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ABSTRACT

Slitless grism spectroscopy from space offers dramatic advantages for studying

high redshift galaxies: high spatial resolution to match the compact sizes of the

targets, a dark and uniform sky background, and simultaneous observation over

fields ranging from five square arcminutes (HST) to over 1000 square arcminutes

(Euclid). Here we present observations of a galaxy at z = 6.57 — the end

of the reioinization epoch — identified using slitless HST grism spectra from

the PEARS survey (Probing Evolution And Reionization Spectroscopically) and

reconfirmed with Keck + DEIMOS. This high redshift identification is enabled

by the depth of the PEARS survey. Substantially higher redshifts are precluded

for PEARS data by the declining sensitivity of the ACS grism at λ > 0.95µm.

Spectra of Lyman breaks at yet higher redshifts will be possible using comparably

deep observations with IR-sensitive grisms.
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1. Introduction

To properly understand the history of cosmic dawn, we must be able to reliably identify

galaxies observed during the epoch of reionization. Such galaxies are the most likely sources

of the radiation that ionized intergalactic hydrogen. They are the best places to look for

signatures of primordial star formation, for even if the buildup of heavy elements is rapid,
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the fraction of galaxies forming their first generations of stars should be higher if we observe

them when the universe itself was young. The pace of their growth depends on incompletely

understood physical processes — both the onset of star formation in low-metallicity condi-

tions, and the potential disruption of later star formation by the ionizing radiation and/or

supernovae produced by the first stellar generation. The best way to constrain the range of

possible outcomes from these various processes is to take a direct, observational census of

galaxies throughout the reionization era — from its end at 6 . z . 7, back to the earliest

galaxies we can identify.

Much progress has been made recently in this direction, thanks primarily to the dramatic

increase in near-infrared imaging sensitivity and survey efficiency afforded by the Wide Field

Camera 3 (WFC3) Infrared (IR) channel on the Hubble Space Telescope (HST). Imaging

surveys with WFC3-IR have provided tens to hundreds of z > 7 galaxy candidates, identified

by the Lyman-α absorption break in their broad band colors (e.g., Bouwens et al. 2010; Yan

et al. 2010, 2011; Finkelstein et al. 2012). (We will refer to these as “Lyman break galaxies,”

while noting that selection by a strong continuum break can identify either the 912Å break

due to Lyman continuum absorption, or the 1216Å break due to Lyman-α absorption. Since

the Lyman-α forest is optically thick for z & 5, surveys for z > 5 galaxies use the Lyman-α

absorption break, while those at z . 3 primarily identify the 912Å break.) These broad

band HST searches have broken new ground primarily because the NIR sky is orders of

magnitude darker in space. An alternative search method is narrow-band imaging, which

can find Lyman-α emitting galaxies efficiently at selected redshifts (z = 6.5, 6.9, 7.3, 7.7,

8.8) where the line falls in dark windows in the night sky spectrum (e.g., Hu et al. 2002;

Rhoads et al. 2004; Iye et al. 2006; Willis et al. 2008; Hu et al. 2010; Ouchi et al. 2010; Hibon

et al. 2010; Tilvi et al. 2010; Kashikawa et al. 2011; Clément et al. 2012; Shibuya et al. 2011;

Rhoads et al. 2012; Krug et al. 2012).

However, issues remain. Ground-based near-IR spectroscopy can only confirm these ob-

jects easily when they have strong Lyman-α lines in clean regions of the night sky spectrum.

