes of flight time delay

routeDelaylnMinutes

The total minutes of flight time added for pre-departure reroutes that increase flight
time

DelayCount

The number of times this flight has been delayed

M-30

delayType Sector or airport delays

DEPARTURE REPORT

The Departure Report is generated by the FDS Analysis. This report contains aircraft departure information.

Description
flightindex Internal PNP id to track flights
aircraftid Aircraft flight identifier
continuousBin The continuous departure interval based on wheels off time (0 - o).
bin The departure interval based on wheels off time (0 - 95).
predictedCost Predicted cost
maxGPCvalue Gross Predicted Cost
BNSI1 Bin number sector for the maxGPCIndex = 0
BNSI2 Bin number sector for the maxGPCIndex = 1
BNSI3 Bin number sector for the maxGPClndex = 2
BNSILoading Bin number sector for the maxGPC Loading
flightTime Minutes of flight time
wheelsOffTime Predicted airborne time

M-31

orig

Departure airport

dest

Arrival airport

M-32

REROUTE REPORT

The Reroute Report is generated by the FDS Analysis. This report contains aircraft reroute information.

Description

flightindex Internal PNP id to track flights

aircraftid Aircraft flight identifier

orig Departure airport

dest Arrival airport

routeDelaylnMinutes The total minutes of flight time added/subtracted for pre-departure reroutes that
increase/decrease flight time

MXMAP SECTOR CAPACITY REPORT

The MxMap Sector Capacity Report is generated by the FDS Analysis. This report contains the Monitor Alert
Parameter (MAP) values for every sector for every interval of runtime.

Description
Interval Interval value (0-95)
Sectorl Sector MAP Value
Sector ... Sector MAP Value

M-33

Sector 9999 Sector MAP Value

WXMAP SECTOR CAPACITY REPORT

The WxMap Sector Capacity Report is generated by the FDS Analysis. This report contains the Weather Reduced
Monitor Alert Parameter (MAP) values for every sector for every interval of runtime.

Description
Interval Interval value (0-95)
Sectorl Sector Weather Reduced MAP Value
Sector ... Sector Weather Reduced MAP Value
Sector 9999 Sector Weather Reduced MAP Value

M-34

AIRPORT CAPACITY REPORT

The Airport Capacity Report is generated by the FDS Analysis. This report contains the Airport Capacities for every
interval of runtime.

Table 1 Airport Capacity Report

Description
Interval Interval value (0-95)
Airport Airport name
AirportCapacity Airport capacity value
WeatherReducedAirportCapacity Airport weather reduced capacity value
AirportLoading Airport loading for this interval
TAF REPORT

The Terminal Area Forecast Report is generated by the FDS Analysis when the TAF parameter is enabled, See

Description
icaoSiteld The ICAO station identifier
origbin The interval when the report is received (0- 95).
startbin The interval when the report takes affect (0- 95).
stopbin The interval when the report expires (0- 95).

M-35

visibility The number of miles of visibility

ceiling The altitude of the ceiling

windSpeed The Speed of the wind in knots

windDirection The direction of the wind relative to true north
code The Weather Reporting Notations

timestamp The timestamp of the report message

METAR REPORT

The METAR Report is generated by the FDS Analysis when the METAR parameter is enabled.

Description

icaoSiteld The ICAO station identifier

origbin The interval when the report is received (0- 95).
startbin The interval when the report takes affect (0- 95).
stopbin The interval when the report expires (0- 95).
visibility The number of miles of visibility

ceiling The altitude of the ceiling

windSpeed The Speed of the wind in knots

M-36

windDirection

The direction of the wind relative to true north

code

The Weather Reporting Notations

timestamp

The timestamp of the report message

M-37

EXPERIMENTS

PNP experiments are file driven, using four types of files: the Simulation Parameter, Client Parameter, Experiment
Definition and Schedule Definition Files. Note that the Schedule Definition files are used to run PNP in a batch
mode, and are not necessary to make a single run.

SIMULATION PARAMETER FILES

Simulation parameters files contain the PNP parameters listed in the PNP Server Parameters section. These
parameters instruct PNP on how to run.

|CLIENT PARAMETER FILES

Client parameter files contain the parameters specific to each client.

| EXPERIMENT DEFINITION FILES

Experiment definition files contain the information necessary to run PNP and its clients, including the simulation
parameter file name and client parameter file names.

SCHEDULE DEFINITION FILES

Schedule Definition Files contain the experiment definition files names to be run chronologically, in a batch mode.

M-38

INITIAL STARTUP

Upon initialization the PNP Window displays as follows:

Experiment?.pnp - Probabilistic NAS Platform
File Run Settings Help

Simulation pararmeter file

Client parameter files | Client

NAVIGATION: FILE SELECTION

There are three ways to select a parameter file from an entry box.

1. Then perform one of the three files selection techniques.

1. Left Mouse Button
i. Double left mouse click

2. Right Mouse Button
i. Right mouse click and select Choose file menu option.

M-39

Probabilistic NAS Platform Experiment Manager =]
P ap
Hle fum Seftings Help

D& x B =&
Exporimen:
EE T Choose PR Parameter Tile...

3 [l PHP Parameter file: 20071116240 ini
| orm Fit PS> Parametor fila: 20071116, 240wk
Quick View PNP Pasameter Tile: 2007 1118 240wini 7nre

Sirrts rameter fle

3. Insert Key
i. Single left mouse click entry box to select it
ii. Press Insert Key

2. Choose a file by double clicking the filename in the file chooser dialog

I Sotoct PNP INI Fila r;

e |2 Y @EaEE

|0 20074116- e [) instaler.ini
[2007 1116-24heini [7) matlab ini
) cthresholdtini [) modacini
™) ctnceshotdinuni [nweaing

[citrestoki 1008

[T cehwesholsdni

) ethresholdagsnl

) dac.ini

™) dac2ini

File Mame: |

Filos of Type: |0 File (i) =

NAVIGATION: MENU USAGE

PNP provides a standard windows menu bar interface to navigate through the PNP application.

i Probabilistic NAS Platform Experiment Manager

File Bun Settings Help

 FILE MENU OPTIONS

The file menu provides the following actions:

New — Creating a new experiment

Open — Open an existing experiment

Save — Save the current experiment

Save As — Save the current experiment with a new experiment name

vk

Delete — Delete the current experiment

M-40

gl New Ctrl-N

El Open Ctrl-0

El Save Ctrl-S
Save As

il Delete Ctrl- [

 RUN MENU OPTIONS

1. Now —Executes the current experiment
2. Schedule — Opens the Schedule Manager Window

!l Now Shift-F10
@l Schedule Shifto

SETTINGS MENU OPTIONS

1. Toolbar —Toggles the toolbar on and off
2. Options — Opens the PNP Options Window

¥ Toolbar Ctil-T

Options...

HELP MENU OPTIONS

1. Tips — Displays PNP Navigation Tips Window
2. About — Display PNP Overview Window

Tips

Abhout PNP

M-41

NAVIGATION: TOOLBAR USAGE

The toolbar provides an alternative method to the menu bar allowing quick single click access to the New, Open,
Delete, Save, Run, and Schedule menu options.

D& | X | H| 2|5

NAVIGATION: FILE MANIPULATION

There are several ways to view/edit/delete a parameter file from an entry box.

1. Right mouse click and select Choose file menu option.

robabilistic MAS Platform Experiment Manager,

File Run Settings Help
0@ x| @ |5

Experiment:

Simulation pararmeter file |

20071116-24hr.ini

Choose PNP Parameter file...

Gl Edit PNP Parameter file: 20071116-24hr.ini ShiftF3
Form Edit PNP Parameter file: 20071116-24hr.ini ShiftF4
Quick View PNP Parameter file: 2007 1116-24hr.ini ShifkF5

2. Press Shift-F3 Key to edit the file in the user defined editor

M-42

G e frewt Fgmst peR

D d S M B B

Ipnp] a
name = FHF

OONpOTEAT * POy

wxpn = binlires, ced pep

hostnaos = locmlhost

parms * none

[mymgi]

umRCHa = proheie
pRarmccd = probiim
poEtid = 106

[ooncrel)

fnptrinmfleg = crus
acarttiom = O7:d8
playackruntioe = 24

Ay iralEspaces false
wpissrvernmse = localkoar
pnpEsTVECnmEs = lnow koAt
mvtmedn i feat = B
mtcefficiency = 0,0

[lende]

PEEdspArcursdsiny = TIuE
pEsdspascursrsronts = crus
lovkabemdt ims = 2
ALEPOETEabBSITFRULLIPILEE = 1.0
georoTcapanitymilciplier = 1.0
gEentciroleroms = Ealae
wusttarmultipliac = 0.3
pointoasstrajsctocymcdel falss
detpimeliser = 0
oRpaaitULSETTALNCY = 0.0

[wmsttac]

Erflect bl byPlag = Eree

Eellectivitylntecrvalvalue = 4

foresassleg = false -

For Halps, presa L

3. Press Shift-F4 Key to edit the file in the form editor

Form Edit File: 2007111 6-24hr.ini

Fi
mysql r’control knob weather rdisplay rdataset rnutpu‘t |

name PHP
component |pnp

exec binun.cmd pnp
hostname |localhost
param none

4. Press Shift-F5 Key to edit the file in the form viewer

e: 20071116-24hr

pnp mysql control | knob weather I/display I/datasel ruulpul

fasttimeflag
starttime
playbackruntime
dynamicairspace [|
wsiservername
pnpservername
awlemandoffset
atcefficiency

5. Press Delete Key to detele the selected entry

Delete client: cthreshold9999. H
El Are you sure?

M-43

éSETTING THE USER DEFINED EDITOR

PNP allows the user to specify their editor by updating the Editor entry box in the PNP Options Window. The
default editor is MS Windows XP wordpad.exe.

(\Program Files\Windows NT\Accessories\wordpad.exe)

PNP. Options

Storage Path (*.ini, *.pnp, *.pat): |C ASVRIPHP_TRURNKID atalini |

Editor: |1F'r0gram Fileghindows N'I"lAccessorie{

| Apply || Cancel

éSETTING THE USER DEFINED PATH FOR PNP FILES

PNP allows the user to specify the path to the PNP files by updating the Storage Path entry box in the PNP Options
Window. The default path is C:\Program Files\Sensis\Probabilistic NAS Platform\data\ini

PNP Options =9

Storage Path (*.ini, *.pnp, *.pat): |C ASWVMIPMP_TRUMELD atalini |

Editor: [\Prograrm Fileswindows NTWccessoried

| Apply || Cancel

M-44

CREATING A NEW EXPERIMENT

To create an experiment a user can use the menu to select File...New or press the hotkey: Ctrl-N or click the [
icon on the toolbar.

1. Select a Simulation parameter file
This file determines the data sets, weather, and configuration of the experiment.
2. Select Client parameter files

These files determine what clients will be part of the current experiment.

*Note: An experiement must contain a Simulation parameter file.

3. Save the experiment.

M-45

OPENING AN EXPERIMENT

"]
To open an experiment a user can use the menu to select File...Open... or press the hotkey: Ctrl-O or click the =
icon on the toolbar.

1. Choose experiment definition file from the file chooser dialog. The selected experiment definition is
loaded into the Experiment Manager dialog.

M-46

SAVING AN EXPERIMENT

To save an experiment, a user can use the menu to select File...Save, File...Save As... or press the hotkey: Ctrl-S or

click the E icon on the toolbar.

