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[1] Observing system simulation experiments were used to investigate ensemble Bayesian
state-updating data assimilation of observations of leaf area index (LAI) and soil moisture
(�) for the purpose of improving single-season wheat yield estimates with the Decision
Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model.
Assimilation was conducted in an energy-limited environment and a water-limited
environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and
initial conditions, and cultivar parameters and through perturbations to model state
transition equations. The ensemble Kalman filter and the sequential importance resampling
filter were tested for the ability to attenuate effects of these types of uncertainty on yield
estimates. LAI and � observations were synthesized according to characteristics of existing
remote sensing data, and effects of observation error were tested. Results indicate that the
potential for assimilation to improve end-of-season yield estimates is low. Limitations are
due to a lack of root zone soil moisture information, error in LAI observations, and a lack of
correlation between leaf and grain growth.
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1. Introduction
[2] Dynamic crop models, such as the Decision Support

System for Agrotechnology Transfer crop simulation
model (DSSAT) [Hoogenboom et al., 2004], are used to aid
decision making under uncertainty [Jones et al., 2003]. For
instance, DSSAT is used by the insurance industry to pre-
dict regional crop yields on a seasonal basis. Crop simula-
tion models have an advantage over empirical models of
agricultural productivity in that they can react dynamically
to changes in local conditions in a physically and biologi-
cally meaningful way. However, because of uncertainties
in model representations of real-world systems and because
of uncertainties inherent in input data regarding soils, culti-
var genetics and weather, any model-based estimate of
agricultural yield will be subject to error. One approach to
mitigating this type of error is to constrain model simulations

using remote sensing observations through a process of data
assimilation [Liu and Gupta, 2007].

[3] Remote sensing measurements related to agriculture
generally contain information about weather, vegetation or
soil. Information about weather is used to force crop simu-
lations directly. Remotely sensed information about vegeta-
tion often comes in the form of a leaf area index (LAI
(m2 m�2) [e.g., Knyazikhin et al., 1999]), which is a crop
model component related to canopy cover. Similarly, soil
moisture is a model state variable that acts as the primary
control on plant water stress and observations of volumetric
moisture content (� (m3 m�3)) in the top few centimetres of
soil (�1) are available from remote sensing sources
(AMSR-E [Njoku et al., 2003], SMOS [Kerr et al., 2010],
and SMAP [Entekhabi et al., 2010]). Together LAI and SW
observations provide complementary information for agri-
cultural monitoring.

[4] There are many types of data assimilation which are
common in agronomy [Moulin et al., 1998; Prévot et al.,
2003]. This work investigates the potential for ensemble
Bayesian state-updating filters [McLaughlin, 2002] to miti-
gate modeling uncertainty on end-of-season wheat yield
estimates. Conceptually, ensemble Bayesian filters operate
on the principle that a probability density function (pdf)
representing uncertainty in model states can be approxi-
mated by a discrete set of model simulations, and that a pdf
of model predictions can be estimated using Monte Carlo
integration to marginalize uncertainty in model states.
From a Bayesian perspective, the physical model provides
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context (a prior and likelihood) for interpreting information
contained in remotely sensed data.

[5] Currently, a robust understanding of the response of
physically based model estimates of agricultural yield to
state-updating assimilation remains lacking. The first step
in this process is to perform a controlled synthetic data
study, also called an observing system simulation experi-
ment (OSSE) [Arnold and Dey, 1986], which will allow for
an analysis of interactions between uncertainty, observa-
tions and the model. Although both Pauwels et al. [2007]
and Pellenq and Boulet [2004] present OSSEs which inves-
tigate the assimilation of LAI and/or �1 into crop simula-
tion models, these studies assess the effects of assimilation
on model states; neither investigates the impact of data
assimilation on yield estimates. de Wit and van Diepen
[2007] present a case study on the effects of assimilating �1

observations on yield estimates; however, this does not
provide sufficient statistical and methodological control to
differentiate limitations imposed by the model, the assimi-
lation algorithm, and uncertainty in model inputs and
observations.

[6] We present a set of OSSEs which assess LAI and �
assimilation for improving DSSAT CropSim-Ceres wheat
yield estimates in a controlled synthetic environment. This
allows for an understanding of model response to state
updating and a delineation of the effects of modeling uncer-
tainty, filter error, and observation error. This investigation
provides a benchmark for interpreting the results of case
studies [e.g., de Wit and van Diepen, 2007] and a foundation
on which to direct the development of agricultural models
and remote sensing algorithms aimed at predicting yield.

2. Methods
[7] Several experiments are presented. First, modeling

uncertainty was partitioned into isolated sources: weather
inputs, soil parameters and initial conditions, cultivar param-
eters, and model state equations. Synthesized remote sensing
observations were assimilated using the ensemble Kalman
filter (EnKF) [Evensen, 2003] and the sequential importance
resampling filter (SIRF) [Gordon et al., 1993], and mean
yield predictions from these filters were assessed. In addi-
tion, observations with variable error characteristics were
assimilated to test the effects of observation error on EnKF
and SIRF results. Sections 2.1–2.4 describe the model, data
assimilation filters, and sets of numerical experiments.

2.1. The DSSAT CropSim Ceres Wheat Model

[8] DSSAT is a collection of independent crop growth
modules supported by a land process wrapper. Integration
takes place on a daily time step and the forcing data required
are daily maximum and minimum temperature, daily inte-
grated solar radiation and daily cumulative precipitation.

[9] DSSAT soil layering is user defined; we used nine
layers with one surface layer representing the 0–5 cm of
soil typically assumed to be visible to L band wavelength
satellites and a set of lower layers reaching a total depth of
1.8 m. DSSAT soil moisture is calculated using a Richie-
type soil water balance [Richie, 1998], which employs a
curve number approach to partitioning runoff and updates the
water content of each soil layer on the basis of a set of linear
drainage equations. The soil surface parameters are: a runoff

curve number, an upper limit on evaporation, a drainage rate
parameter, and albedo. Soil layers are parametrized by satu-
rated water content (porosity), drained upper limit (field
capacity), lower limit, saturated hydraulic conductivity, and a
root growth factor. Similar to Mo et al. [2005], we used the
soil water balance routines but did not simulate the soil nitro-
gen balance or any management decisions. This was done
because it is impossible to presume that information about
these aspects of agricultural development would be available
at remote sensing scales.