Thus, while dozens have been confirmed up to z = 6.5 (Hu et al. 2010; Ouchi et al. 2010;

Kashikawa et al. 2011), only a handful are confirmed at higher redshifts (Iye et al. 2006;

Rhoads et al. 2012; Shibuya et al. 2011; Pentericci et al. 2011; Ono et al. 2011; Schenker

et al. 2011). The crucial Lyman-α line may be rare and/or weak at redshifts where the

IGM was mostly neutral (and hence able to scatter Lyman-α photons). Meantime, sample

contamination by foreground galaxies becomes an increasing worry at higher redshifts, where

the volume available for such contaminants becomes large. Finally, the candidate lists from

the highest redshift galaxy hunts can be disturbingly unstable, showing little overlap when

different groups examine the same data, or even when the same group re-observes the same

field (e.g. Yan et al. 2011; Oesch et al. 2012).
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Slitless spectroscopy with the Hubble Space Telescope offers a solution to many of these

issues. Space telescopes avoid the crippling effects of Earth’s atmosphere on the near-IR sky.

HST’s spatial resolution is well matched to the sizes of high redshift galaxies. These slitless

grisms thus provide unmatched sensitivity to continuum emission from faint, compact high

redshift galaxies.

In this Letter, we present the highest redshift spectroscopic confirmation to date from

HST’s slitless grisms: The galaxy PEARS-N-101687, which was identified based on its

Lyman-α break at z ≈ 6.6 in deep ACS G800L slitless spectra from the PEARS survey

(“Probing Evolution and Reionization Spectroscopically”). While the sensitivity of the ACS

grism declines at 9600, the WFC3 IR channel has a similar grism and can perform spectro-

scopic confirmations at even higher redshifts.

We organize the paper as follows. In section 2, we describe the PEARS survey obser-

vations and data analysis. In section 3, we present followup spectroscopy at higher spectral

resolution from the Keck telescope. In section 4, we discuss the implications of our findings

for the field of high-redshift galaxy hunting. We conclude in section 5. Most photome-

try discussed here is from the HST-GOODS survey (Giavalisco et al. 2004). We denote the

GOODS filters F450W as “B450,” F606W as “V606”, F775W as “i775”, and F850LP as “z850,”

and use the AB magnitude system. Throughout the paper, we adopt a Λ-CDM “concordance

cosmology” with ΩM = 0.27, ΩΛ = 0.73, and H0 = 71 km s−1 Mpc−1 (see Spergel et al. 2007).

2. PEARS Grism Observations

PEARS is the most extensive systematic survey conducted with the G800L grism on

the HST’s Advanced Camera for Surveys-Wide Field Camera (ACS-WFC). PEARS is an

HST Treasury program led by S. Malhotra. It covers a total of nine fields, including one

deep pointing in the Hubble Ultra Deep Field, and eight wide-field pointings (four each in the

GOODS-North and GOODS-South regions). Each pointing was observed at three or four

distinct roll angles, to mitigate the impact of overlap between spectra of nearby objects.

The HST slitless spectra were reduced using the aXe package(Kümmel et al. 2009),

following closely the procedure used for the earlier GRism ACS Program for Extragalactic

Science (GRAPES) survey (Pirzkal et al. 2004). For each roll angle, the relative offsets of

all exposures were determined using zero-order images and narrow emission lines. The data

for each roll angle were ultimately combined into 2D spectroscopic stacks and extracted 1D

spectra for each source and each observed position angle.

To identify and spectroscopically confirm the highest redshift Lyman break galaxies in
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the survey, we followed a procedure based on Malhotra et al. (2005). We started with the

GOODS v1.9 images and performed our own SExtractor photometry. We then applied a

“liberal” i-dropout critereon to generate a list of candidate Lyman break galaxies. Since the

GOODS data do not include observations redder than z band (and our candidate selection

was done prior to the installation of WFC3), this ultimately amounts to using i775−z850 > 0.9.

For each of these objects, we calculated the net signifance (“netsig”) parameter N (Pirzkal

et al. 2004) to determine which spectra might have sufficient information for a redshift

measurement. (“Netsig” is defined by first sorting all pixels in a spectrum in descending

order of signal-to-noise ratio; calculating the signal-to-noise ratio Sn obtained by combining

flux from the brightest n pixels, for all n between 1 and the total number of pixels in the

spectrum; and finally taking N = max{Sn}.)

