
Implementation of Headtracking and 3D
Stereo with Unity and VRPN for Computer

Simulations

Matthew A. Noyes∗

University of Rochester, Rochester, NY, 14627

This paper explores low-cost hardware and software methods to pro-
vide depth cues traditionally absent in monocular displays. The use of
a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo
Wiimote to provide head tracking information to a Unity application, and
NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are
suggested to implement this technology with NASA’s EDGE simulation
graphics package, along with potential caveats. Finally, future applications
of this technology to astronaut crew training, particularly when combined
with an omnidirectional treadmill for virtual locomotion and NASA’s AR-
GOS system for reduced gravity simulation, are discussed.

Nomenclature

ARGOS Active Response Gravity Offload System
CAD Computer-Assisted Design
CAV E Cave Automatic Virtual Environment
DLL Dynamic-Link Library
DOUG Dynamic Onboard Ubiquitous Graphics
EDGE Engineering DOUG Graphics for Exploration
EV A Extra-Vehicular Activity
FOV Field of View
GPU Graphics Processing Unit
HMD Head Mounted Display
HUD Heads Up Display
LED Light Emitting Diode
LOS Line-of-Sight
ODT Omni-Directional Treadmill
UIV A Unity Indie VRPN Adapter
V R Virtual Reality
V RPN Virtual Reality Peripheral Network

∗JSC Engineering Co-Op, Spacecraft Software Engineering

1 of 10

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20130014602 2019-08-29T15:54:12+00:00Z



I. Introduction

Monocular displays provide most depth
cues required to project a three-dimensional
scene onto a two-dimensional surface. These
cues are adequate for most types of op-
erational and entertainment-related applica-
tions. However, the lack of real-world motion
parallax and binocular cues dampens users’
immersion, which dramatically impacts the
efficacy of operational training [1]. Binocu-
lar cues can be simulated easily enough with
polarized or active-shutter glasses and spe-
cial monitors, producing an effect known as
“3D stereo” or “stereopsis,” while real-world
motion parallax requires the integration of
headtracking technologies. Adding real-world
motion parallax provides a sense of true 3D
when the user is moving relative to the screen;
binocular cues provide depth when the user is
stationary. A 1993 study [2] found that head-
tracking provides a much greater sense of im-
mersion than 3D stereo alone, while the com-
bination of the two provides significant reduc-
tion in search task errors. As the scope of hu-
man spaceflight advances to regions outside
timely communication with ground control,
the ability to handle complex tasks and unex-
pected problems becomes even more critical.
It is therefore essential that training exercises
provide as much realism as possible.

Immersion-driven technologies also have
operational roles. Spacecraft windows re-
quire additional mass and can be a critical
point of failure should leaks occur. How-
ever, astronaut crews consistently prefer win-
dowed to non-windowed spacecraft due to the
psychological effect of viewing astronautical
phenomena, which cannot be replicated to
the same degree on a static, two-dimensional
camera. Because the use of stereopsis and
headtracking provide the additional depth
cues required to maximize immersion, effec-
tive replication of window-like behavior pro-
vides these benefits along with additional fea-
tures (e.g., augmented reality HUDs or mul-

tiple vantage point feeds without vehicle re-
orientation) without the expense and hazards
of physical windows.

Headtracking can be applied to 2D sur-
faces as well as 3D worlds. The technology
can increase immersion with “home movies”
from astronauts’ families, which may have
enormous psychological benefits on long voy-
ages and are therefore an important human
factors consideration.

The technology and methods behind
headtracking and 3D stereo shall follow, as
well as an easy-to-use, scalable implementa-
tion of these features.

II. Technology

A. Headtracking

1. Position Sampler

Several technologies can support real-world
motion parallax. One approach includes
HMD, which tracks head position accurately
in a 360◦ panorama for a single user, though
it requires bulky, expensive equipment. It is
possible to provide separate, synced cameras
to each eye, producing the 3D stereo effect.
Due to cost and lack of portability, this tech-
nology is not favored for this study.