[10] The CropSim-Ceres module (CC) simulates wheat
crops. The CC models yield as a function of a grain weight
state. Grain growth is developmentally dependent on daily
development units, which are a function of mean daily tem-
perature and daily cumulative solar radiation, a temperature
control factor, vegetation biomass (� (kg/plant)) defined as
the sum of mass storage model states stem weight, leaf
weight, and reserves weight, and model parameters. The
most important crop model parameters are related to the
cultivar : vernalizing duration, which specifies the number
of days of optimum temperature necessary for vernaliza-
tion; photoperiod response, which specifies the percent
reduction in photosynthesis for every 10 h reduction in pho-
toperiod; grain filling phase duration in growing degree-
days (�C days); number of kernels per unit plant weight
(number g�1); the standard kernel size (mg); the standard
tiller weight (g); and the photoperiod interval between leaf
tip appearances.

[11] In contrast to grain weight, LAI is a function of the
model state plant leaf area which is developmentally de-
pendent on a temperature control factor and has a potential
value set by the number of plant leaves, which is in turn
determined at each time step by the cumulative sum of
daily development units. Again, in contrast to grain growth,
potential daily leaf growth is attenuated by an additive fac-
tor proportional to water stress, Sw 2 ½0; 1�, so that a stress
factor of 0 indicates potential growth and a stress factor of
1 indicates no growth. Potential grain growth is not modi-
fied in this way; the other components of biomass are
affected indirectly by stress through leaf assimilation of
plant carbon reserves. Water stress is the ratio of total root
water uptake to potential transpiration, which is a fraction
of potential evapotranspiration calculated according to the
Priestley-Taylor method [Priestley and Taylor, 1972]. Root
water uptake from each layer is a function of the difference
between soil moisture state and the lower limit parameter.
Thus when sufficient soil moisture is available to supply
transpiration demand, water stress is zero. Given the way
model develops vegetation and grain components of the
wheat plant, we know that LAI and � will inform yield by
informing �.

[12] The model state vector contains all of the internal
dynamic model variables necessary to transition the simu-
lation from one time step to the next, that is, all of the
Markov information. More specifically, at given time t,
state (xt) is a function of the state at the previous time
(xt�1), forcing data at the current time (ut), and time-invari-
ant model parameters (#) according to the state transition
relationshipMxð�Þ :

xt ¼Mxðxt�1; ut; #Þ: (1a)
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The combined land process wrapper and CC Markov state
vector has 97 components (Tables 1 and 2). The model
output vector at time t (yt ; here we use the term output to
refer to model predictions which correspond directly with
observations) is calculated according to the relationship
Myð�Þ as a function of the current state, current inputs and
parameters :

yt ¼Myðxt; ut; #Þ: (1b)

For our purposes, the output vector contained the quantities
�1:9 (soil moisture in each of 9 soil layers) and LAI; �1:9

are also state variables so Myð�Þ simply preserves these
values through identity relationships. LAI is not a state
variable because its value is calculated independently at
each time step as a function of the state plant leaf area.

2.2. The Ensemble Kalman Filter

[13] The EnKF is commonly used for state updating in
moderately nonlinear geophysical models [Reichle, 2008].
It estimates the model state pdf by drawing Nens samples
from a joint uncertainty pdf over model parameters, forcing
data, and state perturbations, and then propagates this sam-
ple through time using the model equations. This set of
model simulations is the ensemble. At every observation
time, the EnKF updates the state pdf on the basis of the
assumptions that all model states are linearly related to
model output and that uncertainty in model states, model
output, and observations can be quantified by second-order

pdf approximations. Because the method has been widely
discussed, we only present a brief overview and follow a
variation on the formulation of Houtekamer and Mitchell
[2001].

Table 1. The Decision Support System for Agrotechnology
Transfer (DSSAT) Markov State Vector (33 Components)

Component Description Units

ATOT Sum of last 5 days soil temperature C
CANHT Canopy height m
DRN Drained soil water cm
EO Potential evaporation mm d�1

EOP Potential plant transpiration mm d�1

EORATIO Increase in evaporation per unit LAI mm d�1

EOS Potential soil evaporation mm d�1

EP Plant transpiration mm d�1

ES Soil evaporation rate mm d�1

FRACRTS Fraction of soil contact w/roots
KSEVAP Light extinction coefficient (evaporation)
KTRANS Light extinction coefficient (transpiration)
PORMIN Minimum pore space for O2 to plants m3 m�3

RLV Root volume by soil layer m3 m�3

RWUMX Maximum uptake per unit root length m3 m�3

SNOW Snow accumulation mm
SRFTEMP Surface soil temperature �C
SSOMC Soil Carbon kg ha�1

ST Soil temperature �C
STGDOY Stage transition dates day
SUMES1 Cumulative stage 1 soil evaporation mm
SUMES2 Cumulative stage 2 soil evaporation mm
SW Soil water m3 m�3

SWDELTS Drainage rate m3 m�3

SWDELTU Change in SW due to evaporation m3 m�3

SWDELTX Change in SW due to plant uptake m3 m�3

TMA Last 5 days of soil temperature �C
TRWU Total root water uptake mm
TRWUP Total potential root water uptake m3 m�3

TSOILEV Duration stage 2 evaporation days
TSS Number of days with saturated soil days
UPFLOW Upward flow due to evaporation cm
WINF Infiltration mm

Table 2. The CropSim-Ceres Wheat Module Markov State Vector
(64 Components)

