https://ntrs.nasa.gov/search.jsp?R=20130014012 2019-08-29T15:31:10+00:00Z

Footprints on Mars Presentation to Boeing REACH

National Aeronautics and Space Administration

Bret G. Drake NASA Lyndon B. Johnson Space Center 12 June, 2013

Wernher von Braun and Chesley Bonestell prediction of the future in 1951 Illustration by Robert McCall

Dr. Wernher von Braun's Manned Mars Landing Presentation to the Space Task Group - 1969

So What Happened?

Space, Especially Mars, is Hard

and, unfortunately,

The Laws of Physics Can't be Rewritten

Human Exploration of Mars

Key Challenges

A Brief History of Human Exploration Beyond LEO

A trail of studies ... to Mars

NASA

- Long-standing curiosity, particularly since it appears that humans could one day visit there
- A NASA chartered group, Mars Exploration Program Analysis Group, has organized a set of four primary goals:
 - Determine if life ever arose on Mars
 - Understand the processes and history of climate on Mars
 - Determine the evolution of the surface and interior of Mars
 - Prepare for human exploration
- Two additional goals considered as well:
 - Preparing for sustained human presence
 - Ancillary science such as heliophysics, space weather, astrophysics

Goals and Objectives Summary Implications

- The first three human missions to Mars should be to three different geographic sites
- Maximize mobility to extend the reach of human exploration beyond the landing site
- Maximize the amount of time that the astronauts spend exploring the planet
- Provide subsurface access
- Return a minimum of 250 kg of samples to Earth

Mars Trajectory Classes

• A trip to Mars with a return back to Earth is a double rendezvous problem

- Mars round-trip missions are flown in heliocentric space
- Relative planetary alignment is a key driver in the mission duration and propulsion required

Synodic Period – Variation in Delta-V

The difference in orbits of the Earth and Mars influence the mission delta-v and timing

- Earth departure opportunities occur approximately ever 26 months
- The Earth departure "window" lasts a few weeks and is highly dependent on the propulsion system choice
- The round-trip mission delta-v varies over a 15-year cycle (the Synodic Cycle)
- Although "good" opportunities occur in 2018, 2033, and 2047, the ability to conduct missions in any opportunity across the Synodic Cycle will reduce programmatic risk

Advanced In-Space Transportation

Options, options, options....

Advantages:

- More "state of the art"
- Multiple destinations

Challenges:

- High Mass / Lots of Launches
- Long-term storage of cryogenic propellants, particularly H₂
- Configuration and integration challenges
- Long-stay missions only

High Thrust: Nuclear Thermal Propulsion (NTP)

Advantages: Good

- Good combination of high thrust and high efficiency (Isp)
- Low architectural mass
- Both long and short stay missions
- Has been demonstrated (NERVA)

Challenges:

- Long-term storage of cryogenic H₂
- Large launch volume (due to H₂)
- Nuclear regulatory compliance/testing

Low Thrust: Solar Electric Propulsion (SEP)

Advantages:

- Low architectural mass
- Multiple destinations

Challenges:

- Limited to long-stay missions
- Configuration and integration challenges (large solar arrays)
- Long operating times (spirals)

Low Thrust: Nuclear Electric Propulsion (NEP)

Advantages:

- Low architectural mass
- Both long-stay and short-stay (if power is high) missions

Challenges:

- No experience base for space based high power, high efficiency, nuclear reactors
- Configuration and integration challenges (large radiators)
- Nuclear regulatory compliance/testing
- Long operating times (spirals)

Drake – Footprints on Mars

Boeing REACH – 12 June, 2013

11

Propulsion Technology Comparisons

Crew Vehicle Mass as a Function of Trip Time – Short Stay Opposition Missions

NASA

SLS Architecture Block Upgrade Approach

Drake – Footprints on Mars

NASA

Boeing REACH - 12 June, 2013

Example Launch Packaging

Diameter and Volume are also Key

Landers and Other Payloads		Nuclear Thermal Propulsion				Solar Electric Propulsion		Nuclear Electric Propulsion	
40						_			
30	\wedge	\wedge				\wedge		\wedge	
20					444				
10						-			
L									
	SLS		S	LS		S	LS	SL	S
105 t		105 t				13	0 t	130 t	

-

Orion Crew Transfer / Earth Return Vehicle

Crew Delivery to Earth Departure Point

- Provide safe delivery of 4-6 crew to Earth departure point for rendezvous with the Mars Transfer Vehicle
 - Delivery and return of checkout crew prior to the mission
 - Delivery of the mission crew