Depth cameras such as the Microsoft
Kinect can also be used for headtracking.
The Kinect projects a point cloud into the en-
vironment using a Class I infrared laser and
diffraction grating. An infrared camera de-
termines the distance to each reflected point
by measuring the time delay between emis-
sion and detection. Several development li-
braries, such as the Microsoft Kinect SDK,
OpenNI/NITE, and OpenKinect provide var-
ious joint-tracking and gesture recognition al-
gorithms. A disadvantage for the Kinect is
the large distance to its near clipping plane
from the infrared sensor that limits it’s use
with a Desktop computer. The “Kinect for
Windows” has a less restrictive range due

2 of 10

American Institute of Aeronautics and Astronautics



to a software modification through the Mi-
crosoft SDK; the functional hardware is iden-
tical to the original XBox 360 model. Linux
compatibility requires the use of the OpenNI
drivers which do not yet contain this augmen-
tation. As a result, the Kinect was not used
for this implementation; further research into
the Kinect’s use is encouraged.

A head-mounted LED array (see Figure
1), and stationary infrared camera (i.e. the
Nintendo wiimote) were found to be the most
flexible and easily implemented approach for
headtracking. Although the wiimote requires
the use of a “sensor bar,” the latter is ac-
tually an LED array and relays no teleme-
try [3]. Each wiimote contains its own in-
frared camera at the forward tip of the de-
vice, and is capable of identifying four LED
points simultaneously. In this setup [4] the
user attaches a switchable LED keychain with
a 940-950nm bulb to goggle frames (or ac-
tive stereo 3D glasses). By measuring the
baseline distance between these two points,
the apparent distance to the camera identi-
fies z distance, while the position of the aver-
age point determines (x,y) coordinates. Ro-
tation about the z axis (roll) can also be cal-
culated, however pitch and yaw cannot. In
this implementation, it is generally assumed
that a translation is always coupled with a ro-
tation to point toward the center of the mon-
itor. Given the wiimote’s limited 45◦ FOV
this is generally not a problem, however ex-
treme rotations significantly decrease the ap-
parent space between the LEDs, creating the
illusion of increased z distance. Raw head po-
sition is then passed to a server via bluetooth
for further processing.

Figure 1. Modified stereo glasses with velcro-fastened
switched LED keychains with 950nm infrared bulbs.
Each keychain is powered by two 3V lithium CMOS
batteries.

Wiimote data manipulation is very sim-
ple and does not require the use of ges-
ture/form recognition algorithms or calibra-
tion. Because LEDs are inherently direc-
tional, a wiimote placed at each screen in
a display configuration is only active when
a user looks at it. This is ideal for cock-
pits where space is limited. Depth cameras,
while they do not require wearable equip-
ment, may be confused by background ob-
jects or non-primary users. Furthermore, the
use of multiple Kinects produce interference
in regions where point clouds intersect–a sig-
nificant problem in crowded environments.

Using head XYZ positions in a left-
handed coordinate system (when looking to-
ward a display, x increases to the right, y
increases upwards, and z increases into the
screen) with the wiimote camera as the ori-
gin. Two unique control methods can be
used: head-coupled camera control, and VR
window.

2. Head-Coupled Camera Control

A head-coupled camera control scheme is
most advantageous for hands-free view ma-
nipulation. It provides traditional camera ro-
tation and translation mapped to head posi-
tion as if using a hand controller. The result-
ing effect is similar to a virtual window setup
in that it allows the user to see “behind” the
frame of a monitor in a virtual world, but

3 of 10

American Institute of Aeronautics and Astronautics



it maintains a symmetric view frustum at all
times and tends to introduce distortion when
rotating. See the camera rotation algorithm
below:

camxyz = V ector(x, y,−z)× translationScale

eulerX = Tan
(x
z

)
× rotationScale

eulerY = Tan
(y
z

)
× rotationScale

camθ = Quaternion.Euler(eulerX, eulerY, 0)

Figure 2. Head-Coupled Camera control scheme.
Scaled head rotations map to camera translations and
rotations calculated trigonometrically. Euler angles
are converted to quaternions before rendering.

As shown in Figure 2, camera translation
is mapped to the x, y, and negative z positions
of the user’s head. By a left-handed coordi-
nate system, this translates the camera right
when the user moves to the right, up when
the user moves up, and toward the user when
the user moves backwards. This translation
is scaled by an appropriate value.

Assuming the user always rotates to view
the center of the screen given a translation,
simple trigonometry determines the appro-
priate camera rotation. The angle formed
by the user’s LOS and the head position’s z
component forms a right triangle. Project-
ing the LOS onto the xz- and yz-planes, solve
for the camera’s eulerX and eulerY angles,
and multiply by the appropriate scaling. The
trigonometry produces the correct result due
to the law of similar triangles.