After selecting candidates by i − z color and ranking them by netsig, several PEARS

team members (including SM, JER, NP, SC, & NG) examined the spectra by eye. We did

this because a straight i − z color cut can select extremely red objects (EROs) as well as

Lyman break galaxies (LBGs), but the spectral signatures of the two are distinct. (EROs

show a smooth rise towards the red, while LBGs at these redshifts show a step function at

the redshifted wavelength of Lyman-α forest absorption.)

The highest redshift object identified in the PEARS-Wide fields through this process

was the galaxy PEARS-N-101687, at equatorial coordinates 12:37:25.65 +62:17:43.5 (J2000).

This object has magnitude z850 = 26.16, while it is undetected in the B450, V606, and i775

bands. Its grism redshift estimate is z = 6.6 ± 0.1 based on the observed location of the

Lyman α break. We show postage stamp images of the object from the GOODS data in

Figure 1, and the 2D PEARS spectrum in Figure 2.

3. Keck Followup Observations

We selected several galaxies, including PEARS-N-101687, for followup observations dur-

ing a Keck observing run of three half nights on UT 2007 April 13–15, using the DEep

Imaging Multi-Object Spectrograph (DEIMOS; Faber et al. 2003). These observations were

part of a program of a deep field followup led by Spinrad, Stern, and Dickinson, using Keck

telescope time from the University of California system. PEARS-N-101687 was included on

three slit masks during this run, and also on one additional mask observed in early 2008. All

observations used the 600 line grism. The observations are summarized briefly in Table 1.

We show the extracted Keck + DEIMOS spectrum of PEARS-N-101687 in Figure 3.

The galaxy shows a prominent Lyman-α line at redshift z = 6.573, consistent with the grism-
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Fig. 1.— Direct imaging of PEARS-N-101687 from the GOODS survey (Giavalisco et al.

2004). The object is effectively undetected in the B450, V606, and i775 bands (left three

panels), while it is clearly seen in the z850 band (right panel) with magnitude z850 = 26.16

(AB). Each panel is 1.5′′ × 1.5′′ in size.

Fig. 2.— Upper: The 2D PEARS spectrum of PEARS-N-101687, displayed in inverse video

(dark = more flux), with all three position angles coadded and with a 2 pixel (0.1′′ × 80Å)

FWHM smoothing applied. A short segment of continuum is evident, with a blue edge near

9230Å due to the Lyman-α forest break, and a red cutoff imposed by the falloff of instrumen-

tal efficiency. Lower: A 1D extraction of the PEARS spectrum, in ergs cm−2 s−1 Å
−1

. The

thin black curve is a best-fitting continuum + IGM absorption model with redshift z = 6.6

and a continuum level of AB = 25.7 mag on the red side of the Lyman-α break. The blue

curve is a model based on the line flux from the Keck spectrum, and the continuum flux

level and line spread function width expected based on HST imaging.
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based redshift of z = 6.6± 0.1. This line is plainly detected in each of the three masks that

have > 1 hour of exposure time. Averaging the spectra from the three useful masks together

yields a better detection of the asymmetric line, along with hints of the continuum on the

red side of the line. No other emission features are convincingly present in the DEIMOS

spectrum, which spans approximately 5000Å < λ <10000Å.

To estimate the spectroscopic line flux, we first calibrated the observed spectra using

a DEIMOS sensitivity function derived for the same grism but on another night. To com-

pensate for differences in throughput (e.g., due to differences in slit losses or atmospheric

extinction between nights), we identified two objects in the 2008 mask with reasonably bright

continuum flux (i775 ∼ 21–22 mag). For each, we weighted the spectrum by the throughput

of the HST ACS F775W filter, integrated, and compared the result to the broad band pho-

tometry from the GOODS project. This yielded a mean correction of about 30%, relative to

our archival sensitivity function. The reference objects used are both galaxies at moderate

redshift, and although they are not point sources, they are considerably smaller than the

DEIMOS slit. We measured their fluxes in a virtual 1′′ slit in ACS images both before and

after smoothing with a 1′′ Gaussian “seeing.” We thereby found that differential slit losses

would require a 10% correction to the spectroscopic flux of a point source. Applying our

calibration to the spectrum of PEARS-N-101687 (and assuming the source is pointlike in 1”

seeing), we find a spectroscopic line flux of fLyα ≈ (2.8 ± 0.6) × 10−17 erg cm−2 s−1, where

the uncertainty is dominated by the flux calibration of the spectrum.