1. if the experiment entry box is empty, the user will be prompted for the experiment name.

|z| Enter PNP Experiment Filename:

||exper\ment_name

2. Once the experiment has been saved a confirmation window will appear.

Save Complete

@ Experiment experiment_name.pnp saved

M-47

DELETING AN EXPERIMENT

To delete an experiment a user can use the menu to select File...Delete or press the hotkey: Ctrl-D or click the X
icon on the toolbar or press in the Delete Key.

1. A confirmation window will appear, press Yes button to delete current experiment.

Delete PNP Experiment: experimen... [5__(|

M-48

RUNNNING AN EXPERIMENT

To run an experiment a user can use the menu to select Run...Now or press the hotkey: Shift-F10 or click the ’
icon on the toolbar.

1. The Schedule Manager Window will appear. As the run transgresses the runtime is updated in the
status field adjacent to the experiment name. Once the run has completed the status will reflect this
status as Finished with the total runtime.

i batch1.pat - Probabilistic NAS Platform Schedule Manager !En

PP experiment files Status

2. After the run completes or is shuitdown, the status is upated to finished with the total runtime. The
user can exit the run scheduler by press the Exit button. If the user wants to run the experiment
again, press the Launch Button.

B batch1.pat - Probabilistic NAS Platform Schedule Manager !EB

FrP experiment files Status

ex1.pnp

e |

M-49

SCHEDULING EXPERIMENTS

To schedule experiments a user can use the menu to select Run...Schedule or press the hotkey: Shift-F9 or
Click the @ icon on the toolbar.
1. Select experiment file to be run.

2. Save schedule if you intend to run it again in the future.
3. Use the Launch button to start the schedule experiment runs.

B regression. pat - Probabilistic NAS Platform Schedule Manager [H[=]

Eile

0@ xa
PNP experiment files Status
eg9999.pnp Pending...
eg100.pnp Pending...
eg50.pnp Pending...
eg10.pnp Pending...
eg5.pnp Pending...
egl.pnp Pending...

Launch || Cancel H Exit ‘

4. Asthe run transgresses the runtime is updated in the status field adjacent to the experiment
name. Once the run has completed the status will reflect this status as finished with the total
runtime. The Cancel button will cancel the next experiment in the queue and will be

reflected in the experiments status as canceled.

B regression. pat - Probabilistic NAS Platform Schedule Manager !EH

PMNP experiment files Status

eg9999.pnp
eg100.pnp
eg50.pnp

regl0p0
reg5.pnp
regl.pnp

anceled
[Canceled

Launch || Cancell H Exit ‘

M-50

ANALYZING EXPERIMENTS

At the completion of an experiment run, reports can be found in the output directory defined in the PNP
configuration files.

& C:\Program Files\Sonsis CorporationProbabilistic MAS Platfermidstalreports o =]E3

Be E Wow Faootss ook teo L]
Qe - Q- F Osen Do [
aress [v B
S Tygw Dt Modifed bl
File and Folder Tasks %1 B . UKD Hcrosat Office Exc... G4F2008 2:56 50
= : D Meorsaft Offce B, 6472008 30350
e MED Morosoft Office Eer. 42008 255 FM
(M MR 2005 ISKB Merosoh Office B 6[472008 305 M
I5KB Mioroscit Offics Exc... 61472008 2:507M
i b
I8 Shas Ui ke 0KB Hesuselt Office Exc... GRS 3090
STKB Misirsclt Offics Exe... 6MJ2008 2:95 1M
SER Mcromelt Office e, RTINS 3:008 P
WK Meromolt Offics £xc... [af008 2:84 0
SN Marasoft OFfice L. GAF000 2:0m M
KD oot OFfice Dt G400 23561
FHSAURD Merosoft Office Duc... G400 2000
KD Morosclt Offce Exc... 142008 253EM
THD Microsolt Office fxc... 642008 :085M
TR Merosolt Office Exe... 612008 2:55PM
BEB Mcrosolt Office Exr... 6412008 2:07 PM
KD Heroselt O Enc... G008 2:55 P
1kB
oun
1ok
1R

TED Moroseft OFfica et... G/4T000 2% P
LED Merosoft OFfice Dt G000 2:63FM
KD Text Dooument GI4[2008 2:55FM
4KD Morosoft Office Exc... 6142008 3:05 M
OKD Mcrosoft Office Exc... 6/4/2008 2:53FM
AR metar_report 06-04-2008- 1505 £ov LK Microsoit Offics Exc... 6142008 2:057M |

M-51

APPENDICES

APPENDIX A: TRAJECTORY MODEL INITIALIZATION

The trajectory model uses BADA V3.6 aircraft performance models.

1. Upon startup of the Kinematic trajectory model, the following window will appear if the BADA path has
not been found:

Kinematic Data Folder B ol x|

@ The Kinematic data folder has not been chosen or has moved.
Please select the kinemtic data directory.
If you cancel, then onhy the default model will be loaded.

2. Press OK button and a Save dialog window will appear.

3. Select the following directory:

C:\Program Files\Sensis Corporation\Probabilistic NAS Platform\data\bada_3_6\KinematicModels

M-52

Save In: |d bada_3_6 {v‘

File Name: |C AProgram Files\Sensis CorporationtPro MNAS Platior _3_FWinematicModels |

Files of Tyne: Al iles [~]

4. Press - to set BADA directory path.

M-53

APPENDIX B: MATLAB SUPPORT

The PNP server can directly interface with MATLAB. Three simple scripts were written to connect,

disconnect, and step PNP via the MATLAB command interface. These scripts are available in the following

directory:

C:\Program Files\Sensis Corporation\Probabilistic NAS Platform\MATLAB

MATLAB 7.5.0 (R2007h) — —— g =10 x|
Fle Edit Debug Desktop Window Hep
Udli‘@"(‘[ﬁﬂ?§|g|wmm|f' and Settings|bbcisvert MILKWATIMY D A m:a;]._.,l[n
Shortouts [#] HowtoAdd (7] What'shiew
‘Turrent Directory | workspace. TSR || Command Window “ooa %
2N EOR R | i - |3Kk-'][Base 'I ¥ pnp_connect
Name o IUM DST connection established: localhost
) cmd <11 probtfin share network messages, ||| 7 PPP-FEERIvE
) connaction_ma =121 problim share network_client. PrpC
) msg =1x1 probtfin. share i, sectodosd, mapy et
probtim. share. netvork. nessages . SectorCirelesl 1723056
7 PRp_receive
wag =
probtim. share. tim. sector load. mapping. Sector Idlapl 145d7£2
r pOp_receive
wag =
1] I i
probtim share. tfm, sector load, wapping ., Sectorlame Hapletood?

Command History Q2 x

~emd = BatchResponse (dst_id):
E-%-— 5/2/08 12:36 PH ——%
“pnp_connect
El-5-— 5/2/08 12:35 P —-%
- Pnp_cORnect
B-%-— 5/2/08 12343 PH —-%
pRp_connect
pnp_receive
pnp_receive all
pnp_step
~pnp_receive all
pop_step
opnp receive all
prp_step

B-¥-- 5/2/08 12:51 PH --%
PRP_coRnect
—pnp receive o
4 *

»> pnp receive
wEg =

probtim. share, tim, sector load, wapping, SectorPointalapl 17ed710

D8:00:00 05/02/2008

»> ponp_receive
wag =
probtim, share. tim, Sector load. uapping, SectoriinAltlap] 54643

s |

AC RoundTrip: 2 sec

Eon: 05/02/2008 0F:00:00 £o:05/02/2008 03:L5:0005/02/2003 03:00:00 DST daca sent - Queusdize: 16

=loixf

M-54

APPENDIX C: CLEANUP

There is a utility to cleanup the system reports, files, and logs. The command file cleanup.cmd is located in
the bin directory. Simple double-click this file and the system files will be deleted.

*Note: It is convenient to create a shortcut so ty can be used from your desktop.

M-55

Probabilistic NAS Platform

Plan View Display User Guide

1.2

8/16/2011
Sensis Corporation

TABLE OF CONTENTS

INTRODUCTION ... eireeece s s rness s s s sss s s s enmas s s s s e s e e mmn s s s e nmmnsnnnes 3
R 0lo] OO PPO RO PPRPTRPPPPPNY 3
PLAN VIEW DISPLAY (PVD)....oiiiiiieeecciisiesresssssssssssssssssssssssssssssssssssennes 3
OPERATIONS ..ttt ettt ettt ettt e e et e e e et e e e sttt e e e sataeeesstaeessanbaeessansaeeeeansaeeesnnne 5
IMOUSE FUNCLIONS .ottt e e ettt e e e e e e st e e aaeeenas 5
TOOLBAR ...ttt ettt e ettt e s ettt eesbb et e e ssbaeeeeasbaeeesstaeeeanbaeeeensbeeeeansaeeesannaeeen 6
CUISOE SCIBCL.......oveeeeeeeeeee ettt ettt e e ettt e e ettt e e e sttaeesasstnaessassneessanes 7
DISPLAY TOGGLES ...ttt st sttt e st e e s sneaeeesnee 11
REFIECTLIVILY TOGGI ...t e ettt e ettt e e e a e e etea e e e 11
FOPECASE TOGGIE ..ottt e e et e et e e e et e e e e esteaeessses 12
Lo S 011G N R SRR 13
IMETAR TOGQGIE ..ottt ettt e e e ettt e e ettt e e e st a e e e ataaeeesasees 14
LYl e e Fo | =2 PN 14
Airport Congestion TOGGIE............cccueeeeeeeeeeeeecieee et eesee e escae e e e saee e e e saeaaeeas 14
Sector CoNGestion TOGGIE..........ccueeeeeeueeeeeeeeeeeeeeee et e e e e e staa e e e sea e e e 16
DISPLAY FILTERS ..ttt ettt ettt ettt e e sbt e e s sttt e e s sttt e e e sabaeeesnbaeeesanbeaeesnnnes 17
L2 e o1 R3S 18
FIGRAT FITE@IS vttt ettt e e e e e e e s a e e s aseaaessstaaesnasenas 20

Y Ao L= =1 TSP 21
Y=ol (o] SN 27
IMETAR/TAF .ottt ettt ettt ettt ettt e st e et e et e et et e st e s asastaessaessseessaesssenrees 28
[T e KT UPR 30
ROUTES oottt ettt a s 31
DISPLAY ATRTIBUTES ...citiieeiiiieee ettt sttt e sttt e st e e sttt e e senbee e e s sabaneessneneesnanee 32
Y ol RSP 33
AIFPOIE CONGESTION ...ttt ettt e e e e e st e e e e s s sssasbtranasaeesnaas 39
SECEON CONGOSTION.c.cccceeeiiiieieaee ettt e e e e e ettt e e e e e s s sttt aaaaeessssaaans 40
FOI@CASES oo, 41
=32 PPNt 42
APPENDICEScoouiiiiiitiiiteseesesese st st st ssssssessesses e st st sssssessessssssssssnsssssnsansansans 43
APPENDIX A: CONGESTION COLOR KEY ..eeiiiiiiiiiiiiiie ittt 43
APPENDIX B: SECTOR COLOR KEYuuviiiieiiiiiiiiiiiiiee ettt e e e e s 43

INTRODUCTION

The Probabilistic NAS Platform (PNP) is both a research tool and a decision support platform to analyze air
traffic and traffic flow management (TFM) issues. Real-time PNP provides real time meteorological data
and traffic advisories in which an operator or Air Traffic Manager can make more informed and accurate
decisions. Playback PNP evaluates current or future TFM concepts using projected or actual traffic
demands sets with recorded historical meteorological data.