See Figure 3 for a clearer view of how head
movements map to virtual camera transfor-
mations in this control mode.

Figure 3. Camera behavior during head-coupled con-
trol mode.

3. VR Window Display

A virtual window aims to replicate the ef-
fect of perceiving a fraction of a large, distant
scene through a small, nearby plane. This is
different than simply changing camera rota-
tion and position, and requires the use of a
perspective projection matrix.

4 of 10

American Institute of Aeronautics and Astronautics



Perspective projection maps points in a
3D scene at various z-depths onto a 2D plane
such that a farther object is of smaller ap-
parent size than a nearer object, even if both
objects have equal absolute size. This corre-
sponds to how humans perceive the world and
is a vital depth cue. In computer graphics, it
is not possible to render all scene geometry
onto the 2D plane of the monitor. Rather,
a view frustum contains within its bounds
all renderable geometry. A “frustum” refers
to the portion of a solid between two par-
allel planes of intersection. A viewable re-
gion is modeled as a pyramid extending from
the eye/camera (a single point) out to infin-
ity (an infinite plane) with near and far planes
such that geometry is only rendered if it exists
within the region of the pyramid and between
the two intersecting planes. The near plane is
defined as the computer monitor, and the far
plane as some large arbitrary distance, per-
haps 1 kilometer, from the camera. The pyra-
mid boundaries are often defined by a vertical
FOV angle and a screen aspect ratio.

In most cases, view frusta are symmet-

ric. Any two rays
−→
l and −→r drawn from the

user’s eye at the angles ±θ in the plane of
translation will cross the same distance before
hitting the far plane, since the LOS is per-
pendicular to the viewing planes. However,
a VR window display requires the creation of
an asymmetric view frustum when viewing a

scene off-center, such that
−→
l and −→r will not

have equal magnitude because the LOS is no
longer perpendicular to the viewing planes.

Camera rotation by itself preserves a sym-
metric view frustum, and is therefore analo-
gous to picking up a window and rotating it
to maintain a constant orientation with re-
spect to a viewer. Because windows are fixed
in the physical world, the perspective projec-
tion approach is more intuitive and relatively
simple mathematically.

To calculate the perspective projection
matrix, define the boundaries of the near
plane and the distance to the near and far

planes as shown in Figure 4:

l =
−1

2
× screenWidth− x

z + 1

r =
1
2
× screenWidth− x

z + 1

b =
−1

2
× screenHeight− y

z + 1

t =
1
2
× screenHeight− y

z + 1

n = 0.5

f = 1000

Figure 4. Variables used to determine the perspec-
tive projection matrix. (l,r,b,t) define the points on
the near projection plane. Halve the screen width and
height in meters to obtain the the initial boundaries
and subtract the detected head position along the cor-
rect axis. Note that a head position directly in the
center of the screen produces a symmetric frustum.
Finally, divide by the distance (z) of the viewer’s head
from the screen, making the near plane infinitely large
when the viewer’s head enters the screen, with an area
of zero at infinity. n and f are the distances from the
virtual camera to the near and far projection planes
(respectively) in meters.

As shown in Figure 4, screen width and
screen height are defined in meters, since
head position is also reported in meters. At
(x, y) = 0, when measuring from the center
of the screen, (l, r, b, t) correspond to points
on the boundary of the monitor and produce
a symmetric frustum.

Now that boundary points are available,
calculate the perspective projection matrix as
shown [5] in Figure 5:

x =
2× n
r − l

a =
r + l

r − l

y =
2× n
t− b

b =
t+ b

t− b

e = −1 c = −f + n

f − n

d = −2× f × n
f − n

5 of 10

American Institute of Aeronautics and Astronautics



P =


x 0 a 0

0 y b 0

0 0 c d

0 0 e 0


Figure 5. The definition of the perspective projection
matrix. This assumes a left-handed coordinate system
(used by the Unity engine) in which x increases to the
right, y increases upwards, and z increases into the
screen when facing the monitor.

The perspective projection matrix defined
in Figure 5 shapes the view frustum whose
inner volume contains all geometry to be
mapped onto the screen. Objects in the dis-
tance will appear smaller. An example of how
the view frustum changes shape at various
head positions can be found in Figure 6:

Figure 6. Resulting view frusta following perspective
projection at various head positions.

