AAS High Energy Astrophysics Division Meeting Monterey, California April 8-11, 2013

Future development trajectories for imaging x-ray spectrometers based on microcalorimeters

Caroline Kilbourne and Simon Bandler NASA Goddard Space Flight Center

Looking specifically at microcalorimeters (operated at T<0.1 K)

- The leading microcalorimeter thermometer technologies
 - Resistance (semiconductor thermistors and superconductors at their phase transition)
 - Magnetically coupled calorimeters
- What is the state of the art for the leading microcalorimeter sensor and read-out technologies? How far can the limits be pushed?

Silicon thermistor-based calorimeter array for Astro-H

- Base temperature of 50 mK
- 36 pixels silicon thermistors on 0.83 mm pitch with HgTe absorbers
- Resolution at 6 keV ranges from 3.6 4.6 eV across EM and FM arrays
- Lack of large-scale read-out technology limits arrays to a few hundred pixels
 - Overtaken by TES arrays and SQUID multiplexing
 - Nonetheless, Astro-H is an important pathfinder

Transition-edge sensors (TES) – basic pixels

- The temperature and current dependence of the transition from the zeroresistance to normal-resistance state is used for thermometry
- Consist of thermometer (with superconducting leads and normal-metal features), x-ray absorber, and controlled link to heat sink

- Pixel pitch
 thermometer size
 transition properties and whether membrane needed for thermal link
 - "small" TES thermometers < 0.05 mm; "standard" ~ 0.14 mm

"Standard" TES pixels –XMS baseline of IXO, Athena, etc.

- XMS reference design based on GSFC TES design
 - Membrane-isolated Mo/Au TES with $T_c \sim 90$ mK, (base temperature at 50 mK)
 - Electroplated Bi/Au absorbers, 0.25 0.30 mm pitch
 - 1.8 eV resolution demonstrated, 2 3 eV routine in this design
 - Multiplexed SQUID read-out close to requirements for few-thousand pixel array
 - 32x32 arrays with microstrip leads successfully fabricated

"Small" TES pixels

- Small pixels suited to shorter focal lengths and/or higher spatial resolution
- In small TES devices, T_c depends sensitively on current extends linear operating range of pixels
- Don't need membrane isolation; small size limits coupling to solid substrate
 - Heat sinking of solid substrate minimizes thermal crosstalk
- Through choice of T_c, can be optimized for speed (0.03 ms fall time) or resolution (0.9 eV FWHM) (GSFC devices).

Inductive thermometers – using temperature dependence of paramagnetism or magnetic penetration of a superconductor

- Arrays of Nb meanders with layer of magnetic material (Au:Er) or a low-Tc superconductor (Mo/Au), with high-fill-factor absorbers as with TES.
 – change of magnetization measured as change of inductance
- The Heidelberg group has achieved just better than 2.0 eV resolution at 6 keV with a Au:Er metallic magnetic calorimeter (MMC).
- GSFC group has obtained 2.3 eV resolution with Mo/Au magnetic penetration thermometer (MPT).

Magnetically coupled calorimeters (MCC) compared with TES

- MCCs are intrinsically dissipationless
 - very large-format focal-plane arrays
- MCC sensor material is electrically isolated
 - can be directly connected to metallic heat sink simplifying reduction of thermal crosstalk
- Dissipation in TES calorimeters allows electrothermal feedback
 - stabilizes operating temperature, relaxing temperature stability required at heat sink
- TES read-out allows easy signal filtering, greatly simplifying multiplexing.

Each has advantages and disadvantages – continued parallel investment in both TES and MCCs is needed.

Using the non-equilibrium signal in equilibrium devices for position discrimination

 Multiple absorbers connected thermally to the same thermometer via different thermal links

Demonstrated for TESs and MMCs

- 2.4 eV resolution obtained in 9-pixel TES device with 0.065 mm pixels
Ideal "hydra" obtains somewhat worse resolution than for one big pixel of the same area due to thermal fluctuations between the absorbers.

