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Extended Abstract 

Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid 

Dynamists to estimate solutions to many problems in academia, government, and industry. 

CFD is known to have errors and uncertainties and there is no universally adopted method 

to estimate such quantities. This paper describes an approach to estimate CFD uncertainties 

strictly numerically using inputs and the Student-T distribution. The approach is compared 

to an exact analytical solution of fully developed, laminar flow between infinite, stationary 

plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms 

coupled with the Student-T distribution can encompass the exact solution. 

Nomenclature 

a = channel width 

f>o = experimental error 

= input error 

f>model = modeling error 

f>num = numerical error 

f>s = simulated error 

D = experimental value 

dp/dx = pressure gradient 

=solution changes medium to fine grid 
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f32 = solution changes coarse to medium grid 

ea 21 =extrapolated error 

E = comparison error 

21 
GCI ftne =grid convergence index 

h = representative grid size 

p =observed order 

Rk = convergence parameter 

rz1 = ratio of grid sizes between grid 1 and 2 

r32 = ratio of grid sizes between grid 3 and 2 

S simulated result 

Skl solution variable for fme grid 

Skz solution variable for medium grid 

Sk3 solution variable for coarse grid 

Sext 
21 = extrapolated solution variable 

SL lowest solution variable 

Su highest solution variable 

Uoscillatory =uncertainty for oscillatory portion of the solution 

Umonotonlc =uncertainty for monotonic portion of the solution 

Uinput = input uncertainty 

u0 = experimental uncertainty 

Unwn = numerical uncertainty 

UvaJ = validation uncertainty 

J1 = viscosity 

I. Introduction c FD in many problems is the optimum balance between cost and accuracy. However, a comprehensive approach 

for verification using test data is needed for full validation. With shrinking budgets in all areas of aerospace 

industry, CFD is commonly used without proper verification and validation. This paper couples traditional 



uncertainty analysis with the Student-T distribution to estimate a numerical uncertainty without using test data. The 

results are compared to the exact analytical solution of fully developed, laminar flow between infinite, stationary 

plates. 

A thorough literature review was performed by the authors in AIAA-2013-02581 and it was determined that the 

current state of the art for CFD uncertainty analysis is the ASME Standard for Verification and Validation in 

Computational Fluid Dynamics and Heat Transfer 2. The standard outlines a validation approach using experimental 

errors, modeling assumptions, simulation inputs, and numerical solutions of equations. The error, E, and validation 

standard uncertainty Uvah can be defmed and conclusions drawn about whether the model is properly verified. This 

paper outlines a method to estimate the numerical uncertainty without using test data and shows the differences 

between the proposed methodology and the ASME Standard. 

II. Methodology of ASME V & V 20-2009 

A schematic showing the nomenclature and an overview of the validation process is shown in Figure 12
. The left 

side of the figure describes the terminology and the right side describes the validation process . 
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Figure I: Schematic of nomenclature and Overview of Validation Process2 

Simulation re1ult, S 

The methodology is as follows. The validation comparison error, E, is the difference between the simulated 

result, S, and the experimental value, D 2
. The goal is to characterize the interval modeling error, Omodel· The 

coverage factor, k, used to provide a given degree of confidence (ie 90% assuming a uniform distribution, k=I.65f 



The standard also outlines procedures to calculate numerical uncertainty, Unwn, the uncertainty in the simulated result 

from input parameters, Uinput. and the experimental uncertainty, u0 
2

. 

(1) 

E=S-D (2) 

(3) 

Unum is calculated using a Richardson' s Extrapolation approach and defmed as a five-step procedure2
• 

Step 1, calculate representative grid size, has shown in equation 4. 

1 

( 
Total Volume )3 

h1 = total number of cells in fine grid 

1 

( 
Total Volume )3 

h = 2 total number of cells in medium grid 

1 

h = ( Total Volume )3 
3 total number of cells in coarse grid 

(4) 

Step 2 is to select three significantly (r> 1.3) grid sizes and computer the ratio as shown in equation 52
• 

(5) 

Step 3 is to calculate the observed order, p, as shown in equation 62
• This equation must be solved iteratively. 