Component Description Units

ADATEND Anthesis end date
AFLFSUM Carbohydrate leaf factor
CARBOC Cumulative carbohydrate assimilated g/plant
CHRSWT Chaff reserves g/plant
CHWT Chaff weight g/plant
CUMDU Cumulative development units �C days
CUMGEU Cumulative germination units �C days
CUMVD Cumulative vernalization days days
DAE Days after emergence
DEADWT Dead leaf weight retained on plant g/plant
G2 Coefficient of grain growth (modified) mg/d �C
GEDSUM Germination plus emergence duration days
GESTAGE Germination, emergence stage
GETSUM Germination plus emergence temperature sum �C
GPLA Green leaf area cm2/plant
GPLASENS Green leaf area during senescence cm2/plant
GRNUM Grains per plant number/plant
GRWT Grain weight g/plant
ISTAGE Current developmental stage
ISTAGEP Previous developmental stage
LAGSTAGE Lag phase for grain filling stage
LAP Leaf area by leaf number cm2/plant
LAPOT Leaf area potentials by leaf number cm2/leaf
LAPS Leaf area senesced by leaf number cm2/plant
LFWT Leaf weight g/plant
LLRSWAD Leaf lamina reserves weight kg ha�1

LLRSWT Leaf lamina reserves g/plant
LLWAD Leaf lamina weight kg ha�1

LNUMSD Leaf number per Haun stage
LNUMSG Growing leaf number
LSHAI Leaf sheath area index m2 m�2

LSHRSWAD Leaf sheath reserves weight kg ha�1

LSHRSWT Leaf sheath reserves g/plant
LSHWAD Leaf sheath weight kg ha�1

PARI PAR interception fraction
PLA Plant leaf area cm2

PLTPOP Plant Population plants/m2

RSTAGE Reproductive development stage
RSWT Reserves weight g/plant
RTDEP Root depth cm
RTWT Root weight g/plant
RTWTL Root weight by layer g/plant
SEEDRS Seed reserves g/plant
SEEDRSAV Seed reserves available g/plant
SENCL Senesced Carbon by layer g/plant
SENCS Senesced Carbon added to soil g/plant
SENLA Cumulative senesced leaf area cm2/plant
SRADSUM Cumulative radiation MJ m�2

SSTAGE Secondary stage of development
STRSWT Stem reserves g/plant
STWT Stem weight g/plant
TNUM Tiller number number/plant
TSDAT Terminal spikelet date
TSS Duration of saturation days
TTD Thermal time over last 20 days �C
TTNUM Thermal time means in sum �C days
VF Vernalization factor
WFG Water stress factor for growth
WFGC Cumulative growth water factor
WFLFNUM Water stress factor for each leaf
WFLFSUM Cumulative water stress factor per leaf
XSTAGE Stage of development
ZSTAGE Zadok stage of development
ZSTAGEP Precious Zadok stage
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[14] The ensemble of model state predictions at time t is
stored in Xt ¼ ½xt;1; xt;2; . . . ; xt;Nens �, which has size
Dstt � Nens where Dstt is the dimension of xt. Similarly, the
ensemble of model outputs is Yt ¼ ½yt;1; yt;2; . . . ; yt;Nens �,
which has dimensions Dobs � Nens where Dobs is the dimen-
sion of the observation vector, zt. The observation error co-
variance, Rt, is required a priori and an observation sample
Zt ¼ ½�t;1; �t;2; . . . ; �t;Nens

� is generated according to

�t;i � N½zt;Rt�: (2)

The ensemble of EnKF updated model states, cXt , is calcu-
lated as a least squares estimate based on model predictions
and observations resulting in

cXt ¼ Xt þ PtðQt þ RtÞ�1ðZt � YtÞ (3a)

where

Pt ¼
ðXt � E½Xt�ÞðYt � E½Yt�ÞT

ðNens � 1Þ
(3b)

is the cross covariance between ensemble deviations from
mean model state and deviations from mean output and

Qt ¼
ðYt � E½Yt�ÞðYt � E½Yt�ÞT

ðNens � 1Þ
(3c)

is the covariance matrix of ensemble deviations from mean
model output. Both Pt and Qt are sampled directly from
the ensemble.

[15] The finite nature of ensemble representations of
uncertainty can lead to spurious updates when Xt contains
components that are not approximately or locally linearly
related to components of Yt. An analysis of DSSAT state
and observation correlations resulted in a list of important
Markov state components which have local approximately
linear relationships with one or more output (Table 3,
except stage timing states). This list includes all CC plant
mass storage components, plant leaf area, and root volume

(root accumulation is stored as a volumetric fraction rather
than as a mass) as well as canopy height. Our EnKF
employed a threshold filter which discarded any relation-
ship between model states and modeled observation com-
ponents with a Pearson product-moment correlation
coefficient j�j < 0:3. This reduced the possibility of pick-
ing up spurious correlations.

[16] It is important to note that the CC is a set of step
functions which calculate crop attributes in fundamentally
different ways depending on the current stage of develop-
ment. Because of these and other nonlinearities, the EnKF
will not guarantee mutually consistent model states after
each update since it uses a single correlation relationship to
update every ensemble member regardless of the current
growth stage of each particular simulation.

2.3. The Sequential Importance Resampling Filter

[17] The SIRF provides an approximate Bayesian esti-
mate of model state uncertainty at each time step condi-
tional on past observations without assumptions of linearity
and second-order statistics. At each observation time, each
ensemble member’s state vector is assigned an importance
weight, W n

t , which is proportional to the posterior likeli-
hood of that state vector conditional on all past observa-
tions:

W n
t / Pðxn

t jz1:tÞ ¼
Pðztjxn

t ; z1:t�1ÞPðxn
t jz1:t�1Þ

PðztÞ
; (4a)

superscripts index the ensemble member. The observations
are assumed to be independent conditional on the model
output, and model output is a deterministic function of
model state according to (1b) so that the likelihood function
relates observations to model state vectors according to

Pðztjxn
t ; z1:t�1Þ ¼ Pðztjyn

t Þ: (4b)

Pðztjyn
t Þ is emulated by the observation uncertainty pdf, in

this case Gaussian with mean yn
t and covariance Rt. The

state prior, Pðxn
t jz1:t�1Þ, is estimated discretely by Xt by the

ensemble in the same way as the EnKF; this is achieved
for time step t þ 1 by resampling the ensemble at time step
t with replacement and with probabilities proportional to
fW n

t g resulting in an iid discrete representation of the pos-
terior, Pðxn

t jz1:tÞ. Xtþ1, as calculated from Xt by equation
(1a), thus contains an iid discrete representation of the prior
at time step t þ 1, Pðxn

tþ1jz1:tÞ. Proportional probability
weights are simply calculated as

W n
t ¼ Pðztjyn

t Þ ¼ exp � 1

2
ðzt � yn

t Þ
TR�1

t ðzt � yn
t Þ

� �
: (4c)

In our case, the simulation ensemble was updated by
replacing all 97 components of each member’s state vector
(Tables 1 and 2) with a state vector from a different simula-
tion (sampling with replacement). Each model retained its
own parameters and forcing data.