End of Mission Crew Return (Mars Block)

- Provide safe return of 4-6 crew from the Mars-Earth transfer trajectory to Earth at the end of the mission
 - 12 km/s entry speed (13+ km/s for short-stay mission)
 - 900 day dormant operations
 - 3 day active operations
 - Much smaller service module (~300 m/s delta-v) for retargeting and Earth entry corridor set-up

Challenges of Supporting Humans in Deep Space

- Human missions to Mars are demanding from a human health and performance perspective
 - <u>Long-Duration</u>: 600 days minimum, 900 days most probable
 - <u>Deep-Space</u>: Micro-gravity and harsh environment
 - <u>Remote</u>: No logistics train, no fast return aborts

Categories of Key Human Support Challenges

- <u>Ocular Syndrome</u>: Intercranial pressure
- <u>Toxicity</u>: Dust and other hazards
- <u>Autonomous Emergency</u>: Response to system emergencies (e.g. life support system failure)
- <u>Radiation</u>: Solar Proton (solutions exist), Galactic Cosmic Radiation (currently no standards for exploration)
- <u>Behavioral Health and Performance</u>: Remote isolated missions with no real-time communications.
- <u>Autonomous Medical Care</u>: Response to medical issues
- <u>Nutrition</u>: Food with adequate nutrition for long missions
- <u>Hypogravity</u>: Adjusting to the gravity of Mars
- <u>Musculoskeletal</u>: Muscle atrophy and bone decalcification
- <u>Sensorimotor</u>: Sensory changes/dysfunctions

Challenges of Landing on Mars

The Atmosphere of Mars

- The Good: Mars has an atmosphere that can help slow the entry vehicle down
- The Bad: The atmosphere is thick enough that it requires a heat shield, but not thick enough to provide substantial drag (density 1% of Earth's)
- Atmospheric dust may prohibit ability or timing of landing at designated landing sites
- The Current Mars Science Laboratory Landing Strategy is Limited
 - ~ 1 mt payload to the surface (target 40 mt)
- Key for Human Missions Challenge: <u>Supersonic Transition</u>

Technology Options

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

Rigid Aeroshells (mid L/D)

Mars Wet Lander Mass at Mars Arrival

NASA

Living off of the Land: In-Situ Resources

Atmosphere

- Atmospheric resources found globally with slight change in pressure/concentration
- Primary product: oxygen (O_2) bound in carbon dioxide (CO_2)
- Oxygen can be used for propulsion, life support, and extra vehicular activity (EVA) applications
- Production of O₂ only from CO₂ makes over 75% of ascent propellant mass
- Production of O_2 and CH_4 (or other hydrocarbon fuel) possible with hydrogen (H_2) brought from Earth
- Soil Processing for Water
 - Water resources found globally with large variations in concentration, form, and depth.
 - Water can be used for life support, EVA, and radiation shielding
 - Water can be processed into O_2 and H_2 or with CO_2 to make fuels for propulsion and power
 - Production of O_2 and methane (CH₄) from CO_2 and H₂O allows for 100% of ascent propellant mass
- Leverage
 - Producing oxygen from the atmosphere provides significant leverage in terms of mass (32%) and volume (lander packaging)

Resources

Carbon Dioxide (CO ₂)	95.5%
Nitrogen (N ₂)	2.7%
Argon (Ar)	1.6%
Oxygen (O ₂)	0.15%
Water (H ₂ O)	<0.03%

Global

Dependent

Site

Landing

Drake – Footprints on Mars

Human Exploration of Mars Capability Needs

<u>Launch</u>

- Multiple launches
- Short spacing
- Large mass: 130 t
- Large Volume 10 x 30 m

Space Transportation

- Advanced propulsion to reduce mass
- Fast Transits for Crew (180 days)
- Limited / lack of quick aborts

Entry Descent and Landing

- Large mass (40 t) / Large volume
- Abort to surface
- Precision landing

Crew Surface Health and Support

- Crew acclimation post landing
- Human Support (radiation, hypogravity, dust, behavior) Planetary protection

Operations

- Automated, rendezvous and docking
- Pre-deploy cargo
- No logistics
- Reliability, maintenance and repair
- Autonomous operations post landing
- Infrastructure emplacement (power)
- High continuous power (40 kWe)
- ISRU oxygen production atmosphere
- Multiple EVAs, long-range roves, routine exploration

Historical Examples of Human Exploration

Mission Time (days)

NASA