E21 = Sk2 - Ski 

E32 = Sk3 - Sk2 

(6) 

Step 4 is to calculate the extrapolated values as shown in equation 72
• 

(7) 

Step 5 is to calculate the fme grid convergence index and numerical uncertainty as shown in equation 82
• This 

approached used a factor of safety of 1.25 and assumed that the distribution is Gaussian about the fme grid, 90 % 

confidence. 



21 1.25 * ea 21 
GC/fine = 

Cr21P- 1) 

GCltin/1 
Unum= 

1.65 

Uinput is calculated using a Taylor Series expansion in parameter space2
. 

(8) 

(9) 

U0 is calculated using test uncertainty methodology as defied in the standard2
. The purpose of this paper is to 

show an estimate of numerical uncertainty without test data. The reader is referred to the ASME standard for further 

information. 

III. Proposed Methodology without Test Data 

Convergence studies require a minimum of three solutions to evaluate convergence with respect to an input 

parameter 3. Consider the situation for 3 solutions corresponding to fine Sk), medium Sk2, and coarse Sk3 values for 

the kth input parameter 3
• Solution changes £ for medium-fine and coarse-medium solutions and their ratio Rk are 

defmed by 3
: 

£21 = Sk2 - Sk1 

£32 = Sk3 - Sk2 

Rk = £211 £32 (10) 

Three convergence conditions are possible3
: 

(i) Monotonic convergence: 0< Rk < I 

(ii) Oscillatory convergence: Rk < 0; 

(iii) Divergence: Rk> 1 (11) 

The methodology outlined in ASME V&V-20092 assumes monotonic convergence criteria for Unum· Further 

increasing the grid does not always provide a monotonically increasing result. This is shown in AIAA-2013-0258 1
• 

The proposed methodology is to treat all input parameters including the grid as an oscillatory convergence study. 

The uncertainty for cells with oscillatory convergence, using the following method outlined by Stem, Wilson, 

Coleman, and Paterson 3, can be calculated as follows in equation 12. Sis the simulated result. For this case it is 

the upper velocity Suand the lower velocity SL. 



(12) 

The proposed methodology as compared to the ASME Standard is as follows. If there is no experimental data, 

D=O, oo=O, and uo=O. 

E=S-D=S 

os = S- T 

E = S- D = T + os - (T + ov) = os - ov = os 

(13) 

Report the simulated result, S as S ~Uval (14) 

Also instead of assuming a gauss-normal distribution as in the standard when including test data, the k-value will 

come from the Student-T distribution as shown in Table 1. 

Table 1 - Student - T Distribution, k Values 

Number of Cases Degrees of Freedom Confidence 90% 

2 I 6.314 
3 2 2.92 
4 3 2.353 
5 4 2.132 
6 5 2.015 
7 6 1.943 
8 7 1.895 
9 8 1.86 
10 9 1.833 
11 10 1.812 
12 11 1.796 
13 12 1.782 
14 13 1.771 
IS 14 1.761 
16 15 1.753 
17 16 1.746 
18 17 1.74 
19 18 1.734 
20 19 1.729 
21 20 1.725 
22 21 1.721 
23 22 1.717 
24 23 1.714 
25 24 1.711 
26 25 1.708 
27 26 1.706 
28 27 1.703 
29 28 1.701 
30 29 1.699 
31 30 1.697 
41 40 1.684 
51 50 1.676 
61 60 1.671 
81 80 1.664 
101 100 1.66 
121 120 1.658 

infty infty 1.645 



IV. Fully Developed Laminar Flow Between Stationary Parallel Plates 

Fully developed laminar flow between stationary, parallel plates is an exact solution to the Navier-Stokes 

Equations as derived in "Introduction to Fluid Mechanics" 4
• The width of the channel is (a). 

(14) 

A CFD model of this problem was created in FLUENT. The fluid is air. Table 2 outlines the parameters 

used. 

Table 2 -Parameters 

a(m) 0.1 

rho (kg/m3) 1.225 

mu (Ns/m2) 0.00001789 

dpjdx (N/m3) -0.000400 

The exact solution is shown in Figure I. 

Exact 

Vtlodty ("'/s) 

Figure 1 - Exact Solution 



A CFD model was created for the same conditions and the uncertainty calculation performed as outlined in 

the next section. 