2.4. Observing System Simulation Experiments

[18] OSSEs, as diagrammed in Figure 1, were used to
assess LAI and � assimilation potential. A group of Nens þ 1
simulations (ensemble size is discussed in section 2.4.3) was

Table 3. The State Vector Updated by the EnKF and the State
Vector Perturbed by Equation (5a) to Simulate Model Structural
Errora

State Component Units Dimensions

CSM states
Soil water m3 m�3 9
Canopy height m 1

CC states
Root volume fraction cm2 cm�3 9
Chaff weight g/plant 1
Stem weight g/plant 1
Leaf weight g/plant 1
Reserves weight g/plant 1
Grain weight g/plant 1
Plant leaf area cm2 1
Seed reserves g/plant 1

Stage timing states
Cumulative development units �C days 1
Cumulative germination units �C days 1

aCumulative development units and cumulative germination units are
not updated by the ensemble Kalman filter (EnKF), and grain weight is not
perturbed by equation (5a).
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sampled from a modeling uncertainty pdf. One of these
simulations was chosen randomly as the truth system
(upper path in Figure 1) leaving an Nens-member predic-
tion ensemble which was used to estimate yield with and
without data assimilation. Synthetic observations were
generated by sampling from an observation uncertainty
distribution around the truth system output and assimilated
by the EnKF and SIRF (middle paths in Figure 1). The en-
semble of model simulations without data assimilation
was called the open loop (bottom path in Figure 1). The
open loop, EnKF and SIRF all used the same truth system
and ensemble members (parameters, initial conditions and
weather forcing data) and the EnKF and SIRF used the
same synthetic observations.

[19] This type of OSSE was used to (1) choose an appro-
priate ensemble size, (2) test the effects of EnKF and SIRF
assimilation on segregated and combined modeling uncer-
tainty sources, (3) test the effects of observation uncertainty
on EnKF and SIRF assimilation. Experiments 2 and 3 used
the ensemble size chosen by experiment 1. In all cases
except for when determining ensemble size, each OSSE was
repeated fifty times by drawing separate truth systems and
ensembles; this Monte Carlo repetition provided a statisti-
cally independent experiment sample. Sections 2.4.1–2.4.5
describe the modeling uncertainty pdf, the procedure for
generating synthetic observations from truth system output,
and these sets of experiments.

2.4.1. Modeling Uncertainty Distributions
[20] Assimilation was tested on two rain-fed wheat crops

with different levels of water stress. Mean parameter and
weather inputs came from field experiment data which are
packaged with the DSSAT version 4.5 release: a 1975

study of a summer wheat crop conducted in Swift Current,
Saskatchewan, Canada, reported by Campbell et al. [1977a,
1997b] and a 1974–1975 study on winter wheat conducted
in Rothamsted, UK. Figure 2 plots LAI, grain weight, and
water stress for both crops simulated using mean parame-
ters outlined in Table 4 and unperturbed weather forcing
data.

[21] The Swift Current summer wheat crop represents a
water-limited system and yielded 104 kg ha�1 using mean
parameters listed in Table 4; the potential, nonstressed
yield was 4266 kg ha�1. The mean parameter and forcing
system received 153.6 mm of rainfall over a total of 95
days from planting on 25 May 1975 to maturity on 28 Au-
gust 1975 and had a total evapotranspiration of 151.9 mm.
The water stress factor reached a high of Sw ¼ 0:97 during
the ear growth stage which occurred between day 51 and
day 61 after planting. Although this crop produced very lit-
tle yield using the mean parameter and input values, it was
often the case that simulations sampled from the parameter
and input uncertainty distribution caused a substantial
increase in yield.

[22] The Rothamsted winter wheat crop represents an
energy-limited system and reached potential yield of 6651
kg ha�1 using mean parameters listed in Table 4. The sys-
tem received 512.9 mm of rainfall over a total of 269 days
from planting on 6 November 1974 to maturity on 6 August
1975 and had a total evapotranspiration of 381.2 mm. The
water stress factor reached a high of Sw ¼ 0:84 during the
grain filling stage which occurred between day 240 and
harvest ; the water stress factor was close to 0 during all
other development stages. Although this crop produced
potential yield using the mean parameter and input values,
it was often the case that simulations sampled from the

Figure 1. Observing system simulation experiment process diagram: Transparent gray boxes represent
sequential importance resampling filter (SIRF) and ensemble Kalman filter (EnKF) assimilation algo-
rithms, u are forcing data, # are model parameters, X are model states, bX are filter-updated model states,
Y are modeled leaf area index (LAI) and �, Z are observed LAI and �, and � is yield. R, �#, and �u are
uncertainty variances listed in Tables 4 and 5 and equation (5a).
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parameter and input uncertainty distribution caused a sub-
stantial decrease in yield.

[23] Weather forcing data uncertainty was emulated by
perturbing daily measured weather data with values
sampled form the temporally and cross-correlated joint pdf
outlined in Table 5. Perturbations on solar radiation and
precipitation were multiplicative lognormally distributed
with a mean of 1 and standard deviations of 0.3 and 0.5,
respectively; perturbations on temperature were additive
Gaussian with a mean of 0 and unit variance, and the same
daily perturbation was applied to daily maximum and mini-
mum temperature. Weather perturbations were cross corre-
lated and AR(1) (first-order autoregressive) temporally
autocorrelated with correlation coefficients 1/e following
Reichle et al. [2007, 2010]; since integration was on a daily
time step, these autoregression coefficients are relevant to a
daily time series.