4. Discussion

4.1. Other observations of PEARS-N-101687

While no spectrum of PEARS-N-101687 appears to have been previously published, the

object is listed as Lyman-α candidate in Hu et al. (2010) (table 3, second entry), based

on a narrowband excess in a filter with 9210Å central wavelength and 120Å FWHM. The

narrow-band magnitude published in that work, AB = 24.36, corresponds to a total flux of

Mask Obs dates (UT) Nexp× Duration Total time Conditions Comments

hdf07c 2007 Apr 14 4 × 1800s 7200 s clear, > 1′′ seeing Good

hdf07d 2007 Apr 14–15 5 × 1800s 9000 s clear, > 1′′ seeing Good

hdf07e 2007 Apr 16 2820s 2820s clear, 1.4′′ seeing Not useful

hdf08a 2008 Mar 06 6 × ∼1800s 10500 s Good

Table 1: Log of DEIMOS observations of PEARS-N-101687.
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Fig. 3.— The 1D Keck + DEIMOS spectrum of PEARS-N-101687. The prominent line at

9210Å is identified as Lyman-α based on the strong break at 9210Å in the HST PEARS grism

spectrum, the complete absence of flux blueward of the line, and the prominent asymmetry

of the line. The spectra from each individual deep Keck+DEIMOS data set is shown with

its own color, and the exposure-time weighted mean of these three masks is shown in black.

The spectra are flux calibrated (with ∼ ±20% accuracy) as described in the text. There is

a suggestion of continuum flux on the red side of the line in the sum of all the Keck data.

No other convincing features are seen in the full DEIMOS spectrum, which fully covers the

range 5000–10000Å.
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about 2.75× 10−17 erg cm−2 s−1 within the 120Å filter.

The CANDELS survey (Grogin et al. 2011; Koekemoer et al. 2011) provides WFC3-

IR photometry of this region. PEARS-N-101687 is detected at high confidence in the near

infrared. CANDELS catalog magnitudes for the source are z850 = 26.36 ± 0.18, Y105 =

25.27 ± 0.11, J125 = 25.11 ± 0.09, and H160 = 25.04 ± 0.08. (Note the small [0.2 mag,

1σ] difference between our previous z850 and the CANDELS project photometry.) The Y105

magnitude is near the wavelength of the Lyman-α line but unaffected by Lyman-α forest

absorption. Using the Y105 magnitude to estimate the continuum flux density just redward of

the Lyman-α line, we expect ≈ 6× 10−18 erg cm−2 s−1 of continuum flux in the narrowband

filter used by Hu et al. (2010). This leaves ∼ 2.1 × 10−17 erg cm−2 s−1 as the line flux

expected based on photometry. This is 25% below the flux we derive from the Keck Deimos

observations, but consistent within the combined uncertainties of all the data sets involved.

4.2. Comparison of grism and slit spectra

The galaxy PEARS-N-101687 is reminiscent of the bright z = 5.83 dropout galaxy

UDF2225 (Malhotra et al. 2005) = SiD2 (Dickinson et al. 2004) = SBM3 (Stanway et al.