SCOPE

This document guides the PNP user in the usage of the Plan View Display (PVD).
Topics covered include:

+* Plan View Display

N-3

PLAN VIEW DISPLAY (PVD)

Plan View Display - Probabilistic NAS Platform

The Plan View Display allows the user to visualize the NAS. Toggles have been built in to control the data
as the PVD may become cluttered during a session when aircraft counts typically exceed 40,000. The PVD
has been developed for debugging and marketing purposes and is still under construction.

OPERATIONS

MOUSE FUNCTIONS

SCROLL BUTTON

The Scroll Button on the mouse zooms in and out of the PVD.

RIGHT BUTTON

The Right Button on the mouse re-centers the map on the PVD.

LEFT BUTTON

The Left Button selects sectors, airports, or aircraft based upon the selection criteria enabled.

TOOLBAR

FRERFD v 4068 el

The PVD has a toolbar which can be dragged off the PVD. The toolbar provides the user with buttons,
toggles, and dialogs to control what is displayed on the PVD. The text box displays status messages.

ToolBar - PVD X

SNAPSHOT BUTTON

The Snapshot Button . takes a snapshot of the PVD using the current time to create a jpeg in the
output directory.

CLEAR DISPLAY BUTTON

The Clear Display Button removes selected aircraft and sectors from the PVD.

N-6

CURSOR SELECT

The Cursor Pull-down Menu toggles the cursor selection between aircraft , sectors, sector point-out,
METARs , and TAFs.

Aircraft

Sectors
METARs
TAFs

CRE

Sector Point-out

CURSOR SELECT: AIRCRAFT

Clicking on an aircraft icon will cause aircraft information to display based on the aircraft display filter,

when the aircraft cursor in enabled.

& Plan View Display - Probabilistic NAS Platform ‘:HE”X‘

\ 011/16/2006

CURSOR SELECT: SECTORS

Clicking on the map will display sectors at the cursor location based on sector display filter, when the

sector cursor is enabled.

B\ Plan View Display - Probabilistic NAS Platform ‘;HE”X|
23:58:00 11416

Sector :40000

CURSOR SELECT: SECTOR-POINT OUT

Clicking on an over-loaded sector will display all the flights schedule to be in that sector, when the sector

2
2
point-out cursor is selected.
S T pla —
(z. = — ook +—— 23:58:00 11/16/2006
ll . ol hanes S S

CURSOR SELECT: TAF

Clicking on a TAF report symbol will cause the report to display in a pop-up window, when the TAF cursor

il
is enabled.

TAF REPORT FOR:KCHO E

@ TAF:KCHO 1609597 161006 09005KT 55M -SHRA OVC014
FM1300 12010KT P6SM OVC015
FM1600 13013KT 2SM -SHRA BR OVC015
TEMPO 1618 18018G38KT 1SM TSRA BKN025CB OVC035
FM2200 21010G20KT P6SM OVC035

CURSOR SELECT: METAR

Clicking on a METAR report symbol will cause the report to display in a pop-up window, when the METAR

4
cursor is enabled.

METAR REPORT FOR:KJFK E

@ METAR:KJFK 160908Z 11009KT 0SM -RA FG W002 14/14 A2994 RMK AO2 SFC

VIS 1/2 PO0OO

DISPLAY TOGGLES

REFLECTIVITY TOGGLE

The Reflectivity Toggle turns on and off the reflectivity display data.

FORECAST TOGGLE

The Forecast Toggle turns on and off the forecast display data.

% Plan View Display - Probabilistic NAS Platform

P v

|WINDS TOGGLE

turns of and off the wind display data.

3

The Winds Toggle

T M 7

/»MVL. LW

b | VA “ iy

= =

4+ 4 4]}

A -

)=

3434841
32334
P33 3

J
dJ

N-13

METAR TOGGLE

The METAR Toggle turns on and off the METAR forecast data.

% Plan View Display - Probabilistic NAS Platform

TAF TOGGLE

The TAF Toggle turns on and off the TAF forecast data.

% Plan View Display - Probabilistic NAS Platform

AIRPORT CONGESTION TOGGLE

N-14

=

as yellow, red, or black circles, as shown in the figure below.

The Airport Congestion Toggle toggles the display of airport congestion. Congested airports appear

N Plan View Display - Probabilistic NAS Platform

SECTOR CONGESTION TOGGLE

The Sector Congestion Toggle toggles the display of sector congestion. Congested sectors appear in
yellow, red, or black, as shown in the figure below.

N Plan View Display - Probabilistic NAS Platform ‘_:“EHZ|

y -

ZBW2|

17719 T INY34

@y.‘.’?t: | e
Eﬂ:ln

23977
08
IDBﬁ
14/|G

lsnudmc”

13/17

Zocsq

lsn
D

T =
/IQ 2TL2S
- ZTL

11714
56

’(f] \ T
ZTL02
(AC Efiter On) A \

N-16

DISPLAY FILTERS

tabs to change the display filters associated with flights, sectors, METAR/TAF reports, winds and routes.

The Display Filters Button displays the Display Filters Window. The Display Filters Window contains

EE Display Filters
[Flights | Sectors | METARTAF | Winds | Routes

Filter(s)
(® Al Flights) With Track Reports Only
) Awaiting Departure Only) With Flight Plans Only
Altitude Filters
Low Altitude: DE High Aftitude: gg,nnnl
State Filters

[| Delay [|PreDeparture Reroute [|In-Flight Reroute [|LOS [|Non-Conformance [|UAS

Ownship I Flight Plan

FLIGHTS

The flights filter window allows the user to display windows based on the altitude. The Apply button will
display the flights based on the specified filters. The Clear button will clear the filters.

EE Display Filters
Flights | Sectors | METARTAF | Winds | Routes

Filter(s)
® All Flights () With Track Reports Only
_) Awaiting Departure Only) With Flight Plans Only
Altitude Filters:
Low Altitude: DE High Altitude: QQ,DDDE
State Filters

[]Delay [|Pre-Departure Reroute []In-Flight Reroute []LOS [|Non-Conformance [|UAS

Ownship I Flight Plan

N-18

FLIGHTS: CONFLICTS

Flights that have a future loss of separation event are highlighted by black circles.

R\ Plan View Display - Probabilistic NAS Platform

10:47:00 11/16/2006

A
R .

(AC Filter On) SSCHSiS]

FLIGHTS: LOSS OF SEPARATION

Flights are in a loss of separation event are highlighted by red circles. The red line highlights where on the
trajectory the loss of separation occurs.

§\ Plan View Display - Probabilistic NAS Platform

08:56:00 11/16/2006

(AC Filter On) SSensiq

N-19

FLIGHT FILTERS

OWNSHIP FILTER: ALL FLIGHTS

The All Flights checkbox allows a user to specify whether the all flights will be displayed.

OWNSHIP FILTER: AWAITING DEPARTURE

The Awaiting Departure checkbox allows a user to specify only flights awaiting departure are displayed.

OWNSHIP FILTER: WITH TRACK REPORTS ONLY

The With Track Reports Only checkbox allows a user to specify only flights with track ports are displayed.

OWNSHIP FILTER: WITH FLIGHT PLAN ONLY

The With Flight Plan checkbox allows a user to specify only flights with flight plans are displayed.

OWNSHIP FILTER: LOW ALTITUDE

The low altitude spinner sets the low bound of the altitude filter of the display.

OWNSHIP FILTER: HIGH ALTITUDE

The high altitude spinner sets the upper bound of the altitude filter of the display.

N-20

STATE FILTERS

STATE FILTERS: DELAY

The DELAY checkbox selects flights with pre-departure delays. Pre-departure delayed flights have red

historical waypoints.

B Display Filters |-j|§||z|

Flights | Sectors | METARTAF Winds | Routes

Filter(s)
(' All Flights @ With Track Reports Only
(2} Awaiting Departure Only) With Flight Plans Only
Altitude Filters
Low Altitude: ol High Attitude: 9a,000
State Filters

Delay []Pre-Departure Reroute []In-Flight Reroute []LOS []Non-Conformance []UAS

Ownship | Hight Plan

(AC Filter §n)

IOX

N-21

STATE FILTERS: PRE-DEPARTURE REROUTE

The PRE-DEPERTURE REROUTE checkbox selects flights with pre-departure reroutes. Pre-departure
reroute flights have purple historical waypoints.

EE Display Filters

Flights | Sectors | METARTAF Winds | Routes

Filter(s)
) All Flights. @) With Track Reports Only
() Awaiting Departure Only _1 With Flight Plans Only
Attitude Filters
Low Altitude: i High Altitude: 98,000
State Filters.

[] Delay Pre-Departure Reroute [] In-Flight Reroute []LOS [] Non-Conformance []| UAS

\

Ownship | Hight Plan

(AC Filter §n)

N-22

STATE FILTERS: IN-FLIGHT REROUTE

The IN-FLIGHT REROUTE checkbox selects flights with in-flight reroutes. In-flight reroute flights have
green historical waypoints.

EE Display Filters

Flights | Sectors | METARTAF | Winds | Routes

Filter(s)
) All Flights @) With Track Reports Only
) Awaiting Departure Only) With Flight Plans Only
Attitude Filters
Low Altitude: UE High Altitude: QB‘UUUE
State Filters

[Delay []Pre-Departure Reroute In-Flight Reroute [|LOS [| Non-Conformance [|UAS

Ownship | Flight Plan

(AC Filter §n)

N-23

STATE FILTERS: LOS

The LOS checkbox selects flights with loss of separation events.

N Plan View Display - Probabilistic NAS Platform

N-24

STATE FILTERS: NON-CONFORMANCE

The Non-Conformance selects flights with non-conformance events. *Work In Progress

N-25

STATE FILTERS: UAS

The UAS checkbox selects unmanned aircraft systems.

EE Display Filters

Flights | Sectors | METARTAF Winds | Routes
Filter(s)
() All Flights @] With Track Reports Only
(C) Awaiting Departure Only) With Flight Plans Only
Attitude Filters
Low Altitude: i High Altitude: 98,000 u
State Filters 08:29:00 11/16/2006

[IDelay []Pre-Departure Reroute [|in-Flight Reroute [|LOS [] Non-Conformance UAS

Ownship | Hight Plan

(AC Filter On) NSensis|

N-26

SECTOR

The sector filter window allows the user to display sectors based on latitude/longitude, altitude, or name.
The Apply button will display the sectors based on the specified filters. The Clear button will clear the
sectors from the display.

EE Display Filters

Flights Sectors | METARTAF Winds | Routes

() By latitude, Longitude
@ By Name

Filter(s)
Name Fitter: |ZFi™

[] AHitude Filter:

[Tl

ZDC2

N-27

METAR/TAF

The METAR/TAF filter window allows the user to display METAR/TAF icons based on filter criteria. The
Apply button will display the METAR/TAF icons based on the specified filters.

D L]
e r .
e w4 4 :)
/ T 4 & L
e
o / o 5
1 A ¥
‘ " i :
o 1 B Display Filte O
q [Fights | Sectars | METARTAF | Winds | Routes |
4 Attributes
\\\A\ Scaling
CeilingVisibility Winds Icon Scale: SE
Ceiling (Feet)

[Ceiling Only Warning Alert: 1 ‘DDDE Critical Alert: 500
Visibility (NauticalMiles)

[] Visibility Only Warning Alert: | 10 critical Alert: | 5

Winds (Knots)

[Winds Only Warning Alert: 25. Display Value: SE

METAR/TAF FILTER: CEILING/VISIBILITY/WINDS

The Ceiling/Visibility/Winds checkbox allows a user to specify whether all METAR/TAF report icons will
display.