[24] Parameter uncertainty distributions were Gaussian
(approximately, due to bounds) with means, variances, and
bounds listed in Table 4. Cultivar parameters are model
specific; parameter files included with DSSAT release ver-
sion 4.5 provided the limits and variances listed in Table 4.
Variances and bounds for surface soil parameters were also
estimated using a library of soil parametrizations included
with DSSAT version 4.5. We used lumped parameters for
the bottom eight soil layers because of a presumed lack of

knowledge about subsurface soil properties. The root
growth factor was assumed to decrease exponentially with
depth and was parametrized by a maximum value at the
surface. Porosity, saturated conductivity and residual satu-
ration were calculated from clay and silt percentages using
pedotransfer functions from Cosby et al. [1984]. Bulk den-
sity was calculated as a function of porosity assuming min-
eral density of 2.65 g cm�3 and drained upper limit was
taken as the average of saturated and residual moisture con-
tents. Global soils maps that provide clay and silt contents
are not usually associated with useful error estimates
because much of the error in soil mapping is due to sparse
measurements of heterogeneous areas. Here we sampled
sand and clay percentage parameters independently, each
with a standard deviation of 10%; sand and clay percen-
tages were constrained to be positive and the sum was con-
strained to be less than one by, when necessary, reducing
both parameters by an equal amount. Given the mean sand
and clay parameters from Table 4, this resulted in 95% con-
fidence bounds which spanned approximately 18% of the
soil textural triangle at and Swift Current and 25% of the
soil textural triangle at Rothamsted.

[25] Model structural uncertainty was simulated by add-
ing noise to the model state transition equations:

xt ¼Mxðxt�1; ut; #Þ þ �t; �t � N½0;�x� (5a)

Figure 2. Baseline simulations of water-limited (Swift Current) summer wheat and energy-limited
(Rothamsted) winter wheat with parameters listed in Table 4. In the Rothamsted plot, water stress is
magnified by a factor of 8.
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This type of model error was added to those states listed in
Table 3 except for grain weight, and in some cases, where
specified, to the development unit stage timing states cumu-
lative development units and cumulative germination units.
It was found that perturbing the grain weight state caused
irreconcilable yield error by weakening statistical relation-
ships between observations and yield. Random state pertur-
bations were drawn from zero-mean Gaussian distributions
with heteroscedastic variances

�x ¼ IDstt 0:02ðxt�1Þ; (5b)

where IDstt is the Dstt dimension identity matrix. This
ensured that no state would become finite purely because of
the perturbation, and threshold filters were used to ensure
that all state values remained nonnegative. Perturbations
were sampled independently across states and time steps.

2.4.2. Generating Synthetic Observations
[26] The truth system output vector (ytruth

t ¼ f�truth
1:9 ;

LAItruthg) was used to generate synthetic observations, zt.

At every observation time, a remote sensing measurement
process was simulated by drawing from the Gaussian
distribution

zt � N½yt;Rt�; Rt ¼
R�t 0

0 RLAI
t

" #
: (6a)

RLAI
t and R�t represent the observation error covariance

matrixes related to LAI and � observations, respectively.
Synthetic observations have no spatial scale.

[27] Frequency and error properties of synthetic observa-
tions were guided by uncertainty in existing remote sensing
data. Observations of �1 are available from SMOS at most
major agricultural areas every 3 days with a spatial resolu-
tion of 50 km and approximate retrieval accuracy of error
� 60:04 m3 m�3 [Kerr et al., 2010]. An improvement in
spatial resolution (to 9 km) is expected with the launch of
SMAP in 2014 [Entekhabi et al., 2010]. Measurement
accuracy will degrade as vegetation water content, �veg

(kg m�2), increases throughout the growing season; in the

Table 4. The (Approximately) Gaussian Probability Density Function of Uncertainty in Model Parameters and Initial Conditions

Uncertainty Source

Uncertainty

Mean Parameters Values

Standard Deviation Lower Bound Upper Bound UnitsSwift Current Rothamsted

Cultivar Parameters
Vernalizing duration 0 60 3 0 60 days
Photoperiod response 60 67 10 0 200 %
Grain filling duration 335 515 33.5 100 1000 �C days
Kernel number 25 14 2.5 10 50 number/g
Standard kernel size 26 44 2.6 10 80 mg
Standard tiller weight 1.5 4.0 0.3 0.5 8 g
Interval between leaves 86 100 10 30 150 �C days

Soil Parameters
Albedo 0.10 0.14 0.05 0 1
Upper limit evaporation 9.4 6.0 2.0 1 12 cm d�1

Drainage rate parameter 0.20 0.50 0.3 0.01 0.99 1/d
Runoff curve number 84.0 60.0 10 1 99
Root growth factor

Layer 1 (0–5cm) 1.00 1.00 0.05 0 1
Layers 2–9 (5–180 cm) 0.74 0.90 0.1 0 1

Percent clay
Layer 1 (0–5cm) 10.7 23.4 10 0 100 %
Layer 2-9 (5–180 cm) 9.2 23.4 10 0 100 %
Percent silt

Layer 1 (0–5cm) 29.9 30.0 10 0 100 %
Layers 2–9 (5–180 cm) 29.7 30.0 10 0 100 %

Initial soil moisture
Layer 1 (0–5 cm) 0.23 0.33 0.04 Lower limit Saturation m3 m�3

Layers 2–9 (5–180 cm) 0.20 0.33 0.08 Lower limit Saturation m3 m�3

Table 5. Forcing Data Perturbation Sampling Parameters

Weather Inputs
Multiplicative

or Additive
Standard
Deviation

AR(1)
Coeffienta

Correlations
Data

UnitsbTemperature Radiation Precipitation

Temperature (maximum and minimum) A 1 1/e 1 �0.80 �0.32 �C
Solar Radiation M 0.3 1/e �0.80 1 0.40 MJ m�2 d
Precipitation M 0.5 1/e �0.32 0.40 1 mm

aFirst-order autoregressive coefficients assume a daily time series.
bData units are the dimensions of the forcing data itself and not the units of the perturbations except in the case of temperature which uses additive per-

turbations; radiation and precipitation perturbations are multiplicative and unitless.
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case of SMAP, observations at or better than the 60:04
m3 m�3 accuracy level are expected to be confined to areas
with vegetation water content less than 5 kg m�2 [Ente-
khabi et al., 2010]. Jackson and Schmugge [1991] devel-
oped a relationship between vegetation water content and
vegetation transmissivity, as proposed by Kirdiashev et al.
[1979], which Bolten et al. [2010] adapted to model soil
moisture observation uncertainty as