2003, 2004), in that the ACS grism spectrum shows a clear continuum with a Lyman break,

while the followup slit spectrum from Keck shows a prominent Lyman-α line. This contrast is

a consequence of the differing capabilities of the two instruments. The high spatial resolution

and low sky background of HST + ACS provide exquisite sensitivity to faint continuum

emission. On the other hand, the higher spectral resolution of Keck+DEIMOS slit spectra

provides a clearer look at the Lyman-α line. The PEARS ACS spectrum does have sufficient

sensitivity to detect the observed Lyman-α line, but the line is blended with the Lyman

break at the resolution of the grism. For the Lyman-α line to appear obvious at z & 5, where

the Lyman-α forest is optically thick, its observer-frame equivalent width must exceed the

instrumental resolution, which is about 150–200Å for PEARS-N-101687 (based on its half-

light diameter in the GOODS images). The observed equivalent width is modestly larger

than this threshold, but not so large that the line is expected to be prominent in the grism

spectrum. The 2D HST spectrum also shows a hint of extended Lyman-α emission (see

Rhoads et al. 2009; Bond et al. 2010; Finkelstein et al. 2011), which would lie outside the

extraction region for PEARS 1D spectra but within the wider Keck slit, further increasing

the relative prominence of the line in the Keck spectrum.

We have modeled the expected 1D grism spectrum by assuming a flat continuum at the

level of the Y105 flux measurement, a Lyman-α line at the wavelength and flux observed by

Keck, and a line spread function determined by the observed z850 angular size of the object
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and the dispersion of the ACS G800L grism. The resulting model is shown as a blue curve in

figure 2. Near the Lyman-α line, from 9000–9400Å, the agreement is quite good. The largest

discrepancy is at yet redder wavelengths, where the grism spectrum continuum appears to

be above the Y105 flux. This may be due to an edge effect always present in flux-calibrated

slitless spectra of extended sources. The counts at a particular pixel include redder light from

one edge of the source, and bluer light from the other edge, but all counts in the pixel are

converted to flux density using a single system throughput, which is the one appropriate for

light from the centroid of the source that is dispersed onto that pixel. Where the efficiency

is changing rapidly with wavelength, as it does in the 9500Å region for this instrument, the

net effect is an over-estimate of the flux. Bumps in the 1D ACS spectrum at 7850Å and

8400Å could be contamination by other fainter sources, transmissive gaps in the OH forest

absorption, or simply regions of somewhat correlated noise in the extracted spectrum.

4.3. PEARS-N-101687 in context

The galaxy PEARS-N-101687 is, for its redshift, a moderately bright object. It has a

1500Å absolute magnitude M1500 = −21.38, based on an interpolation of the CANDELS Y105

and J125 fluxes. Compared to the published luminosity function for a sample of candidate z ≈
6.6 LBGs from Bouwens et al. (2011), PEARS-N-101687 is about 3× (or 1.25 magnitudes)

brighter than L∗ (the characteristic galaxy luminosity for the best fit Schechter function).

The Lyman-α luminosity of PEARS-N-101687 is LLyα = 1.4× 1043 erg s−1, based on its

line flux from the DEIMOS spectrum and a “concordance” cosmology luminosity distance of

dL = 65.5Gpc. This is on the bright end of the distribution for z = 6.5 narrowband-selected

Lyman-α galaxy samples, which yield Schechter function fits with characteristic luminosities

of L∗ = 4.4 × 1042, 5.8 × 1042, and 1.0 × 1043 erg s−1, respectively, for Ouchi et al. (2010),

Kashikawa et al. (2011), and Hu et al. (2010).

The spectroscopic line flux of PEARS-N-101687, combined with its Y105 flux density,

yields an observer frame equivalent width of EW = 290± 80Å, or in the rest frame, EW0 =

38 ± 12Å. This is below the average for narrowband-selected samples, as one might expect

given that we identified it by its continuum trace in the PEARS spectrum. Lyman-α galaxies

often have rest frame equivalent widths above 200Å (Malhotra & Rhoads 2002), and at z =

6.5, over 75% of the narrowband selected Lyman-α emitters have EW0 > 40Å (Kashikawa

et al. 2011; Ouchi et al. 2010).