METAR/TAF FILTER: ICON SCALE

The Icon Scale spinner allows a user to specify the scale of the METAR/TAF icons on the display.

METAR/TAF FILTER: CEILING ONLY

The Ceiling Only checkbox allows a user to specify whether the ceiling criterion only is used to display
METAR/TAF report icons.

METAR/TAF CEILING LIMITS FILTER: CEILING WARNING ALERT

The Warning Alert spinner allows a user to specify the ceiling warning limits.

METAR/TAF CEILING LIMITS FILTER: CEILING CRITICAL ALERT

N-28

The Critical Alert spinner allows a user to specify the ceiling critical limits.

METAR/TAF FILTER: VISIBILITY ONLY

The Visibility Only checkbox allows a user to specify whether the visibility criterion only is used to display
METAR/TAF report icons.

METAR/TAF CEILING LIMITS FILTER: VISIBILITY WARNING ALERT

The Warning Alert spinner allows a user to specify the visibility warning limits.

METAR/TAF CEILING LIMITS FILTER: VISIBILITY CRITICAL ALERT

The Critical Alert spinner allows a user to specify the visibility critical limits.

METAR/TAF FILTER: WINDS ONLY

The Winds Only checkbox allows a user to specify whether the winds criterion only is used to display
METAR/TAF report icons.

METAR/TAF CEILING LIMITS FILTER: WINDS WARNING ALERT

The Warning Alert spinner allows a user to specify the winds warning limits.

METAR/TAF CEILING LIMITS FILTER: WINDS CRITICAL ALERT

The Critical Alert spinner allows a user to specify the winds critical limits.

N-29

WINDS

The winds filter window allows the user to display winds based on the altitude. The Apply button will
display the winds for the specified altitude.

D -
b e ST
W W | —
\\i’ W — g
S T ~
. “,_E VOS¢ ’1 ECF 4
N T ¢ |¢ {
Mo Py o 5 EE Display Filte O
I‘- ? % Filter(s)
£ <
%
Annllde:fﬁa

WINDS FILTER: ALTITUDE

The Altitude spinner allows a user to specify the altitude of the winds to be displayed.

N-30

ROUTES

The routes filter window allows the user to display routes based on the city pair inputs. The Apply button
will display all the routes associated with the entered airports. The Clear button will clear the text from

the input boxes and clear the routes from the display.

D L]
B Displa e L]
Hights | Sectors | METARTAF | Winds | Routes
Filter(s)
1st Airport: |LAY

2nd Airport: |BOS

ROUTES FILTER: 1ST AIRPORT

The 1st Airport input box allows a user to specify the fist city pair.

ROUTES FILTER: 2ND AIRPORT

The 1st Airport input box allows a user to specify the fist city pair.

N-31

DISPLAY ATRTIBUTES

i1

The Display Attributes Button displays the Display Attributes Window. The Display Attributes
Window contains tabs to change the display attributes associated with aircraft (selected and all), sectors,
airports, forecasts, and the reflectivity key.

EE Display Attributes
i mircraft | Sectors Airports Forecasts | Key

Scale: 0 BE
Track Points: 1 SEl

Data Block Properties

[] Datablock: Acid []Orig [|Dest [|Speed [|Altitude [| Sector

All | Selected

N-32

AIRCRAFT

The aircraft display attribute window for all aircrafts allows the user to toggle the display of the aircraft
attributes on the screen.

EE Display Attributes

i mircraft | Sectors Airports Forecasts | Key

Scale: 0 BE
Track Points: 1 SEl

Data Block Properties

[] Datablock: Acid []Orig [|Dest [|Speed [|Altitude [|Sector

All | Selected

AIRCRAFT ATTRIBUTE: SCALE

The Scale spinner allows a user to specify the scale of the aircraft icons on the display.

AIRCRAFT ATTRIBUTE: TRACK POINTS

The Track Points spinner allows a user to specify the number of historical waypoints per aircraft on the

display.

DATABLOCK ATTRIBUTES

The Datablock checkbox allows a user to specify what flight tags will display.

¥

DATABLOCK ATTRIBUTE: ACID

The Acid checkbox allows a user to specify whether the aircraft identifier will display.

DATABLOCK ATTRIBUTE: SECTOR

The Sector checkbox allows a user to specify whether the aircraft’s current sector will display.

N-33

DATABLOCK ATTRIBUTE: ORIG

The Orig checkbox allows a user to specify whether the aircraft departure airport will display.

DATABLOCK ATTRIBUTE: DEST

The Dest checkbox allows a user to specify whether the aircraft arrival airport will display.

DATABLOCK ATTRIBUTE: SPEED

The Speed checkbox allows a user to specify whether the aircraft speed will display.

DATABLOCK ATTRIBUTE: ALTITUDE

The Altitude checkbox allows a user to specify whether the aircraft altitude will display.

N-34

AIRCRAFT | SELECTED

The aircraft display attribute window for selected aircrafts allows the user to toggle the display of the
selected aircraft attributes on the screen.

FLIGHT PLAN TRAJECTORY

The original flight plan trajectory is displayed as a blue line. If the line is cyan, then a reroute is in effect.

(AC F!(ef On)]

FLIGHT PLAN SECTORS

The flight plan sectors are displayed as translucent blue polygons. If the sectors are cyan, then a reroute
is in effect. Note: TRACONSs are brown.

N-35

N Plan View Display - Probabilistic NAS Platform

-

wﬁl

\‘.

(AC F!(ef On)]

FLIGHT DETAILS WINDOW

The flight details window displays detailed information about a selected flight in a pop-up window.

USA1961

| Flight Data | Vertical Profile

Ownship Delay(s)
Position: 4303N07621W Altitude: 34000 Sector: ZBWO09 Flight Change Count: 0
Type: B752 Cruise Altitude: 34000 Heading: 257.0 AtGate: 0 min(s)
Orig: BOS Speed: 461.0 Wheels Up Time: 11:29 Enroute: 49 min(s)
Dest: CLT Cruise Speed: 461.0 Wheels Down Time: 13:06

Original Flight Plan

222N/07100W..4155N/07242W..4116N/0T334W..4108N/0734 TW..4035N/07445W. 4024 N0 7458 W. 400 TN/D 7523 W..3954N/D 7540W..395 | ~|
N/O7547TW..3936N/07610W..3928N/07623'W..3902N/07701 W..3800N/0 7809 W..3 720N/07912W..364 2N/07942'W..3620N/08000W. .3549N/0
026W..3513N/0805TW

-

Updated Flight Plan

H222N/07100W. 4155N/07242W. .4306N/07606'W.. 4300N/07642W. 4253N0TT02W. 4239N/0T7T44W. 4220N/0 7840W. 4211NOT90TW..414 |~
BN/08035W..4121N/08209W..4108N/08233W..4032N/08336W..401 TN/08402W..3838N/08418W..3626N/0820 TW..3536N/08135W..3533N/0)
B130W..3512N/08056W..351 2N/08056'W

-

FLIGHT PLAN WAYPOINT NAMES

The flight plan waypoint names are displayed on the current flight plan line.

N-36

N Plan View Display - Probabilistic NAS Platform

-

GREN7UB20TH

RSN
512N /08056W

(AC iv('\r:er On)]

REROUTE TRAJECTORY

The reroute trajectory is display as a blue line.

N Plan View Display - Probabilistic NAS Platform

L/

(AC F‘(\rtyer On)]

REROUTE PLAN SECTORS

The flight plan sectors are displayed as translucent blue polygons.

N-37

§> Plan View Display - Probabilistic NAS Platform

-

(AC F!(ef On)]

VERTICAL PROFILE WINDOW

The vertical profile tab in the flight details window details the altitude profile of the flight. The blue line
represents the original flight plan while the magenta line represents a reroute.

USA1961 I:IIEIFZI

" Flight Data || Vertical Profile

" Time

N-38

AIRPORT CONGESTION

The airport congestion display attribute window allows the user to toggle the display of the airport name
and congestion value on the screen. The congestion value consists of two parts:

e Number of aircraft overloading an airport
e Airport capacity

EE Disp Attribute
(mircraft | Sectors | Airports | Forecasts | Key ! Ll

Attributes

Name

Congestion Value

AIRPORT CONGESTION ATTRIBUTE: NAME

The Name checkbox allows a user to specify whether airport names will display.

AIRPORT CONGESTION ATTRIBUTE: CONGESTION

The Congestion Value checkbox allows a user to specify whether airport congestion values will display.

N-39

SECTOR CONGESTION

The sector congestion display attribute window allows the user to toggle the display of the sector name,
altitude range, and MAP value on the screen. The sector value consists of two parts:

e Number of aircraft overloading a sector
e Sector capacity

EE Display A bute
[Mircraft | Sectors | Airports | Forecasts | Key Ll

Attributes

Name
BWO9
MAP Value

Altitude Range

1301333b)
4

—LM/\J p

SECTOR CONGESTION ATTRIBUTE: NAME

The Name checkbox allows a user to specify whether sector names will display.

SECTOR CONGESTION ATTRIBUTE: MAP VALUE

The MAP Value checkbox allows a user to specify whether the sector MAP values will display.

SECTOR CONGESTION ATTRIBUTE: ALTITUDE RANGE

The Altitude Range checkbox allows a user to specify whether the sector altitude range will display.

N-40

FORECASTS

The forecast display attribute window allows the user to toggle the display of the forecast identifier and

altitude range on the screen.

Y Y

1

:00-1016 12:00 390-400
TuR 52N

< Display Attributs — 119, 0%a%d

Aircraft | Sectors | Airports Forecasts | Key

Attributes

Identifier

B EPEEEE R EEEEEE

FORECAST ATTRIBUTE: IDENTIFIER

The Identifier checkbox allows a user to specify whether the forecast identifier will display.

FORECAST ATTRIBUTE: ALTITUDE RANGE

The Altitude Range checkbox allows a user to specify whether the forecast altitude range will display.

N-41

KEY

The key display attribute window allows the user to toggle the display of the reflectivity key on the
screen.

B Display A bute
]' Aircraft | Sectors | Airports | Forecasts | Key L]

Attributes

Reflectivity Key

s

KEY ATTRIBUTE: KEY

The Reflectivity Key checkbox allows a user to specify whether the reflectivity key will display.

N-42

APPENDICES

APPENDIX A: CONGESTION COLOR KEY

Congestion is color-coded on the PNP PVD. Each color signifies a minimum level of congestion. The
following table defines the significance of each color used to indicate congestion.

Color Meaning

Yellow The congested NAS element is at or above 75% of capacity.
Red The congested NAS element is at or above full capacity.
Black The congested NAS element is at or above 125% of capacity.

APPENDIX B: SECTOR COLOR KEY

Displays the name of sectors. Sectors highlighted in green are selected by the cursor, blue highlighted are
directly from the server or client to display, yellow, black, and red highlighting is indicative of the
congestion threshold overage.