B. 3D Stereo

3D stereo, or “stereopsis,” provides binocu-
lar depth cues via the presentation of slightly
different images to each eye. Assuming the
images vary by small enough amount, the
brain integrates these images together to pro-
duce depth. Unlike headtracking, which pro-
vides a sense of depth only when the view
changes, binocular cues provide a sense of
depth to static images. In practice, though
3D stereo is not as effective as headtracking
to increase immersion, it is ideal when cou-
pled with headtracking.

In computer graphics, frusta define views
for each eye [6]. Camera translation and rota-
tion commands are sent to a monocular cam-
era existing logically at the midpoint between
the user’s eyes. On each rendering call, indi-
vidual view frusta are calculated for each eye
by translating the frustum origin on a plane
perpendicular to the LOS by enough distance
to cover each pupil.

1. NVIDIA 3D Vision

NVIDIA 3D Vision (IR emitter) and NVIDIA
3D Vision Pro (RF emitter) solutions use ac-
tive shutter glasses (refer to Figure 1) to re-
strict even and odd frame displays to each
eye. The solutions require a 120 Hz monitor,
producing an effective frame rate of 60 Hz. In
DirectX applications, the NVIDIA 3D Vision
kit automatically interacts with the render-
ing pipeline to calculate and render geometry
in the correct view frusta and syncing im-
ages with the shutter glasses. This solution
is ideal for the Unity platform, which com-
piles Windows applications to render with Di-
rectX. OpenGL applications (i.e. Linux sup-
port) requires the addition of quad buffering.

2. Quad Buffering

OpenGL optimizes rendering through the use
of FRONT and BACK buffers, whereby as
geometry in the FRONT buffer is passed to

6 of 10

American Institute of Aeronautics and Astronautics



the graphics card and rendered, new geome-
try is written to the BACK buffer and copied
to FRONT when a new rendering cycle be-
gins. This is known as “double buffering.”
“Quad buffering” uses FRONT and BACK
buffers for each eye; the rendering function
is executed twice per effective frame, once
for each view frustum. This is fairly sim-
ple to implement, however shutter syncing
requires a direct connection from the IR/RF
sync emitter and the GPU via a 3-pin mini-
DIN connector. This additional connection is
not required for DirectX applications. These
connections are absent on the Geforce line
of GPUs and are only present on a subset
of the professional-line Quadro cards, which
are much more expensive and optimized for
CAD displays rather than high-fidelity real-
time simulations. Some work [7] has been
done to support Geforce shutter sync in Linux
by timing the switch byte to coincide with
monitor refresh rate. This method is fairly
volatile, as the refresh action and shutter sync
tend to go out of phase.

One possible workaround appears to be
the use of a simple circuit interceptor that
shutters the 3D glasses based on a 120 Hz
VSYNC pulse [8], however this method re-
quires further study. Such a solution would
be ideal due to its cost-effectiveness and the
processing power required for NASA simula-
tors.

III. Implementation

The following implementation describes
the use of a decoupled client-server data de-
livery mechanism to the rendering applica-
tion. All software libraries and applications
used are available online free of charge, and
most are open source.

A. VRPN

VRPN uses a client-server delivery system
to abstract away the specifics of a device
(such as a wiimote, Kinect or mouse) from
the data it returns. Application software
may work with data from various devices re-
gardless of location, operating system, hard-
ware libraries, and network topology. This
model allows for a great level of flexibility, as
the client portion need not be modified when
adding a new device as long as head position
can be properly calculated server side.

VRPN provides class templates to define
new devices using combinations of primitive
types or other devices (for example, a con-
troller consisting of multiple buttons and ana-
log joysticks) [9].

The implementation relies upon a previ-
ously built VRPN server for the wiimote.
This server was chosen due to its cross-
platform nature (tested on both Windows
and Linux) and the addition of a useful GUI
to control infrared camera sensitivity. The
server is capable of high refresh rates depend-
ing on CPU resource utilization, reaching as
high as 100Hz (almost as high as the monitor
refresh rate). The server sends all wiimote
status information over the network, includ-
ing battery level and button states. The head
tracker application only uses head position
for calculations.

Data are delivered change only via func-
tion callbacks. If no state changes are de-
tected, no network bandwidth is used.

B. UIVA

The free version of Unity does not permit
loading non-native runtime DLLs. Loadable
DLLs must be written in C#. Because VRPN
is written in C++, the VRPNnet wrapper
must be used to provide a middleware VRPN
client that accepts head position data from
the VRPN server and encodes and resends it
on C# sockets to Unity. The implementation
that follows is an extension of the UIVA con-

7 of 10

American Institute of Aeronautics and Astronautics



cept [10], expanded to support IR data feeds
from the wiimote. See Figure 7 for the basic
control flow:

Figure 7. Data flow from the wiimote into Unity via
the VRPN/UIVA bridge.