The Lyman-α line asymmetry in PEARS-N-101687 is prominent, even by the standards
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of high redshift Lyman-α emitting galaxies. Using the asymmetry measures1 from Rhoads

et al. (2003), we find aλ = 3.59 and af = 3.47. Comparing these to a sample of 58 Lyman-α

emitters observed using the same spectrograph and grating (Dawson et al. 2007), PEARS-

N-101687 has the largest value of af , and the fifth-largest value of aλ. This may be partly

due to Lyman-α forest absorption of flux on the blue side of the systemic velocity, since the

Lyman-α forest optical depth at z = 6.57 will exceed that at the lower redshift (z = 4.5)

sample of Dawson et al. (2007).

In addition to its asymmetry, the line profile shows a dip at 9214Å, separating a sec-

ondary peak (at 9217Å) from the primary one (at 9207Å). The dip is about 4Å wide; the

flux density there drops by about 40% relative to a smoothed “envelope” of the line flux;

and the feature is significant at about the 3σ level. Such a feature could be explained by

neutral gas in front of the emitter; two emitting regions separated by about 330 km s−1 in

line-of-sight velocity; or some more complex interplay of Lyman-α emission and scattering

in a moving medium.

4.4. The need for spectroscopy

Samples of well over 100 Lyman break selected galaxy candidates have now been pub-

lished for photometric redshifts z > 7, based on the combination of deep photometry at

optical and near-IR wavelengths using HST (e.g., Bouwens et al. 2010; Yan et al. 2010,

2011; Finkelstein et al. 2012). This represents substantial progress in understanding galaxy

evolution around the end of the reionization era. However, essentially all these objects re-

main candidates at the moment, unconfirmed by spectroscopy. Deep grism spectra from HST

can play a unique role in fixing this.

The overlap between samples published by different groups can be distressingly small,

even when those groups use exactly the same data sets. For example, consider recent pub-

lications on the bright end of the z ≈ 8 LBG luminosity function by Yan et al. (2011) and

Oesch et al. (2012), both using the first epoch of the CANDELS deep observations of the

GOODS-S region. The two groups publish 8 and 9 candidate galaxies, respectively. How-

ever, only two objects are identified by both papers. Similar levels of inconsistency have

been frequent in earlier studies. Indeed, a recent paper by Ellis et al. (2013) reports that

no previously published galaxy candidate at 8.5 < z < 10 in the Hubble Ultra Deep Field

1These are aλ = (λ10,r − λp)/(λp − λ10,b) and af =
∫ λ10,r

λp
fλdλ/

∫ λp

λ10,b
fλdλ. Here λp is the wavelength

where the line peaks, and λ10,b and λ10,r are the wavelengths where the flux falls to 10% of peak on the blue
and red sides of the line.
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remains a viable high-redshift object after the addition of deeper imaging in the WFC3-IR

F105W (“Y105”) and F140W (“JH140”) filters, while reporting a set of seven new candidates

in that redshift range.

Several factors contribute to unreliable candidate lists. First, candidates are generally

sought down to the limit of the survey depth, and objects near the faint limit of the data will

then inevitably outnumber brighter, better measured sources. This means that photometric

noise can push a galaxy across the selection line — in or out of a candidate sample, either

in brightness or in color. Apparently minor differences in the choice of photometry method

(apertures of various radii vs. SExtractor “magauto”; different methods of sky background

estimation; etc) can thus change samples appreciably.

Additionally, different authors may choose somewhat different criteria in selecting their

candidates. Some use photometric redshifts (Finkelstein et al. 2012), while most others use

straight color and magnitude cuts (e.g., Bouwens et al. 2010; Oesch et al. 2012; Yan et al.

2011), but the adopted cuts are not always the same.

As the search redshift increases, the volume of foreground space and the variety of pos-

sible foreground contaminants increases too. For galaxies at z > 7, plausible foreground

contaminants include Galactic brown dwarfs, and both early-type galaxies and ultra-strong

emission line sources at intermediate redshifts (e.g. the candidate lensed z = 11 galaxy

A2667-J1, whose spectrum revealed it to be an [OIII]λλ4959,5007 emitter at z = 2.082;

Hayes et al. 2012). While published z > 7 candidates usually have spectral energy distribu-

tions that are less well fit by any foreground model than by a Lyman break galaxy at z > 7,

a majority allow viable z � 7 solutions (Pirzkal et al. 2013, in prep), and the number of

foreground objects in the survey area may exceed the number of z > 7 galaxies substantially.