24uas
X 233719885

— =
3 9

. o {
21011 o
2R 21083 I
(e \ .
g 21084 > = @

N-43

14809-02

SA Developer’s Guide

Sensis Corporation

Prepared for:

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681
Under:

NASA BOA: NNLOSAA17B

August, 2011

INTRODUCTION ...t sss s s ssn s s as s s aan s e s ann e s 4

SA OVERVIEW........ et r s rrms s s s s s mss s s s s s s s s s s s nn s s s s s mnn s s s e mmn s s e e nnns s ssnnnnssnsnnnnn 5
SA ARCHITECTURE ..ttt et et et et sh e sat e st e e bt esbe e e st e s et e eat e e et e bt e sheeeh et sab e e bt e bt e ebeesmeeameeeab e e beebeenbeeenneenteens 5
SA CLIENTS et euttette et ettt et et et et esh e sae e et e bt e bt e e bt e e bt e e ae e eat e e bt e be e sh et ea et s ab e e as e e bt e eb e e abeeea et eab e e bt e abeeeneeeareeteen 6
THE PNP COMMUNICATIONS CYCLE . .eutteuttettenuteruteeuteeteesteesteesseesueesaeeeateebeesbeesueesmeesasesaseenseebeenbeesbeesseesanesnneens 8

SIMOBUECTS APt rrree s s s s s e s s s s s s ma s s e s s ma s s s s e e mn s s s s e nmnsssssennnssansennnn 9
IMIESSAGING .. .utteuttentiestteeuteeat et et e bt e eb e e s bt e sateeat e et e e bt e ebeeeheeea e e eae e e ab e ea bt e bt e sheesheesa bt e ab e e bt e bt e sheeenbe et e e b e e beennees 9
DYNAMIC CLIENTS 1.ttetteuteeute et eteesteesteesieesusesaee e bt ebeesseesseesaeeeaeeeas e e bt ebeesbeesheesaseeabeeabee bt e sbeesmeeemteenbeenbeennees 9
CREATING A PINP JAVA CLIENT <.ttt ettt ettt ettt sh e sat e st et et e bt e sbe e sheesabesabeebeenbeesaeesnnesanes 10

REGUITEM LIDIQIIES.......vveeeeeee ettt e ettt e et e e e ettt e e e et a e e e tsaaeeatssaeesautasaesasssaaasns 10
Connecting to PNP from G JAVA ClENToeeeeeeeieeeeeeee et ee e etttae e e ttae e e estaaaaesiteaaens 11
Sending data from YOUT CHENTcocuveveeeeiie ettt ettt e e e st e e sta e e e ttaaessssteaeenasees 13
Responding to PNP heartbeat MESSOAGEScccuuuueeecuueeeesiiieeeiiieseesiiieeessisitaessisaesssssesssssssesssansseeees 13
INTERACTING WITH PINP ..ottt e e st e e e e s s s e e e e e e e e s sbrreeeeee s 13
The BAtChRESPONSE IMESSAGEeveeeeeeeieeeie ettt ettt ettt et s e e ste e st e esateseaaeesaseeeases 13
DeIAYING FIIGATS ..ottt ettt ettt ettt ettt e st s bttt e et e e ate e et e esateeeanes 14
REIOULING FIIGRTS ..ottt ettt e e et e e ettt e e et e e e e aasstaaeassseaaeanssaaasanssenann 14
BEST PRACTICES FOR DEVELOPING PINP CLIENTSciutiiiiieiie ettt ettt st ettt st s 15

Y O 0 2 I 16

SEPARATION ASSURANCE IMPLEMENTATION FACTORY ..cutteuiiiuiiritteteettenteesteesmee et eteenteesieesaeesinesaneebeesbeesaeenaee 16
N-SQUATEA INTEITACE ...ttt e et e et e e et e e e st a e e e tsaaeesssssaasaatasaessssseaanns 16
OWNSRUID. ..ottt e ettt e e ettt e e ettt e e ettt e e e ettt e e e autat e e e ettt e e easteaaeertsaeenantaaaeeartneaaeans 16
SUIVEIIIONCE ...ttt ettt ettt naees 16

CONFLICT DETECTION FACTORY .euttitieiteritieteeteesieesttesite st e et e bt e sbeesaeeset e st e bt e bt e sbeesaeesaneeaneebeenneesseenanesanes 17
SENSIS CONFIICE DOTECTION ...ttt e et e et e e e a e et e e ettt e e e ste e e e ssseaeeassteaeenasees 17
StratWay CONFlICt DELECTLIONccc.vveeeeeiiieeeee ettt e e e e et e e e et e e e et e e e et e e e ssteaaeeastnaeesasees 17

CONFLICT RESOLUTION FACTORY ...eiutiiiiiiiteeteete ettt sttt ettt ettt st sttt b e sbe e st san e st e beenneesaeesanesanes 18

0-2

5NSiS CONFIICE RESOIULIONevvveeeeeieeeeee et e e et e e e e e ettt e e e e e esstasaaaaaeeeassssssssaaaaeeaaasnes 18

Stratway CONSlICt RESOIULIONeeeeeeiiieeeiiiee ettt ettt e e e et a e e s aa e e s sseaaesasteassnasees 18

L 0 S 1 LY - 19
APPENDIX A: CONFLICT DETECTION AND RESOLUTION........cccccmmrrmnnniiinnnnneeen, 20
CONFLICT-RELATED API IMIESSAGEScvuvuvtiiiiieiiiiisie ettt 20
DISPLAY OF CD&R INFORMATIONcuvuiiaiiiiiiisieieesees ettt 20

INTRODUCTION

The SA Developer’s Guide provides developers with a guide to understand the SA client, PNP API, and
software factory patterns available to add separation assurance algorithms.

0-4

SA OVERVIEW

SA ARCHITECTURE

The SA is a Java client in the PNP architecture. Clients can dynamically enter and exit an experiment, using
the PNP interface. The SA Client may request a variety of data messages, and can return to PNP
modifications, including flight plan modifications and airspace (sector) redesigns.

0-5

SA CLIENTS

PNP clients model NAS components. By connecting to the server and registering with PNP, a client can
request the data it needs to model NAS components and decision making. The SA client models conflict
detection and resolution decision making in the NAS. The SA client has implemented the SimObjects API
and performs three basic steps:

Step 1: Register § Step 2: Request Step 3: Handle

with PNP Data Updates Data Updates

1. Register with PNP Server
The SA client registers with PNP server as a client specifying its configuration parameters.

EXAMPLE

The following example registers the SA client with PNP:

ClientConfiguration config = new ClientConfiguration("SA");
config.setDistanceFilter((int) Wini.instance().getMinimumHorizontalSeparationInNm());
config.setAltitudeFilter(Wini.instance().getMinimumAltitudeBound());
config.setLookAheadTimeFilter(Wini.instance().getSeparationAssuranceTime());

init(Wini.instance().getPnpServerName(), config, flightDetailsDescr);
2. Request Updates
The SA client requests for Enroute aircraft, simulation commands, and health checks based on an

adaptable interval value.

EXAMPLE

The following example requests a list of all Enroute flights every 15 minutes:

int interval = Wini.instance().getServerRequestInterval();

MessageRegistryManager.instance().register(PnpEnrouteFlightDetails.class, interval,
inFlightActionListener);

MessageRegistryManager.instance().register(Heartbeat.class, interval,
heartbeatActionListener);

0-6

MessageRegistryManager.instance().register(CommandRequest.class, interval,
commandActionListener);

3. Handles Data Updates
The SA client receives the data based on the adaptable interval value and manages the Enroute aircraft.
The SA client processes all the aircraft and sends back a health check message.

EXAMPLE

The following example are message listeners associated to the requested messages.
InFlightActionListener inFlightActionListener = new InFlightActionListener();

HeartbeatActionListener heartbeatActionListener = new HeartbeatActionListener();
CommandActionListener commandActionListener = new CommandActionListener();

0-7

THE PNP COMMUNICATIONS CYCLE

The PNP server communicates with clients in a synchronous cycle. As PNP advances time in the
simulation, it will periodically reach a time at which messages need to be sent to its clients. At each time
point when the PNP server needs to send messages, it will send the appropriate messages, send a
heartbeat message to the clients, and wait for the receiving clients to respond. Only after all receiving
clients have responded will the PNP server continue to advance time. This asynchronous communications
cycle ensures repeatability of the simulation, and is illustrated in Figure 2.

Advance Time

Send
messages for

Wait for

response :
P interval

Send
heartbeat

Figure 5. The PNP Communications Cycle

0-8

SimObjects is the PNP API. It uses TCP/IP to transfer messages between PNP and its clients.

MESSAGING

The SimObjects API consists of over forty messages, which are used to transfer data between PNP and its
clients.

Messages in PNP exist as Serializable Java classes named after the data they contain.
PnpFlightDetails, for example, contains a list of flights and information pertaining to those flights. All
message classes exist in the package pnp.share.network.messages.

Please refer to the SimObjects APl documentation for details on APl messages.

DYNAMIC CLIENTS

Clients in PNP are referred to as dynamic because they can enter the simulation at any time. When
connecting to PNP, each client specifies its configuration parameters, along with its data requirements.
This provides for a flexible client/server architecture, where the server does not require advance
knowledge of its clients, but can provide targeted data to each client based on its requirements.

0-9

CREATING A PNP JAVA CLIENT

REQUIRED LIBRARIES

The following libraries need to be included by a Java client.

Library

pnp_common.jar Contains shared APl messages

commons-logging-api.jar Used for error logging

commons-logging-av.jar Used for error logging

log4j-1.2.9.jar Used for logging

seagull-common.jar Contains many utility functions utilized by several APl messages
seagull-position.jar Contains classes for defining position data

seagull-units.jar Used by position classes for specifying position units

0-10

CONNECTING TO PNP FROM A JAVA CLIENT

Connecting a client to PNP is easy and requires only three steps.

STEP 1: REGISTER FOR MESSAGES

In order to connect and register with PNP, a client must create and send a list of message requests to PNP.
These requests specify the messages PNP should send to the client, as well as how often each message
should be sent.

To create a message request, simply register for messages using the MessageRegistryManager singleton.
Three parameters are required to register a message:

» The class of the APl message object
» The interval, in minutes of simulation time, at which PNP is to send the message to the client
» An object implementing the ApiListener interface to invoke when the requested message type is
received
The Apilistener interface contains only one method, which will be called when the requested message is
received. The only parameter of the actionPerformed method is the message object. The signature of the
method is:

void actionPerformed (Object o) ;

EXAMPLE

The following example requests a list of all enroute flights every 15 minutes:

Vi
* Register for messages desired to be received from PNP
*/
private void registerForMessages()
{
// We'd Like to receive all messages at 15-minute 1intervals
int interval = 15;
MessageRegistryManager registry = MessageRegistryManager.instance();
// Register for messages
registry.register(PnpEnrouteFlightDetails.class, interval, m_MessageHandler);
}

In this example, m_MessageHandler is an Apilistener object. In your client, you may use the same
Apilistener to handle many messages, or you may use different ApiListeners for different messages or sets
of messages. It is up to you.

STEP 2: CREATE A CLIENT CONFIGURATION OBIJECT

Now, you need to create a ClientConfiguration object to tell PNP a little bit about your client. Some
rudimentary information is required, such as the name of your client, so that PNP knows how to list your

0-11

client in the System Monitor. Other settings in the configuration object are optional, and you may use
these as required by your client.

A full description of the methods in ClientConfiguration is available in the Javadoc for the API, available in
the doc/ directory of your PNP release.

To create a basic ClientConfiguration object, simply call the constructor of ClientConfiguration with the
name of your client as the only parameter.