A separate VRPNnet client DLL in Unity
then accepts this information and translates
it into a form useable for headtracking.

C. Headtracker

The Unity head tracker is a single C#
file which accepts input from the VRPN-
net client DLL, performs the necessary com-
putations outlined in Figure 2 or Figures
4 and 5 (depending on the selected control
scheme), and transforms the view accord-
ingly. Non-headtracker camera movements,
such as “follow” scripts, are applied to a par-
ent GameObject instead of the camera itself.
This allows the generic head tracker configu-
ration to apply across all Unity projects. For
the full algorithm, see Figure 8:

wiiuse.dll← wiimote raw data
Calculate head (x, y, z) in VRPN server
VRPN client ← (x, y, z) head position
Encode VRPN callback args as string
Send encoding to a C# socket
Unity ← (x, y, z) head position encoding
if Head-Coupled Camera then

Convert (x, y, z) to camera transform
else if VR Window then

Convert (x, y, z) to perspective projec-
tion

end if

Figure 8. The Unity headtracker algorithm.

The control flow from datasource to dis-
play is outlined in Figure 9. Note that with-
out Unity’s C# DLL limitation, data would
flow directly from the VRPN client to the ren-
dering engine, bypassing the need for UIVA

middleware.

Figure 9. The Unity headtracker algorithm.

IV. Further Research

A. Kinect VRPN server

Although space considerations and point
cloud interference limits the effectiveness of
the Microsoft Kinect in cockpits, depth cam-
eras may still be useful in EVA-type scenar-
ios due to the lack of wearable hardware. In
addition to providing headtracking capabil-
ity, body positions and joints can be used to
recreate movements in a 3D world, allowing
astronauts in multiple rooms or locations to
train together simultaneously. It would there-
fore be useful to develop a VRPN server for
the Kinect.

1. FAAST

It should be noted that the FAAST library
does currently provide support for Kinect
VRPN using the OpenNI/NITE libraries [11].

8 of 10

American Institute of Aeronautics and Astronautics



However, the library does not currently sup-
port Windows 64-bit or Linux, a critical re-
quirement for future NASA applications. Ad-
ditionally, although binaries are freely down-
loadable, the software is closed-source. Key
features to replicate include 26-joint recog-
nition as well as basic gesture support (e.g.
waves, swipes, etc.).

B. ODT/CAVE

Omnidirectional treadmills [12] and CAVE
[13, 14] systems have also been used for op-
erational training. Although studies have
shown preference to headtracking systems
over CAVE systems due to improved image
quality and less expense, the union of om-
nidirectional treadmills to capture movement
with head- and body-tracking will dramati-
cally improve immersion. This system could
also be utilized with NASA’s ARGOS system
to simulate lower-gravity environments.

The Swiss company MSE produces the
Virtual Theatre, a 360◦ panoramic display
coupled with an omnidirectional floor. This
system uses an array of rollers and infrared
cameras to simulate motion in an infinite
space, and has been successfully used in the
creation of battlefield simulators, with addi-
tional applications to human factors research
and potentially EVA training. Use with the
ARGOS system could provide high-fidelity
training on planetary surfaces.

The Anti-Gravity Treadmill from the Ger-
man company AlterG (originally designed by
Dr. Robert Whalen and physician Alan Har-
gens in 1992 at the Ames Research Center for
creating astronaut exercise routines) uses dif-
ferential air pressure to reduce apparent grav-
ity. This system could be used in conjunction
with an omnidirectional treadmill to provide
ARGOS-like functionality in planetary sur-
face training.

C. EDGE Integration

EDGE, the NASA simulator graphics pack-
age, can benefit from headtracking and 3D
stereo integration for crew training. Inte-
gration will require a method to sync active
shutter glasses, and a VRPN client to render
headtracking data. The effect needs a render-
ing capability of 120 Hz to prevent eyestrain;
this may not be possible with all graphi-
cal options enabled due to spacecraft and
planetary model complexity. Until render-
ing hardware improves or software optimiza-
tions are developed, a short-term alternative
to EDGE may be OpenSceneGraph, an open-
source Linux renderer that performs well on
NVIDIA Quadro cards (and thus natively
support NVIDIA 3D Vision) with support for
VRPN [15]. The VRJugglua [16] framework
is a useful content-authoring framework for
the development of OpenSceneGraph appli-
cations supporting VRPN functionality.