R�t ¼ R0exp
b�veg

2cos ð�Þ

� �
: (6b)

R�t (m6=m6) is the variance of the soil moisture retrieval at
time t made over vegetation, R0 (m6=m6) is the variance of
estimates made over bare soil, b is an environment parame-
ter which accounts for vegetation type and roughness, and
� (degrees) is the satellite incidence angle. The SMAP inci-
dence angle is 40� and we adopted the value of b ¼ 0:12
for agricultural crops [Crow et al., 2005], along with a bare
soil observation error standard deviation of ðR0Þ1=2 ¼
0:027 m3 m�3 resulting in a retrieval accuracy model which
approaches ðR�t Þ

1=2 ¼ 0:04 m3 m�3 as vegetation water
content approaches �veg ¼ 5 kg m�2. Vegetation water con-
tent was assumed to be a constant fraction of plant biomass
and plant population (ppop (plants/m2)):

�veg ¼
��ppop

1� �

� �
; (6c)

� ¼ 0:75 was set according to results reported by Malhotra
[1933]. Plant population is a CC component that is not
included in the EnKF update.

[28] Synthetic observations of �1:9 were generated every
3 days, each layer perturbed independently with the same
statistical error characteristics. Remote sensing platforms
are only able to measure soil water content in the upper
few centimetres of soil, and in section 3.2 we compare
assimilations which used only �1 observations with assimi-
lations which used observations of �1:9.

[29] The MODIS MOD15A2 product group provides LAI
(m2 m�2) estimates as an 8 day composite. The accuracy
and uncertainty in this product has been investigated over
agricultural areas by comparing the composite image to
reference LAI from a single day at the end of the composite
period; the uncertainty standard deviation was reported to be

ðRLAI
t Þ

1=2 � 0:38 m2 m�2 [Tan et al., 2005]. We generated

synthetic LAI observations with ðRLAI
t Þ

1=2 ¼ 0:38 every
8 days to simulate the remote sensing measurement process.

2.4.3. Ensemble Size Experiments
[30] Ensemble size represents a balance between pdf rep-

resentation and computation expense. Effects of varying
ensemble size were evaluated using ensembles of Nens ¼
10, 25, 50, 75, 100, 250, 500, 750, and 1000. An appropri-
ate ensemble size was found when pdf predictions of grain
weight, LAI and �1 became stable with increasing sample
size. The quality of ensemble representations of outputs
LAI and �1 and state grain weight was quantified using the
root mean square error (RMSE) taken over all simulation
time steps of the difference between mean ensemble pre-
dicted output values and the true value.

[31] To make direct comparisons between OSSEs with
different ensemble sizes, it was necessary to use the same
truth system and observation set. Four truth systems were
chosen and, for each truth system, a corresponding set of
observations were generated and an Nens ¼ 1; 000 member
ensemble was sampled from the full uncertainty pdf out-
lined in Tables 4 and 5 and equation (5a). For each truth
system, each ensemble of increasing size completely con-
tained all smaller ensembles. For example, for a given truth
system, the Nens ¼ 25 member ensemble contained the
Nens ¼ 10 member ensemble plus 15 additional simula-
tions. The RMSE averaged over these four experiments is
reported, and the particular choice of ensemble size is dis-
cussed in section 3.1.

2.4.4. Modeling Uncertainty Experiments
[32] Once an appropriate ensemble size was chosen,

experiments were conducted to test the ability of data
assimilation to mitigate particular types of modeling uncer-
tainty in yield estimates. Modleing uncertainty pdf were
taken as marginal distributions of the entire joint uncer-
tainty distribution (Tables 4 and 5 and equation (5a)). We
tested the full joint uncertainty pdf described in section
2.4.1 plus five marginal uncertainty pdf related to (1)
weather forcing data (Table 5), (2) soil parameters and ini-
tial conditions (Table 4), (3) cultivar parameters (Table 4),
(4) model state perturbations (equation (5a)) to states listed
in Table 3 except for grain weight, cumulative development
units and cumulative germination units, and (5) same as
point 4 but with perturbations to cumulative development
units and cumulative germination units. Because each uncer-
tainty type was independent from all others, marginalizing a
particular uncertainty component was done by setting all of
the variances of its uncertainty components to zero.

[33] Assimilation OSSEs were run for simulations of
water-limited (Swift Current) and energy-limited (Roth-
amsted) crops using four types of observation sets: LAI
and �1, LAI only, �1 only, and �1:9 ; the first three represent
what are available from satellites and the fourth provides a
way to assess limitations of only having surface level soil
moisture information. Each OSSE was repeated fifty times
with different truth systems, ensembles and observations.
The results were evaluated using a mean error score (ME
(kg ha�1)), which is the absolute difference between the en-
semble mean predicted end-of-season yield and the true
yield. This was calculated for the open loop, EnKF, and
SIRF ensembles for each of 50 OSSEs, and a single-tailed,
two-sample t test (� ¼ 0:05) was used to test for a signifi-
cant reduction in mean ME score due to SIRF or EnKF
assimilation.

[34] Yield estimates can only be expected to improve
when there are strong (although possibly indirect) relation-
ships between model outputs and grain weight. Since grain
weight is related to LAI and water stress through biomass,
we report the absolute time-averaged Pearson product-
moment correlation coefficients (j�j) between model out-
puts and �. For �1:9 the sum of profile water was used. Sta-
tistics were calculated using all open loop ensemble
members from the 50 combined uncertainty OSSEs.

2.4.5. Observation Uncertainty Experiments
[35] Eight sets of OSSEs which utilized the full model-

ing uncertainty pdf were used to test effects of observation
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uncertainty on assimilation results. Synthetic observations
of LAI and �1 were generated and assimilated every 3 and
8 days as described in section 2.4.2; however, � error var-
iances were ðR�Þð1=2Þ ¼ 0.001, 0.005, 0.010, 0.015, 0.020,
0.030, 0.040, and 0.050 ðm3 m�3Þ and LAI error variances
were ðRLAIÞð1=2Þ ¼ 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.30,
and 0.40 for the eight sets of OSSEs. For both water-lim-
ited and energy-limited crops each observation type and
uncertainty level was tested using fifty Monte Carlo OSSEs
and the reduction in ME scores was used to evaluate EnKF
and SIRF performance.