// Create a configuration object for this client
ClientConfiguration config = new ClientConfiguration("My First Client");

STEP 3: INITIALIZE THE CONNECTION

Once the client configuration object has been created, the connection with the server can be initiated. To
start the connection, simply create a PnpFlightDetailsDescr object and use it to call the init method to
start the connection.

The PnpFlightDetailsDescr object simply gives the PNP server some guidance as to what information to
include in flight data sent from the server to the client. This allows the server to optimize network usage
by not sending data to the client that the client doesn’t need.

EXAMPLE

The following example creates a PnpFlightDetailsDescr that requires that only the sector schedule data be
filled out for flight objects sent by the server.

// Set up the flight details descriptor

PnpFlightDetailsDescr flightDetailsDescr = new PnpFlightDetailsDescr();
flightDetailsDescr.setSectorScheduleFlag(true);

At this point, we are ready to connect to the PNP server. To do this, simply call init:

// Connect to PNP
init(pnp_server_name, config, flightDetailsDescr);

Here, pnp_server_name is the network name of the host computer on which PNP is running, and config is
the ClientConfiguration object.

0-12

SENDING DATA FROM YOUR CLIENT

Sending data from a client to the PNP server is easy. The OCMM contains a send method which will send
any message to PNP. The message will be a Serializable object from the pnp.share.network.messages
package of PNP.

Using the class from the previous section, the following method could be used to send messages back to
PNP:

private void send(Object message)

{
}

m_Client.send(message);

RESPONDING TO PNP HEARTBEAT MESSAGES

Once the PNP server has sent all requested messages to your client for the given interval, it will send a
Heartbeat message to your client, and will await a response before moving the simulation forward. The
purpose of this is to keep the simulation synchronous and repeatable. The client should only respond
after it has processed all of the data it has received for that interval.

To respond to the heartbeat message, the client need only send a HeartbeatResponse message to the

server:

send(new HeartbeatResponse())

INTERACTING WITH PNP

A client can interact with PNP by modifying flights. PNP clients can delay or reroute flights, and the
following sections explain how to do just that.

THE BATCHRESPONSE MESSAGE

All delays and reroutes are performed using the BatchResponse message. The BatchResponse message
allows a client to specify which (if any) flights to delay or reroute. This message should be sent to PNP
once the client has received a Heartbeat message and has done all of its processing.

The BatchResponse message contains the following constructor:

public BatchResponse(int dstId,
Map<Integer, Short> delayMap,
Map<Integer, ReroutePlan> rerouteMap,
Map<Integer, ReroutePlan> inflightRerouteMap)

0-13

m_DstId = dstId;

m_DelayMap = delayMap;

m_RerouteMap = rerouteMap;
m_InflightRerouteMap = inflightRerouteMap;

DELAYING FLIGHTS

The delay map in the BatchResponse is a map that is ordered by flight ID. Each flight ID maps to a short
value specifying the number of minutes by which to delay the flight. PNP will apply the specified delay to
each flight in the delayMap provided.

REROUTING FLIGHTS
Flight reroutes fall into two categories:

e Pre-departure reroutes, applied to flights that have not yet departed

e Inflight reroutes, applied to flights that are already enroute
As with delays, the maps specified for reroutes are keyed by flight ID. The ReroutePlan provided simply
contains the new list of 3-dimensional positions, listed at one-minute intervals, for each flight. The
rerouteMap specifies any pre-departure reroutes requested by the client. The inflightRerouteMap
specifies any inflight reroutes requested by the client.

All reroutes requested by the client are implemented by PNP.

0-14

BEST PRACTICES FOR DEVELOPING PNP CLIENTS

In order to make the best use possible of PNP and SimObjects, the following have been identified as best
practices to follow when creating clients for PNP:

e Create separate threads for processing vs. connection management
A PNP client performs whatever simulation tasks are appropriate for it. While it is performing this
processing, it may need to send or receive messages from PNP. Keeping the communications
handling code in a separate thread from the processing code allows messages to be sent and
received while the processing code is running. This added flexibility significantly enhances the
capability of any client developed in this way.

e Send all processing results to PNP before sending a HeartbeatResponse
A HeartbeatResponse tells PNP that your client has finished its processing. Once PNP has
received this message, it continues advancing time, and will send a new set of messages to your
client for processing. If the client has not finished sending its results to PNP before it receives the
new data, the repeatability of the simulation may be affected, as the order in which messages
are sent and received may change if the same simulation is run again. Additionally, if the client’s
internal data are not cleared before the new data are received, the client may end up with
incorrect data. To ensure against this, the client should wait until after sending all its results
before sending the HeartbeatResponse message.

0-15

FACTORIES

The SA client is software architecture is expandable through software factory patterns. The SA client has
three factories built to allow for the implementation of different algorithms.

SEPARATION ASSURANCE IMPLEMENTATION FACTORY

The Separation Assurance Implementation Factory allows the user to create an interface that handles the
processing of aircraft and CDR algorithms.

public interface SeparationAssurancelInterface

{

public void process(ConflictDetectionInterface conflictDetection,
ConflictResolutionInterface conflictResolution,
int timestepInSeconds,
long ts);

public void clear();

public Map<Integer, ReroutePlan> getReroutes();

public LosList getLosList();

public ConflictList getConflictList();

}

The process method passes the adapted CDR interfaces, trajectory time step between waypoints, and
current timestamp. The clear method allows the implementation to clear its state data. The getRerotues
method returns the reroutes to be passed on to the PNP server. The getLosList method returns the loss of
separation events to be passed on to the PNP server for display on the PVD. The getConflictList method
returns the loss of separation events to be passed on to the PNP server for display on the PVD.

N-SQUARED INTERFACE

The N-Squared interface compares every aircraft to every other aircraft using the adapted conflict
detection and resolution factory interfaces.

OWNSHIP

The ownship interface compares the current aircraft (ownship) to every other aircraft (target aircraft)
using the adapted conflict detection and resolution factory interfaces.

SURVEILLANCE

Surveillance separation assurance implementation was provided by the government and beyond the
scope of this contract.

0-16

CONFLICT DETECTION FACTORY

The Conflict Detection Factory allows the use to implement conflict detection algorithms.

public interface ConflictDetectionInterface

{
public List<DetectedConflict> detectConflicts(int ownshipFlightId,
List<FlightDetails> flights,
long ts);
}

The detectionConflicts method compares the trajectories of the ownship flight
to that of the other flights over time based on the current timestamp.

SENSIS CONFLICT DETECTION

The Sensis Conflict Detection algorithm is a simple geo-distance comparison. The trajectory waypoints
are compared based on position and time for an adaptable look a-head period.

STRATWAY CONFLICT DETECTION

The Stratway Conflict Detection algorithm is described in the Stratway v1.0 User Manual (NASA/TM-2011-
000000).

0-17

CONFLICT RESOLUTION FACTORY

The Conflict Resolution Factory allows the use to implement conflict resolution algorithms.

public interface ConflictResolutionInterface

{
public List<Resolution> computeConflictResolutionOptions(
FlightDetails ownship,
FlightDetails nextship,
DetectedConflict conflict,
long ts);
}

The computeConflictResolutionOptions method compares the trajectories of the
ownship and target flight updating the DetectedConflict object and returning a
list of resolutions based on the current timestamp.

SENSIS CONFLICT RESOLUTION

The Sensis Conflict Resolution algorithm is a simple four resolution approach. The algorithm attempts a
speed deceleration, altitude decent, right turn, and left turn resolution.

STRATWAY CONFLICT RESOLUTION

The Stratway Conflict Resolution algorithm is described in the Stratway v1.0 User Manual (NASA/TM-
2011-000000).

0-18

GLOSSARY
| Term _____pefinition __|

Term Definition

API Application Programming Interface

NAS National Airspace System

OCMM Object Client Message Manager. Utility for managing a client’s data connection
with PNP.

PNP Probabilistic NAS Platform

SimObjects The PNP API

Some client applications detect airspace conflicts, or imminent losses of separation between aircraft. The
PNP Plan View Display (PVD) is capable of depicting conflicts, as well as losses of separation, when data on
such events are supplied by a client.

CONFLICT-RELATED APl MESSAGES

The PNP API contains two messages that may be used by clients for pointing out airspace conflicts and
losses of separation. These are:

% ConflictlList
The ConflictList message contains a list of Conflict objects, each representing an imminent loss of
separation between two aircraft.

% LloslList
The LosList message contains a list of LossOfSeparation objects, each representing a current loss
of separation between two aircraft.
Both of these messages are documented in the API JavaDoc documentation contained in the doc/ folder
of your PNP release.

DISPLAY OF CD&R INFORMATION

When a conflict or loss of separation is sent from the client to the server, the server will display the
conflict on the PVD for the duration of the time bin. This information is cleared by the server at the end of
the time bin, at which it is allowed to expire if not re-sent by the client. This behavior exists because
conflicts or losses of separation may be resolved during the time bin. Therefore, a client that detects
conflicts and loss of separation (LOS) events must re-send all conflict and LOS information at every time
bin during which the conditions are active.

0-20

Separation Assurance Client
vl.l

User Guide

8/18/2011
Sensis Corporation

Table of Contents

Request Messages.........cccceveveeeeenann.n..
Response Messages............cceeeevuunn..

EXPERIMENTSccccoiiiinnreninnns

PNP Parameters.........ccccceeeeeeeeeceennnnne. 7
Control Parametersccccccuvveenn... 8
Knob Parameters..........cccceveeevvennnns 9
Dataset Parameters..........ccccceeeeeunnne. 11
Output Parameters..........ccceeeeeveunnnn. 12
Debug Parameters...........ccccecvveeenn. 13
OUTPUTS. ... 14
REPORTS .ttt eeteeereeeseteeeteeesereeeereesavee e 14
Summary Report............eeeeeeeeeeeennnns 14
Conflict report..........ccceeevveveeeecvnaannnn, 16
Detected Conflict report.................... 17
Resolution report.........ccccceeeecvuveeennn. 17
Delay Report.......cccccveeeeecvveeeeiivnaann, 19
Unresolved Conflict Report................ 20
APPENDICES ..vvveeveeeireesreeeieeesveeenneennneas 21

APPENDIX A: HITL 3D DEBUG PROCEDURE ... 21

The Separation Assurance Client (SA) is a platform to experiment with different conflict detection and
resolution algorithms. The SA provides an interface for both conflict detection and resolution (CDR)
algorithms. Currently two CDR algorithms have been integrated. One simple/fast CDR implementation
provided by Sensis and the other by NASA Langley called Stratway.

SCOPE

This document guides the SA user in the design and execution of PNP simulations with an SA client.

Topics covered include:

R/

< Software Overview
% Configuring SA

®,

% Running SA

P-3

SOFTWARE

ARCHITECTURE

The SAis a client to the PNP server. The SA is dependent upon the PNP server for data and heartbeat
messages.

Figure 6. PNP/SA Architecture

DESIGN

SA

The SA has four main responsibilities: communications, CDR, trajectory management, and statistics. The
SA executive manages flights and calls the CDR algorithms. The SA communications thread establishes
and maintains communications with the PNP server. The communications thread registers for messages
with the PNP server. The communications thread requests the interval it would like to receive messages.

‘ User Specified
> Inputs

Load
User Specified Inputs ‘

___—

hstuiie 3 Heartbeat Flight Data

Received? Management

Conflict Detection

Conflicts? Conflict Resolution

Send Flight Plan
Modifications

Resolutions?

