

Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

Alan M. Cassell NASA Ames Research Center, Entry Systems and Vehicle Development Branch 10th International Planetary Probe Workshop, 17-21 June 2012, San Jose, CA, USA

Outline

- HIAD Overview
- Test Design
- Assembly & Integration
- Testing Operations
- Instrumentation & Data Produ
- Summary

HIAD Overview

Large-Scale Wind

Inflatable Aeroshell Structures Development

Large-Scale Manufacturability & Material Development

Development of largescale manufacturing capabilities and advanced, hightemperature capable inflatable structure materials.

Large-Scale Static

Load Testing & Model

Ground test to demonstrate HIAD scalability and initial structural model development. Ground tests to characterize HIAD performance under flight-like aerodynamic loading.

Mars robotic (SMD & ESMD)

3 – 15-meter HIAD Class

Venus missions (SMD)

LEO/ISS missions (SMD & SOMD)

NEO return-robotic (SMD & ESMD)

Lunar return-robotic (SMD & ESMD)

Terrestrial robotic missions (DoD)

HIAD Overview

The HIAD Mission Concept- HEART

HIAD Overview

HEART Trajectory

Unmargined aerothermal environments

National Full-Scale Aerodynamics Complex

<u>40 ft x 80 ft (12 m x 24 m) Test Section Operating Specifications</u> Semi-Elliptical Profile Maximum Velocity- 300 knots (154 m/s) Max Dynamic Pressure- 262 psf (12.5 kPa)

*Max Drag Load- 32,000 lbs

Test Article Descriptions

Test Design

Test Matrix

6m Tri-Torus Configuration

6m Baseline Configuration

3m without TPS

3m with TPS

Q	Angle of Attack (deg)										
(psf)	-25	-20	-15	-10	-5	0	5	10			
0/8					(Х					
35						Х					
40	Х		X		Х	X	Х	Х			
50	Х		X	Х	Х	X	Х	Х			
64			X		Х	X					

Q	Angle of Attack (deg)								
(psf)	-25	-20	-15	-10	-5	0	5	10	
0/8	- 				į.	Х		8	
30						Х			
40	Х	Х	Х	Х	Х	Х	Х	Х	
50	Х	Х	Х	Х	Х	Х	Х	Х	
64		Х	X	Х	Х	Х	Х	Х	

14 Inf	latior	n Sta	te							
Q	Angle of Attack (deg)									
(psf)	-25	-20	-15	-10	-5	0	5	10		
0/8						Х				
30		3			6	Х				
40			X	Х	Х	Х	Х	Х		
50			Х	Х	Х	Х	Х	Х		
64						X				

Q	Angl	e of	Atta	ck (d	eg)		10	
psf)	-25	-20	-15	-10	-5	0	5	10
0/8						Х		
35						Х		
40	X		Х		Х	Х		
50	X		Х		Х	Х	Х	Х
70	Х		Х		Х	Х		

Q	Angl	e of	Atta	ck (d	eg)			
psf)	-25	-20	-15	-10	-5	0	5	10
0/8						Х		
35			2			Х		
40	Х		Х		Х	Х		
50	Х		Х		Х	Х	Х	Х
70	X		Х		Х	Х		

14 Inf	lation	State	•									
Ø	Angle of Attack (deg)											
(psf)	-25	-20 -	15	-10	-5	0	5	10				
0/8						Х						
35		8			3	Х	5	10				
40	X		Х		Х	Х						
50	X		Х		Х	Х	Х	Х				
70	X		x		X	X						

Q	Angle				
(psf)	-10	-5	0	5	10
8	X	Х	X	Х	X
40	X	Х	X		
80	X	Х	X	Х	X
120	X	Х	X	Х	
160					

Q	Angle of Attack (deg)								
(psf)	-10	-5	0	5	10				
8	X	Х	Х	Х	X				
40	X	Х	Х						
80	X	Х	Х	Х	X				
120		Х	Х	Х	X				

Q	Angle of Attack (deg)							
(psf)	-10	-5	0	5	10			
8	X	Х	X	Х	X			
40	X	Х	X					
80	X	Х	X					
120	X	Х	X					

SHIWIUTIFS

11 Infla	tion St	ate					
Q	Angle of Attack (deg)						
(psf)	-10	-5	0	5	10		
8	X	Х	Х	X	X		
40	X	Х	Х				
80	X	Х	Х	X	X		
120	Х	Х	Х	X	X		
160		Х	Х				

Testing Approach

- Test from highest to lowest inflation setting
- Stabilize tunnel condition *q*, then do AoA sweeps
- ~60 sec dwell time at each point for data acquisition
- Slew rate for turntable (0.5 deg/sec)
- 379 total test points (with repeats) obtained

NASA

Test Article Preparations

Custom Handling & Integration Fixture

Key Features:

- Tilt via Facility Cranes to Transfer/Integration
 Positions
- Manually Rotatable via Bearing
- Radial Rotation Lock

Allows:

- Facile Access- Fore & Aft
- Rapid Instrumentation &
 Pneumatic Line Integration
- Transfer to/from Test
 Section

Instrumentation Position- Front View

Instrumentation & Pressure Line Set-Up

Routing Instrumentation & pneumatic lines

Sting/Test Article Interface

6 m Aerocover Install

Aerocover Transferred from Integration Fixture to 6 m HIAD using overhead crane in NFAC high bay Aerocover Secured to 6 m Test Article

NA SA

Custom Support System Hardware

NA SA

Model Installation

Final Assembly in Test Section

Test Operations

Test Articles Installed in Wind Tunnel

HIAD Video Compilation

Photogrammetry System

Photogrammetry System

Photogrammetry Data

for CFD grid generation

Test Article Surface Pressures

Surface Pressure Data

Load Pins & Load Cells

Results Overview

Summary:

- Very successful test series- all primary test objectives were met
- Two 6 m configurations and two 3 m configurations tested.
- Comprehensive set of data products- ~ 400 data channels monitored
- Ability to investigate Aero/Structural performance over a wide range of conditions
- Full 3-d imaging of forward surface for CFD & FEA model development
- Characterization methodology for structural strap materials
- Embedded instrumentation development for pressure and localized state measurements

Model	# Test			Prima	ry Data P	roducts		
n	S	Photogrammet ry	Strap Load Cells	Strap Load Pins	Surface Pressures	Wall Pressures	Aero Forces & Moments	Inflation Pressures
6 m Tri-Torus	151	Full Model Coverage	21	8	118	138	Yes	Yes
6 m Baseline	106	Full Model Coverage	21	8	118	138	Yes	Yes
3 m	94	Full Model Coverage	21	N/A	118	138	Yes	Yes
3 m w/ TPS	28	Full Model Coverage	21	N/A	5	138	Yes	Yes

Acknowledgements- Core Test Team

Acknowledgements- Test Team Photo

Questions?

The World's Forum for Aerospace Leadership