3. Results
3.1. Ensemble Size Experiments

[36] Figure 3 illustrates RMSE output and grain weight
dynamics due to varying ensemble size averaged over four
sets of Swift Current OSSEs. Generally, when LAI was
assimilated LAI RMSE improved but not �1 RMSE, and
when �1 was assimilated �1 RMSE improved but not LAI
RMSE; this is similar to the findings of Pauwels et al.
[2007], who used the EnKF and observed little improvement
to modeled LAI when �1 observations were assimilated. In
both cases where outputs improved (LAI RMSE for LAI
assimilation and �1 RMSE for �1 assimilation) output
RMSE values were relatively stable with increasing ensem-
ble size after about Nens ¼ 25 for both the EnKF and SIRF.

In the two cases where outputs did not improve (�1 RMSE
for LAI assimilation and LAI RMSE for �1 assimilation)
output RMSE values stabilized around Nens ¼ 100. de Wit
and van Diepen [2007] used the EnKF and found stability
in mean-square error of modeled LAI with EnKF assimila-
tion of �1 at around Nens ¼ 100, which is in agreement with
our findings. The grain weight state RMSE generally
improved when LAI observations were assimilated but not
�1 observations; in both cases, the grain weight RMSE
became relatively stable around Nens ¼ 100. The remainder
of the OSSEs discussed in this paper used an ensemble size
of Nens ¼ 100.

3.2. Modeling Uncertainty Experiments

[37] Table 6 reports Monte Carlo average ME scores and
time-averaged correlations between outputs and end-of-
season yield for water-limited and energy-limited OSSEs.
The results for each uncertainty type are described below.
It is important to understand that the time-averaged correla-
tions between model outputs and biomass inform assimila-
tion results, but that the relationship is indirect and
situation dependent. Thus the j�j coefficients in Table 6
cannot be compared directly.

3.2.1. Weather Inputs
[38] Precipitation uncertainty affects grain development

indirectly via the water stress control on the leaf weight
component of biomass, while radiation and temperature

Figure 3. Output and grain weight time-averaged open loop, EnKF, and SIRF root-mean-square error
values as a function of increasing ensemble size.
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affect grain development directly as well as indirectly
though biomass. In simulations of the water-limited crop,
LAI and � were correlated with � at approximately
j�j ¼ 0:5. ME scores were not significantly improved by
assimilating LAI or �1 using either filter. The inefficiency
in assimilating LAI observations can be attributed to differ-
ences in the way radiation and temperature affect leaf and
grain development and the fact that uncertainty in radiation
and temperature affected grain growth after leaves were
senesced (Figure 2).

[39] The SIRF was able to reduce the average ME score
by assimilating �1:9 and was more successful than the
EnKF, in this case likely because of the EnKF’s linear
model assumption. Swapping out state vectors for ones
from ensemble members which represent crops grown in
conditions similar to the truth system (similar historical
water demand and availability) improved yield predictions;
however, updating plant states on the basis of linear corre-
lations with soil states was inefficient, and improvements to
estimates of profile water content did not translate into
improved simulations of future plant development. The
useful information stored in the soil moisture state was in-
formation about growth histories; this suggests that an
improved understanding of the effects of weather on the
crop growth environment might not be as important as an
improved understanding of the effects of weather on crops
themselves.

[40] In energy-limited simulations, LAI was correlated
with � at j�j ¼ 0:8 and EnKF assimilation of LAI observa-
tions improved yield predictions. Water stress was a decor-
relating factor between LAI and biomass because of
differences in how leaf weight, stem weight, and reserves
weight responded to stress. Again, in the energy-limited
environment, SIRF assimilation of �1:9 improved yield esti-
mates while the EnKF did not.

3.2.2. Soil Parameters and Initial Conditions
[41] In simulations of the water-limited crop, the ability

of the soil to infiltrate and store water was important for
productivity. Correlations between LAI and � were high
(j�j ¼ 0:918); however, assimilation of LAI did not result
in improved yield estimates. In this case, when the filters
increased biomass because of high LAI observations, large
plants were essentially placed into soils that could support
them. When the filters decreased biomass because of low
LAI observations, the plants grew quickly because of suffi-
cient water availability. This is an example of the limita-
tions of data assimilation filters when model parameters are
uncertain. Since LAI observations were not available after
senescence (Figure 2), the updated plant simulations were
able to respond to the new environment before grain
growth was completed.

[42] In contrast, correlation between �1:9 and � was mod-
erate (j�j ¼ 0:233); however, the SIRF was able to improve
ME scores by assimilating �1:9. In this case, since observa-
tions of soil moisture were available through the end of the
growing season, the SIRF was able to replace the ensemble
of plant state vectors late in the grain development phase
with ensemble members which had developed in conditions
similar to the truth system.

[43] Surface level soil moisture observations contained
insufficient information to improve grain weight simulationsT
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because surface soil layer parameters were independent of
root zone parameters and the root zone largely controls
water availability. In the low-stress simulations, soil param-
eters did not affect grain growth.

3.2.3. Cultivar Parameters
[44] Error in yield estimates due to uncertainty in culti-

var parameters was not mitigated by state updating for ei-
ther crop using any combination of filter and observations.
Correlations between LAI and � were high, but differences
in the kernel number and standard kernel size parameters
decoupled � from grain weight. LAI and � observations do
not inform these parameter values.

3.2.4. State Perturbations Without Stage
Timing States

[45] When states other than stage timing variables cumu-
lative development units and cumulative germination units
were perturbed, water-limited LAI was correlated with �
(j�j ¼ 0:845), however in the energy-limited environment,
it was not (j�j ¼ 0:341). In the water-limited environment,
perturbations to the root zone soil water state partially con-
trolled growth variations through the stress factor, and this
resulted in correlated LAI and �. In the energy-limited
case, LAI and � were not well correlated because the state
perturbations were independent. Thus in the water-limited
environment, LAI assimilation resulted in improved ME
score, and in the energy-limited environment, it did not.