Send Heartheat

Response

Figure 7. SA Design

P-5

Separation Assurance Client User Guide
Version 1.1

MESSAGES

The messages in the system are serialized objects. The following section identifies the current messages in
the system.

REQUEST MESSAGES

Request Messages

Message Type Source
PNP Enroute Flight Details Server
Command Requests Server
Heartbeat Server

RESPONSE MESSAGES

Response Messages

Message Type Source
LosList Client
ConflictList Client
ReroutePlan Client
Heartbeat Response Server

P-6

EXPERIMENTS

In order to include the SA in PNP experiment a SA configuration file must be created as described below.

[NSQUARED] NASA Langley Separation Assurance Client \:||§|rg|

11:45:00 #Flights:182 #Conflict:0 #LOS:0 #Resolutions:0

DATA SETS

SA requires the following data sets.

DIRECTORIES

INI

The ini subdirectory contains initialization files used to configure the SA.

FILES

SA PARAMETERS

The SA parameters control the runtime attributes of the experiment. The parameters customize the CDR
algorithms.

The various SA parameters are specified in the SA initialization (.ini) file and are broken up into parameter
sets. The following sections describe the SA parameter sets found in the SA initialization file.

PNP PARAMETERS

PNP parameters provide basic startup and initialization information for PNP launcher. These parameters
do not typically change between experiments, and are meant to be used to standardize a set of runs and
ensure that some basic parameters are used across several sets of runs.

PNP Parameters

P-7

Field Name Field Description Default Value

name The name parameter specifies the name of the client SA
component Specifies the type of component in the experiment. client
exec Specifies how PNP launcher will start the client. bin\\run.cmd sa
hostname Specifies the component’s hostname localhost
param Specifies any additional parameters passed to the PNP none

launcher.

CONTROL PARAMETERS

Control parameters provide basic connection and initialization information for PNP Server. These
parameters do not typically change between experiments, and are meant to be used to standardize a set
of runs and ensure that some basic parameters are used across several sets of runs.

Control Parameters

Field Name Field Description Default Value

pnpservername The pnpservername parameter specifies the hostname localhost
of the PNP server.

conflictdetectionimplementation The conflictdetectionimplementationparameter sensis
specifies the implementation name for the conflict
detection algorithm.

conflictresolutionimplementation = Specifies the implementation name for the conflict sensis
resolution algorithm.

P-8

policy Specifies the flight request policy instructing the PNP nsquared
how to package flights.

polygon — Instructs PNP to package flights in an area
defined by separationassurancepolygon.

Fleet Name — Instructs PNP to package flights by an
Aircraft Id filter (example. — UAL).

Ownship - Instructs PNP to package flights by Aircraft Id
(example — UAL1076).

serverrequestinterval Specifies in minutes how often you want the requested 1
message data.

KNOB PARAMETERS

Knobs represent a series of parameters that can be adjusted to tweak the behavior of the simulation.

Knob Parameters

Field Name Field Description Default Value
separationassurancetime Specifies in minutes how far to look ahead in the 2

trajectory .
minimumaltitudebound Specifies the minimum altitude of interest in which an 1000

aircraft is considered for SA.

minimumhorizontalsepara Specifies the minimum horizontal separation distance in 5
tion nautical miles between two aircraft

minimumverticalseparatio = Specifies the minimum vertical separation distance in feet 1000
n between two aircraft.

departuredistance Specifies the distance in nautical miles away from the 100
departure airport in which an aircraft is considered for SA.

P-9

arrivaldistance

trajectorytimestepinsecon
ds

hitl

separationassurancepolyg
on

Specifies the distance in nautical miles away from the
arrival airport in which an aircraft is considered for SA.

Specifies the trajectory time step in seconds.

Specifies the debug mode that allows a user to visualize
the resolution before they are intrumented.

Specifies the polygon used when the policy is configured
to polygon. (example - 34.8964/-95.03756,30.8964/-
95.03756,30.8964/-99.03756,34.8964/-99.03756)

100

10

false

P-10

DATASET PARAMETERS

The Dataset parameters control which files PNP uses as its source for weather and traffic data. Note that
all directory definitions use the double-backslash (\\) to separate directories. Double backslashes are
necessary for the proper operation of PNP.

Dataset Parameters

Field Name Field Description Default Value

conflictdataset The Input File parameter is the \\ARCHIVE\\demandsets\\conflicts.csv
directory and filename of the Flight

Data Set (FDS) file containing all the
planned flights for the debug
simulation.

OUTPUT PARAMETERS

The Output parameters specify what data should be output by PNP.

Output Parameters

Field Name Field Description Default Value
description A description of the experiment
outputpath Specifies where the output data is to be written data\\reports

P-12

DEBUG PARAMETERS

The Output parameters specify what data should be output by PNP.

Output Parameters

Field Name Field Description Default Value

debugCdr Specifies the debug flag to output cdr debug information false

P-13

OUTPUTS

The SA generates several reports that can be used for analysis and post processing by other applications.
These reports are described in the following sections.

REPORTS

SUMMARY REPORT

The Summary Report is generated by the SA at the conclusion of an experiment. This report contains the
following fields:

return "Conflicts,SolvedConflicts,UnresolvedConflicts,AvgTimelnConflict,%Success";

Description

Experiment The name of the experiment

#RightTurnResolutions Total number of right turn resolutions

#LeftTurnResolutions Total number of left turn resolutions

#speedControlResolutions Total number of speed control resolutions

#AltitudeChangeResolutions Total number of altitude change resolutions

PosDelayMinutes The total minutes of flight time savings for in-flight reroutes that increase flight time
negDelayMinutes The total minutes of flight time savings for in-flight reroutes that reduce flight time
Conflicts Total number of conflicts.

SolvedConflicts Total number of resolutions accepted by SA algorithm.

UnresolvedConflicts Total number of conflicts after implementing resolutions.

AvgTinelnConflict Average time to solve a conflict.

P-14

%Success

Resolution algorithm percentage solved.

CONFLICT REPORT

The SA Conflict Report is generated by the SA after every SA session that there are conflicts. This report

contains the following fields:

Description
timestamp The timestamp of the SA session
#PreConflicts Total number of conflicts before performing SA.
#PrelLOS Total number of loss of separation events before performing SA.
#Resolutions Total number of resolutions accepted by SA algorithm.
#SolvedConflicts Number of solved conflicts.
#PostConflicts Total number of conflicts after implementing resolutions.
#PostLos Total number of loss of separation events after implementing resolutions.
%resolved Running percent conflicts resolved
TotalConflicts Total running conflicts

P-16

DETECTED CONFLICT REPORT

The Detected Conflict Report is generated by the SA as conflicts are encountered. This report contains the
following fields:

Description

timestamp Timestamp of detected conflict

Aircraft Id Aircraft identifier

Flight Index Unique flight identifier assigned by PNP server flight manager.
AcType Aircraft type

Orig Departure airport

Dest Arrival airport

Departure Time Timestamp when aircraft leaves the gate
Wheels Up time Timestamp when aircraft takes off
Posldx Current position Index of 4D trajectory
ConflictType Future conflict or loss of separation event
SecondsToLOS Seconds to loss of separation
SecondsToPCA Seconds to point of closest approach
SecondsToGOS Seconds to gain of separation

Delay Pre-departure delays

#Maneuvers Number of manevers

RESOLUTION REPORT

The Resolution Report is generated by the SA to perform resolution analysis. This report contains the

following fields:

Description
Aircraft Id Aircraft identifier
Flight Index Unique flight identifier assigned by PNP server flight manager.
Status Status of resolution: attempt, failed, n/a, or accepted.
#Conflicts Number of conflicts after implementing this resolution
resolution Actual resolution

P-18

DELAY REPORT

The Delay Report is generated by the SA. This report contains aircraft delay information.

Description
Aircraft Id Aircraft identifier
Flight Index Unique flight identifier assigned by PNP server flight manager.
ResolutionType RIGHT_TURN, LEFT_TURN, SPEED_CONTROL, ALTITUDE_CHANGE.
PosDelayMinutes The total minutes of flight time savings for in-flight reroutes that increase flight time
negDelayMinutes The total minutes of flight time savings for in-flight reroutes that reduce flight time

P-19

UNRESOLVED CONFLICT REPORT

The Unresolved Conflict Report is generated by the SA when the CDR algorithm cannot solve a conflict.
This report contains aircraft delay information.

timestamp Timestamp of detected conflict
Ownship Flight Index Unique flight identifier assigned by PNP server flight manager.
Target Flight Index Unique flight identifier assigned by PNP server flight manager.

P-20

APPENDICES

APPENDIX A: HITL 3D DEBUG PROCEDURE

1. Use conflict report to select specific conflict

2. Create a file demand set (\ARCHIVE\demandsets\conflict1l.csv) with the two conflicting aircraft.
Verify/update WheelsUpTime as a delay may have been assigned by PNP before departure.

3. Create sa_conflictl.ini file to include:
[knob]
hitl = true
[dataset]
conflictdataset = \\ARCHIVE\\demandsets\\conflictl.csv

4. Run SA standalone with sa_{description}.ini

5. Use mouse toolbar buttons to manipulate 3D display.

Separatiun Assurance Display for FDX1412/1

P-21

Required Time of Arrival
(RTMX) Client

User Guide

vl.l

6/26/2012
Saab Sensis Corporation

TABLE OF CONTENTS

INTRODUCTIONoeeiiiiceccerstmecs s s e s s s s s s s s s s ema s s s s sma s s s e sma s s s e e mnns s s enmmnsnnnns 3
S0P ettt ettt ettt et e e e e e e et e e et e e e a e e ee e e e e e e e bbbttt e e et e e e e b e a et e e e e e e e e bateeeeeeeeeeaanrnnee 4
SOFTWAREot s s s e e e e e e s s nmn s s e s e e s e e nnnnnnnsssssssnnnnns 5
AARCHITECTURE ..ttt teeiittttte e e e e e ettt et e e e e e eaabbbteeeeeeesaaanbe et e e eeeeasaasbbateeeeeesanassbaeeeeeessannsnbeeeeeesenannnrnnes 5
(D2 (] PP PP UPPTPPPPPTTN 5
RTIMIX ettt ettt et e ettt et e e ettt e e e e e s sttt e e e e e e s sttt e e e e e e e s anasbareeeas 5
IMIESSAGES ...tttttteee et ettt e e e e e sttt et e e e e s e bbbttt e eeeesaaaabe e et eeee e e s anbe b e e e e e e e e e aanbbbbeeeeeeeennnreaeeeeeeeaanan 7
REQUEST IMIESSOGEScccceeeeeeeeeieiee ettt ettt e e e e aeeteesasasasesasesesesasesasssesassnsnens 7
RESPONSE MESSAGES....ccccceeeeeeieieeeeeieieeeeee ettt ettt ettt ettt e teeeeeeesesasesesasesassssssssnsssnsnsnsnnes 7
EXPERIMENTS ...ttt s s s e e s e s s s s s s e e s e e e nmmn e s s e e e e e e mmmmnnnnnan 9
[N 7N 3 LT PP TP UPPPPTN 9
DUFECTONIS ..vveveeeeeeetee ettt e e e ettt e e e e e s ettt e e e e e s sttt aeaeseessaassseneaeeenas 9
=X TSRS 9
RTA PARAMETERS .ttt tteeutitttteeeesesssiitttteeeessessutbetteeeesssaaassbeaaeeeeessaaassbeaeeeesssasssbbaaaeeessssassnsaaeeeessnns 9
PINP POFQIMETEIS ettt sttt ssssssssssnsssnnsnnnnnne 9
CONEIOI PAIAMELEIS ..ottt ettt e e et e e e sttt e e s st a e e sttaaeesstaaeesasees 10

L aTe) QN e Tde T 1= =T TSRS 10
DALASEE PATGAMELELS ..ottt 12
OUEPUL PAFAMEEEIS.c.cccccceeeeeeeeeeeeeeeeeeeee e 13
(D= oYV o I o [[£ L= (=T (TR SRR 14
OUT PUTS ... eeeececrrr s s e e s s s s s s e s e s s e na s s s s s e e e e e nnnnssssssassrreeennnnnnsssssssnnnnnns 15
REPORTS .ttt ettt et e s et e e e e e s e e e e e e e e s bbb a e et e e e s e a e e e e e e e e 15
SUMMAEY REPOIT ... s 15
IMONEUVEE FEPOIT .ottt ssssssssssssssssssnsnnnnes 17

LA e N =] o Lo L SRS 18
Departure SPACING FEPONT......coueeiiieeeee ettt ettt e e e e sttt a e e e e s sttt aeaeeesssssssseees 20

INTRODUCTION

The Required Time of Arrival Client (RTMX) is a platform to experiment with different spacing concepts.
The departure spacing implementation is performed on pre-departures using airport capacities. RTA
assignment is performed en-route based on the distance to the metering fix. When an aircraft enters the
freeze horizon a RTA is assigned. The RTMX client continuously checks for RTA conformance as flights
approach the metering fix. RTA reassignments occurs based on non-conformance.