Multiplexed TES read out: switched SQUID multiplexing

- XMS reference design included time-division multiplexing (TDM)
 - Individual TES pixels are coupled (via each pixel's SQUID) to a single amplifier
 - Multiplexed by sequential switching between SQUIDs
 - Used in TRL-4 TES read-out demo in 2008 (2.6 3.1 eV across 16 mux' d TESs)
- Code Division Multiplexing (CDM) will soon reach TDM TRL level
 - All pixels ON all the time, polarity of coupling is switched
 - CDM has a \sqrt{N} noise advantage over TDM, where N is the multiplexing scale
 - IXO/XMS noise budget was extremely tight CDM could provide important margin
 - Facilitates faster pixels with larger slew rates by providing the noise margin to allow the coupling of the TES to the in put SQUID to be reduced

CDM demonstrated: < 3 eV on 16 switched pixels using flux-matrixed CDM</p>

Frequency domain multiplexing (FDM)

TES bias modulation

- Different TES pixels AC-biased at different frequencies read out by single SQUID
- X-ray pulses seen in amplitude modulation
- Like CDM, pixels on all the time, imparting a \sqrt{N} advantage over TDM
- However, in identical pixels tested with AC and DC bias, significantly better resolution was obtained in the DC bias case, which may be fundamental

Microwave multiplexing

- Pixel electronics form high-Q microwave resonant circuits (GHz scale), hundreds of which can be combined on a single coax
- For TESs, MMCs, and MPTs, an unshunted rf SQUID is incorporated into the read out of each pixel, which is in turn coupled to a resonant circuit
- A successful microwave multiplexing demonstration has recently been completed at NIST on two gamma-ray TES pixels.

Pushing the limits on spectral resolution

Resolving power for soft x-rays

- All microcalorimeters are non-linear. If we set dT_{max} as the maximum allowed temperature change, then we need to design the TES so that E_{max} produces dT_{max}. E_{max} scales as C/α, but resolution dE scales as √C/α. Thus designing for 0.5 keV instead of 6 keV will not preserve the resolving power achieved at 6 keV. Getting to 0.2 eV resolution at 0.5 keV will not be possible without signal processing techniques (under development) that enable analysis of highly non-linear signals with high resolution. Reducing C by more than a factor of ~10 will need reductions in the TES size as well as the absorber C.
- In small TES devices, T_c depends sensitively on current extending the linear operating range of pixels for a given C/ α . However, the Johnson noise of a resistor with current dependence fundamentally increases with this current sensitivity, β .
- Paramagnetic calorimeters also have scaling issues. They are more linear, but their sensitivity scales with the heat capacity of the spin system.

 \Rightarrow R = 1000 within reach at 0.5 keV, R = 3000 probable, but much higher than that is unlikely.

Pushing the limits on counting rate

Limits at the pixel (trade against resolution and array size)

- Decreasing the thermal time constant of a pixel starts to degrade resolution when it approaches thermalization time scales in the absorber.
- Increased thermal conductance requires higher bias current with ramifications for the operating point in the transition and for heat sinking.
- Faster paramagnetic calorimeters fundamentally have worse resolution than slower ones ($\tau^{0.25}$ scaling).
- Limits on the readout (trade against multiplexer scale, array size)
 - The more bandwidth per pixel, the fewer pixels per multiplexer channel.

Limits on the signal processing

- Historically, optimal digital filtering used. Long records containing a single pulse are required in order to have sufficient frequency resolution in the optimal filter as well as to avoid pile up; resolution degraded when shorter records used.
- Recently, new optimizations specifically for high count rates are being developed (e.g. by B. Alpert, NIST).

Expect that 1000/s/pixel rates at > 80% live time will be possible in small sub-arrays with new processing techniques.

14

Pushing the limits on number of pixels

Array architecture

- Limit on bringing out wires between the pixels will be reached at the ~10⁴ pixel level (depending on pitch, etc.). Larger arrays will need close integration of the pixels and the multiplexing. NIST is working on integrating CDM with TES arrays.
- Use of Hydras eases demands on heat-sinking, wiring, and electronics, at the expense of resolution and perpixel count rate.

Wiring to room temperature

 Combining integrated CDM with microwave multiplexing holds the promise of reading out 10⁵ sensors (pixel pitch > 0.25 mm) with as few as two coaxes (depending on sensor speed).

\rightarrow Expect to get to 10⁵ TES in the next 20 years (10⁶ with Hydras), though compromises on count rate may be necessary.

Moore's Law for instrumented TES microcalorimeter arrays (courtesy of Kent Irwin)

Doubling time: 2 years

Moore's Law for instrumented microcalorimeter arrays

TES or