V. Uncertainty Calculation 

The uncertainty can be calculated by expanding equation 13 for pressure, density, numerical (grid), and solver. 

Uval = 

av 82 + av 8 2 + ( (( )2 ) ( )2 ) 
apressure pressure (;;;:;;;; rho 

uV B2 + av B2 + (( ~ )2 ) ( 2 ) 
anum num ( asolver) solver 

+ av B2 . 2 )

1

/z 
( (avelocity) velocity) (15) 

The proposed method is to calculate the uncertainty as an oscillatory input parameter and multiply by the 

appropriate Student-T k-factor. 

For Numerical, three grids were used and the t value of2.92. 

(16) 

(17) 

The centerline velocity was chosen as an example to plot, however at all points the uncertainty bands always 

encompass the exact solution. 
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Ifthere is also a variation in the inlet velocity due to a tolerance or known bias, run the model at the low and high 

limits and use a newt-value of2.132, which corresponds to five cases. The five cases would be three for grids and 

two for flow rates. A five percent variation in inlet velocity was chosen for this example. 
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Figure 3- Exact Solution vs. CFD with Uncertainty (Centerline Velocity)- Grid and Inlet Velocity 



Also to include the outlet pressure boundary condition, run the model at the low and high known bias or tolerances 

and use a newt-value of 1.943, which corresponds to seven cases. The seven cases would be three for grid, two for 

flow rate, and two for pressure outlet boundary condition. 

( ( 2 ) ( 2 ) ( 2 ))liz 1 943 (~) B 2 + ( av ) B2 . + ( av ) B2 
Uval = · * anum num ovelocity velocity opressure pressure (20) 

(21) 
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Figure 4- Exact Solution vs. CFD with Uncertainty (Centerline Velocity)- Grid, Inlet Velocity, and Outlet 

Pressure 

To account for the variation in fluid properties, the kinematic viscosity for air between 0 and 100 degrees Celsius is 

13.6X10-6 to 23.06X10-6
. The model was run at these limits to account for the possible variation in fluid properties 

and a new value oft= 1.86 was chosen, which corresponds to the nine cases. 

( ( 2 ) ( 2 ) ( 2 ) ( 2 ))liz 1 86 ( av ) 82 + ( av ) 82 . + ( av ) 8 2 + + (~) 8 2 Uval = · * "num num velocity pressure rho v ovelocity opressure orho 

_) 

(22) 
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Figure 5- Exact Solution vs. CFD with Uncertainty (Centerline Velocity)- Grid, Inlet Velocity, Outlet 

Pressure, and Density 

Fluent has been used to calculate the results above; we also consider the solver as an input to the model. To 

account for the variation in the solver, the model was run in OpenFOAM. The t value was updated to l.S33 because 

the numbers of cases are ten. 

Uval = 1.833 * ( (( "nouvm )
2 

Bn
2
um ) + (( av )

2 

Bv
2
ezoct"ty) + (( oV )

2 

Bp
2
ressure ) + + ((~)

2 

Br
2
ho) + u &velocity &pressure &rho 

( 
&v )2 )1/z 

&solver B}olver (22) 

(23) 
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Figure 6 - Exact Solution vs. CFD with Uncertainty (Centerline Velocity) - Grid, Inlet Velocity, Outlet 

Pressure, Density, and Solver 

Figure 7 is a plot of all the CFD cases, uncertainty, and an exact comparison. 
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VI. Conclusion 

It can be concluded that treating all inputs to a CFD model as oscillatory uncertainty parameters coupled with the 

Student-T distribution can supply an uncertainty estimate that encompasses the exact solution for the case 

considered above (fully developed, laminar, flow between stationary parallel plates). To summarize the approach 

and general idea, there is a standard2 for calculating verification and validation of CFD using a combined numerical 

and experimental data. The approach described above is a way to estimate the uncertainty of a model if test data is 

not available. An analyst should make use of all test data that is available or able to be funded and use the ASME 

standard. However, if test data is missing or not attainable, the method described makes assumptions that each CFD 

solution belongs to an underlying Student-T distribution and a corresponding uncertainty can be estimated for a 

selected confidence interval. 
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