Q-3

SCOPE

This document guides the RTMX user in the design and execution of PNP simulations with a RTMX client.
Topics covered include:
+ Software Overview

% Configuring RTMX

** Running RTMX

SOFTWARE

ARCHITECTURE

The RTMX is a client to the PNP server. The RTMX is dependent upon the PNP server for data and
heartbeat messages.

PNP
Server

Figure 8. PNP/ RTMX Architecture

DESIGN

RTMX

The RTMX has four main responsibilities: communications, departure spacing, RTA assignment, and
statistics. The RTMX executive manages flights and calls the spacing algorithms. The RTMX
communications thread establishes and maintains communications with the PNP server. The
communications thread registers for messages with the PNP server. The communications thread requests
the interval it would like to receive messages.

Q-5

Load User
Specified
Inputs

User Specified
Inputs

A

. Airport
Flight Data Capacity
Management
Management
A i

update update

Airport
Capacities
Received?

Heartbeat Flight Data
Received? Received?

Airport
Departure
Spacing

A

Initial RTAs R Reroute/
Assignment Delay
/ Management

A

RTA
Conformance
Monitoring

Send Batch

Response

Figure 9. RTMX Design

Send
Heartbeat

Response

RTMX Client User Guide
Version 1.1

MESSAGES

The messages in the system are serialized objects. The following section identifies the current messages in
the system.

REQUEST MESSAGES

Request Messages

Message Type Source
PNP AtGate Flight Details Server
PNP Enroute Flight Details Server
AirportCapacities Server
Command Requests Server
Heartbeat Server

RESPONSE MESSAGES

Response Messages

Message Type Source
BatchResponse Client
Heartbeat Response Server

Q-8

EXPERIMENTS

In order to include the RTMX in PNP experiment a RTMX configuration file must be created as described
below.

DATA SETS

RTA requires the following data sets.

DIRECTORIES

INI

The ini subdirectory contains initialization files used to configure the RTA.

FILES

RTA PARAMETERS

The RTA parameters control the runtime attributes of the experiment. The parameters customize the
weather avoidance concepts.

The various RTA parameters are specified in the RTA initialization (.ini) file and are broken up into
parameter sets. The following sections describe the RTA parameter sets found in the RTA initialization file.

PNP PARAMETERS

PNP parameters provide basic startup and initialization information for PNP launcher. These parameters
do not typically change between experiments, and are meant to be used to standardize a set of runs and
ensure that some basic parameters are used across several sets of runs.

PNP Parameters

Field Name Field Description Default Value
name The name parameter specifies the name of the client RTA
component Specifies the type of component in the experiment. client

exec Specifies how PNP launcher will start the client. bin\\run.cmd RTA

hostname Specifies the component’s hostname localhost
param Specifies any additional parameters passed to the PNP none
launcher.

CONTROL PARAMETERS

Control parameters provide basic connection and initialization information for PNP Server. These
parameters do not typically change between experiments, and are meant to be used to standardize a set
of runs and ensure that some basic parameters are used across several sets of runs.

Control Parameters

Field Name Field Description Default Value
pnpservername The pnpservername parameter specifies the hostname localhost

of the PNP server.

serverrequestinterval Specifies in minutes how often the client wants the 15
requested message data.

KNOB PARAMETERS

Knobs represent a series of parameters that can be adjusted to tweak the behavior of the simulation.

Knob Parameters

Field Name Field Description Default Value

speedcontrolspacing Specifies whether speed control maneuvering is enabled. true

Q-10

decentprofilespacing

doglegspacing

lookaheadminutes

rtalookaheadminutes

rtatoleranceseconds

freezerangehorizon

meteringspacingseconds

Specifies whether altitude change maneuvering is enabled.

Specifies whether dogleg rerouting is enabled

Specifies the look ahead in minutes for flights as
candidates

Specifies the RTA look ahead in minutes for candidates

Specifies the seconds of tolerance for a RTA.

Specifies the freezerange horizon distance in nautical
miles.

Specifies the seconds between flights at the metering fix.

true

true

120

1440

300

45

DATASET PARAMETERS

The Dataset parameters control which files PNP uses as its source for weather and traffic data. Note that
all directory definitions use the double-backslash (\\) to separate directories. Double backslashes are
necessary for the proper operation of PNP.

Dataset Parameters

Field Name Field Description Default Value

Q-12

OUTPUT PARAMETERS

The Output parameters specify what data should be output by PNP.

Output Parameters

Field Name Field Description Default Value
description A description of the experiment RTA
outputpath Specifies where the output data is to be written data\\reports

Q-13

DEBUG PARAMETERS

The Output parameters specify what data should be output by PNP.

Output Parameters

Field Name Field Description Default Value

OUTPUTS

The RTA generates several reports that can be used for analysis and post processing by other applications.
These reports are described in the following sections.

REPORTS

SUMMARY REPORT

The Summary Report is generated by the RTA at the conclusion of an experiment. This report contains the
following fields:

Description

Experiment The name of the experiment

TotalDepartures Total number of departures

PreDepartureDelayCount The number of pre-departure reroutes

PreDepartureDelay The total minutes of pre-departure delays

AvgPreDepartureDelayCount Average delay per pre-departure delay

PreDepartureRerouteCount The number of pre-departure reroutes

PreDepartureRerouteDelay The total minutes of flight time added for pre-departure reroutes that increase flight
time

PreDepartureRerouteNegativeDelay The total minutes of flight time savings for pre-departure reroutes that reduce flight
time

PreDepartureRerouteAvgDelay Average flight time difference per pre-departure reroute

InflightRerouteCount The number of in-flight reroutes

InflightRerouteDelay The total minutes of flight time added for in-flight reroutes that increase flight time

Q-15

InflightRerouteNegativeDelay

The total minutes of flight time savings for in-flight reroutes that reduce flight time

InflightRerouteAvgDelay

Average flight time difference per in-flight reroute

TotalDelayCount

Total number of delay events

TotalDelay Total minutes of flight time delay
AvgDelay Average minutes of delay per departure
Date Date of experiment

Q-16

MANEUVER REPORT

The Maneuver Report is generated by the RTMX every interval session. This report contains the following

fields:

Description

Experiment

The name of the experiment

DecentProfileCount

The number of speed control maneuvers.

DecentProfilePositiveDelay

The positive delay of speed control maneuvers.

DecentProfileNegativeDelay

The negative delay of speed control maneuvers.

CruiseCasCount

The number of altitude change maneuvers.

CruiseCasPositiveDelay

The positive delay of altitude change maneuvers.

CruiseCasNegativeDelay

The negative delay of altitude change maneuvers.

DoglegCount

The number of dogleg reroute maneuvers.

DoglegEnreroutePositiveDelay

The positive delay of dogleg reroute maneuvers.

DoglegNegativeDelay

The negative delay of dogleg reroute maneuvers.

Q17

INITIAL RTA REPORT

The Initial RTA Report is generated by the RTMX every interval session. This report contains the following
fields:

Description
timestamp The timestamp of the RTA session
flightindex Unique flight identifier assigned by PNP server flight manager.
Aircraftld Aircraft Identifier
Orig Flight origination
Dest Flight Destination
meteringFix Assigned metering fix
totalflightMinutes Total flight length in minutes
minutesFlown Flight minutes flown
wheelsUpTime The time when wheels are off the tarmac
initialRta Initial RTA assignment
earliestRta Earliest RTA assignment available for this maneuver
latestRta Latest RTA assignment available for this maneuver
maneuver Maneuver description
implementationTime Time when RTA maneuver is implemented
rtaAssignment RTA assignment selected
newEta New Estimated time of arrival (wheels down)
rtaDelay RTA Delay imposed by RTA assignment

Q-18

etaDelay

ETA Delay imposed by RTA assignment

status

SLOTTED — RTA assignment accepted assigned

INFEASIBLE_REQUEST — aircraft not in aircraft window

INITIAL_RTA_FORCED_SPACING — skip this slot to create space for future needs

SUCCESS - RTA assignment found

NO_SPOT_AVAILABLE — RTA assignment failure due to insufficient slots

Q-19

DEPARTURE SPACING REPORT

The Departure Spacing Report is generated by the RTMX to perform resolution analysis. This report

contains the following fields:

Description

timestamp The timestamp of the RTA session

flightindex Unique flight identifier assigned by PNP server flight manager.

Aircraftid Aircraft Identifier

Orig Flight origination

Dest Flight Destination

meteringFix Assigned metering fix

flightMinutes Total flight length in minutes

spacingSeconds Spacing seconds for origination airport

wheelsUpTime The time when wheels are off the tarmac

rta Initial RTA assignment

wheelsDownTime The time when wheels are on the tarmac

delay ETA Delay imposed by departure spacing

status DEPARTURE_SPACING— departure spacing accepted assigned without delay
DEPARTURE_FORCED_SPACING — departure spacing accepted assigned with delay

Q-20

REPORT DOCUMENTATION PAGE oMo ApDroved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-06 -2013 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
o])] NNLOSAA17B
Upgrades to the Probabilistic NAS Platform Air Traffic Simulation ©b. GRANT NUMBER
Software

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Hunter, George; Boisvert, Benjamin Se. TASK NUMBER
NNLI10AC94T

5f. WORK UNIT NUMBER

305295.02.90.07.02.01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, Virginia 23681

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2013-218008

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 03

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Ty V. Marien

14. ABSTRACT

This document is the final report for the project entitled “Upgrades to the Probabilistic NAS Platform Air Traffic Simulation
Software.” This report consists of 17 sections which document the results of the several subtasks of this effort. The
Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis
Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation
assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather
avoidance capability.

15. SUBJECT TERMS

Air traffic simulation; Separation assurance; Terminal area modeling; Traffic flow management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT [b. ABSTRACT |c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U UuU 371 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