Incorporating this as prior information, the fraction of z > 7 candidates that are actual z > 7

galaxies may be modest.

Spectroscopic followup of z > 7 candidates can resolve these uncertainties. Ground-

based spectra can confirm true z > 7 galaxies, but generally only when they have strong

Lyman-α emission that is neither blocked by atmospheric H2O absorption nor blended with

strong OH airglow lines at the resolution of the spectrograph. Likewise, ground-based spectra

may definitively rule out foreground objects whose Lyman-break colors are due to strong

emission lines in one or two filters.

However, sources without strong emission lines require continuum spectroscopy for

definitive confirmation. For redshifts z < 6, a minority of LBGs have strong Lyman-α

emission (Steidel et al. 2000; Stark et al. 2010). As we push to higher redshifts, within the

epoch of reionzation, Lyman-α will be obscured by resonant scattering in an increasingly
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neutral intergalactic medium (IGM) (Miralda-Escude & Rees 1998; Haiman & Spaans 1999;

Rhoads & Malhotra 2001). This effect offers valuable tests of reionization (e.g., Malhotra &

Rhoads 2004; Stern et al. 2005; Pentericci et al. 2011; Ono et al. 2012; Schenker et al. 2012).

It also means that continuum break spectroscopy is crucial for spectroscopic confirmations

in the epoch of neutral gas.

Such spectroscopy is impractical from the ground with current instruments. From space,

the absence of OH emission lines and water absorption makes the job much easier. To obtain

a Lyman break confirmation at the knee of the luminosity function (L∗), we need to detect

the continuum with good statistical significance, over a wavelength range of several hundred

Ångstrom on the red side of the Lyman break. Deep integrations with HST grisms can

accomplish this, spectroscopically confirming redshifts for objects as faint as 27th magnitude

(this work; Malhotra et al. 2005; Rhoads et al. 2009).

5. Summary/Conclusions

We present here PEARS-N-101687, the highest redshift galaxy identified in the wide-

field component of the PEARS slitless spectroscopic survey, which achieved a depth of 20

orbits of HST ACS G800L slitless spectroscopy over 80 square arcminutes. This galaxy,

with a grism redshift of z = 6.6±0.1, remains the highest redshift object yet confirmed with

HST slitless spectroscopy. While fainter objects could be spectroscopically confirmed at the

sensitivity limit of our ACS slitless spectroscopy in the Hubble Ultra Deep Field — where

the aggregate depth approaches 90 orbits — the wavelength limit of the ACS Wide Field

Camera CCD detectors effectively limits the survey redshifts to z . 6.7 (e.g., Malhotra et al.

2005).

Keck telescope + DEIMOS followup of this object confirms and refines its grism redshift:

z = 6.57. The object has a rest-frame UV continuum magnitude M1500 = −21.38, a Lyman-

α line luminosity of 1.4 × 1043 erg s−1, and a rest-frame equivalent width of 38 ± 12Å. This

makes it a relatively luminous Lyman-α emitting Lyman break galaxy. We emphasize that

the discovery and redshift from HST PEARS are based primarily on the continuum and

Lyman-α forest break, and not on the Lyman-α emission line, which is not prominent in the

HST spectrum.

The discovery of this object demonstrates the value of deep continuum observations

with HST slitless grisms for spectroscopic confirmation of galaxies in the epoch of reioniza-

tion. Comparably sensitive observations with the HST WFC3-IR channel grisms have the

potential to provide Lyman break spectroscopic confirmations of z > 7 galaxies — something
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that still eludes our other observational capabilities, and that now presents a large obstacle

in advancing our understanding of galaxy evolution in the era of cosmic dawn.
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