[46] Note that �1 was not well correlated with � in either
set of simulations; however, �1:9 was correlated in the
water-limited environment. Again, this is because perturba-
tions to soil water states were independent between layers
and root zone water availability determined water stress.
�1:9 assimilation improved yield estimates in this case.

3.2.5. State Perturbations Including Stage Timing
States

[47] When perturbations to stage timing states cumula-
tive development units and cumulative germination units
were included, the water-limited LAI-� correlation was

reduced (j�j ¼ 0:845 to j�j ¼ 0:657). Differences in growth
stages between ensemble simulations accumulated through-
out the growing season and caused a gradual decrease in
cross correlation between vegetation states (not shown). In
energy-limited simulations, the correlation increased
slightly (j�j ¼ 0:341 to j�j ¼ 0:452) and the SIRF was able
to improve ME scores by assimilating LAI. In the water-
limited case, stress controlled biomass and LAI through
leaf development and dissimilar development stage transi-
tions resulted in decorrelation. In the energy-limited case,
random perturbations controlled leaf development, stem
weight, and reserves weight independently and similar de-
velopment stage transitions resulted in slightly higher cor-
related vegetation states.

3.2.6. Combined Uncertainty Sources
[48] In a full modeling uncertainty paradigm, the EnKF

and SIRF were unable to significantly improve ME scores
in any case. This is a combined result of lack in state corre-
lations caused by differences in cultivar parameters and
differences in weather controls on biomass, LAI and grain
weight.

3.3. Observation Uncertainty Experiments

[49] Results from varying error variances of synthetic
LAI and �1 observations (Table 7) suggest that even nearly
perfect observations of surface level soil moisture will not
improve single season yield estimates under reasonable
modeling uncertainty assumptions. LAI assimilation was
valuable in the water-limited simulations when the LAI
observations error standard deviation was between 0.05
and 0.30 ½m2 m�2�. The SIRF was almost always better at
assimilating LAI in the water-limited simulations, which is
likely due to the highly nonlinear nature of the CC module.

4. Discussion
[50] The purpose of this study was to identify potential

for state-updating data assimilation to mitigate error in yield
estimates due to modeling uncertainty. Results show that

Table 7. Monte Carlo Average Mean Error Scores for Combined Modeling Uncertainty Assimilations With Increasing Observation
Error Variance (Observation Error)a

Crop System
Open Loop
Mean Error

LAI �1

Observation
Uncertainty

Mean Error
Observation
Uncertainty

Mean Error

EnKF SIRF EnKF SIRF

Water limited (Swift Current) 718.7 0.01 607.6 656.9 0.001 758.9 1054.6
731.9 0.02 666.8 682.6 0.005 786.9 949.1
701.5 0.05 609.8 543.8 0.010 750.5 760.6
665.0 0.10 597.6 586.0 0.015 671.2 664.9
705.8 0.15 565.5 494.5 0.020 681.7 771.1
681.1 0.20 551.7 524.2 0.030 707.7 745.1
752.4 0.30 631.2 609.0 0.040 732.9 760.4
666.7 0.40 559.5 572.2 0.050 670.1 658.9

Energy limited (Rothamsted) 1314.1 0.01 1394.0 1528.6 0.001 1300.3 2111.5
1296.0 0.02 1321.9 1232.0 0.005 1304.0 1922.3
1360.6 0.05 1377.2 1341.2 0.010 1351.9 1865.5
1572.4 0.10 1626.2 1435.2 0.015 1594.3 1776.3
1744.9 0.15 1785.2 1278.0 0.020 1727.6 2074.9
1383.5 0.20 1397.3 1342.1 0.030 1413.2 1513.7
1454.7 0.30 1345.2 1352.5 0.040 1438.6 1353.1
1472.9 0.40 1460.0 1330.3 0.050 1419.9 1731.0

aBold values indicate a significant reduction in mean error score by assimilation (� ¼ 0.05).
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this approach was generally unable to improve yield esti-
mates under realistic uncertainty scenarios. There were
many factors which contribute to this: (1) weather inputs
affect grain and leaf growth differently meaning that similar
LAI outputs do not imply similar grain weight states, (2) that
certain cultivar parameters affect grain development directly
in a way which is independent of all other model states, (3)
that state updating often results in plant state vectors which
disagree with model (soil) parameters, and (4) that surface
level soil moisture observations did not contain sufficient in-
formation about available water and water stress. Results
suggest that in water-limited environments, LAI assimilation
would be more useful if observation error was lower than
what is currently available. This is a problem because LAI
observations will suffer from uncertainties which were not
considered in this study, namely, spatial heterogeneity in ag-
ricultural systems and discrepancies in spatial resolutions
between fields and image pixels.

[51] These findings are qualitatively similar to those
from the case study reported by de Wit and van Diepen
[2007], who used the EnKF to assimilate �1 observations
over crop land in Europe. They found improvement to win-
ter wheat yield estimates in 33 out of 88 test regions.
Although their real-world experiment was likely hampered
by mismatches in spatial resolution between agricultural
fields and remote sensing observations, as well as other
spatial factors including crop heterogeneity, we have
shown that these factors alone were likely not the reason
for poor assimilation results.

[52] This study suggests that in order to combine remote
sensing observations with agricultural models for the pur-
pose of estimating yield at single-season time scales, it will
be necessary to modify our interpretation of crop develop-
ment. Primarily, it would be interesting to investigate meth-
ods and ancillary data necessary for correlating leaf
development with grain development directly. It is likely
that the utility of soil moisture observations will be limited
to monitoring extreme events over large time scales as was
implied by Bolten et al. [2010], or for estimating irrigation
schedules and agricultural water use as was done by Wang
and Cai [2007].
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grant from the NASA Terrestrial Ecology program entitled ‘‘Ecological
and agricultural productivity forecasting using root-zone soil moisture
products derived from the NASA SMAP mission’’ (principal investigator
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SMAPSDT08-0042 (principal investigator M. S. Moran). The authors
would like to thank Cheryl Porter from the Department of Agricultural and
Biological Engineering at the University of Florida for her help acquiring
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