V. Conclusion

This paper demonstrates an implementa-
tion of a cost-effective virtual window system
using largely open source, free software com-
ponents. The system uses VRPN to stream
head position data from a wiimote to a client
application, which encodes the data to a C#
socket stream readable by the free Unity en-
gine. These data define a perspective projec-
tion matrix used to simulate a virtual win-
dow in any Unity application. The effect is
augmented with stereopsis using NVIDIA 3D
Vision. The system is a prototype to demon-
strate methodologies needed to implement
the various facets of VR window displays.
The VRPN delivery code is largely portable,
while other technologies (the type of infrared
camera, the rendering engine used, how to
define a perspective projection matrix) can
be re-implemented in the same fashion using
hardware and software libraries more suitable
to a spaceflight environment.

9 of 10

American Institute of Aeronautics and Astronautics



Acknowledgments

The following are thanked for their con-
tributions:

• Robert L. Hirsh, who worked closely
on 3D applications and procurement

• Helen Neighbors, who supported
headtracking application development
and procurement

• Ryan A. Brown, who worked side-by-
side on headtracking and 3D stereo de-
velopment

• the JSC Co-Op Program and the
South Dakota Space Grant Con-
sortium for funding the opportunity to
work on this research

References

1Pausch, R., Proffitt, D., and Williams, G.,
“Quantifying immersion in virtual reality,” Proceed-
ings of the 24th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’97,
ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1997, pp. 13–18.

2Ware, C., Arthur, K., and Booth, K. S., “Fish
tank virtual reality,” Proceedings of the INTERACT
’93 and CHI ’93 conference on Human factors in
computing systems, CHI ’93, ACM, New York, NY,
USA, 1993, pp. 37–42.

3Lee, J. C., Head Tracking for Desk-
top VR Displays using the WiiRemote,

http://www.youtube.com/watch?v=Jd3-eiid-Uw ,
December 2007.

4ASME, A Modular Implementation of Wii
Remote Head Tracking for Virtual Reality , No.
WINVR2010-3771. ASME, May 2010.

5Jens Garstka, G. P., “View-dependent 3D Pro-
jection using Depth-Image-based Head Tracking,” .

6Bourke, P., “Calculating Stereo Pairs,” July
1999.

7Somers, R., NVIDIA 3D Vision using OpenGL
on Linux , Winter 2011.

8VGA to 3-pin VESA Stereo Adapter,
http://www.int03.co.uk/crema/hardware/stereo/ .

9Russell M. Taylor II, Thomas C. Hudson, A. S.
H. W. J. J. A. T. H., “VRPN: A Device-Independent,
Network-Transparent VR,” .

10Wang, J., Unity Indie VRPN Adapter,
http://web.cs.wpi.edu/ gogo/hive/UIVA/ .

11Suma, E., Lange, B., Rizzo, A., Krum, D., and
Bolas, M., “FAAST: The Flexible Action and Artic-
ulated Skeleton Toolkit,” Virtual Reality Conference
(VR), 2011 IEEE , march 2011, pp. 247 –248.

12http://www.patentstorm.us/patents/
5562572/fulltext.html .

13Cruz-Neira, C., Sandin, D. J., and DeFanti,
T. A., “Surround-screen projection-based virtual
reality: the design and implementation of the
CAVE,” Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’93, ACM, New York, NY, USA, 1993, pp.
135–142.

14Carolina Cruz-Neira, D. R. and Springer, J. P.,
“An Affordable Surround-Screen Virtual Reality Dis-
play,” .

15osgVRPN, http://mew.cx/osg/ .
16Ryan A. Pavlik, J. M. V., “VR JuggLua A

Framework for VR Applications Combining Lua,
OpenSceneGraph, and VR Juggler,” 2011.

10 of 10

American Institute of Aeronautics and Astronautics


	Introduction
	Technology
	Headtracking
	Position Sampler
	Head-Coupled Camera Control
	VR Window Display

	3D Stereo
	NVIDIA 3D Vision
	Quad Buffering


	Implementation
	VRPN
	UIVA
	Headtracker

	Further Research
	Kinect VRPN server
	FAAST

	ODT/CAVE
	EDGE Integration

	Conclusion

