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M Motivation

Grid generation can be the most expensive portion of a computational analysis -
especially for complex shapes with imbedded features. Process is frequently
subjective, with user experience influencing a priori assumptions of quality.

Methods used to help ‘solve’ these problems come with their own limitations.
»Overset Grids »Unstructured Polyhedra » Automated translation/smoothing

We are interesting in using solution-driven AMR to place the expensive, grid
generation process in the domain of the solver.

Motivational problems include:
» Hypersonic flowfields with strong embedded shocks
» Turbulent flowfields and flows with unsteady, separated wakes

Our first effort in assessing AMR for us in our codes addresses:
» Understand accuracy of numerical fluxes applied to grids generated with AMR
» Begin working with model problems in order to assess performance and limitations



M Finite-Volume Method
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The finite-volume formulation effortlessly expresses
conservation over arbitrary polyhedra with a generalized
number of faces. This same flexibility allows for simple
extension to grids with hanging nodes.

Extending to a first-order time integration with split fluxes:

g =0 - TS [(F v B as

faces



M AMR Implementation

Our solver accepts a initial grid adds
successively finer representations of the grid
by replacing coarse elements with finer ones.

We have a 3-D code, but constrain refinement based on boundary conditions.

g 1-D 2-D 3-D
Original AMR AMR — | —  AMR |

Each cell is refined independently of the others. With an unstructured
framework, this seems the most obvious approach. Additional expense
associated with updating connectivity.

For this work, our refinement sensor is an undivided difference in a flow
variable across a face. Neighbors are refined if:

Pi — Pii

¢tol <



AN High-Order Spatial Fluxes

Problems of interest to ourgroup include problems that involve shock/
turbulence interaction and have proven to be sensitive to the method for
calculating the numerical flux. It is important to us that we can recover this
accuracy on grids constructed with hanging nodes.

The high-order methods require:
» Gradients of flow quantities S weighted-least squares
» Larger numerical stencils - high-order partners
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For refined high-order partners, we
use a restriction operator to calculate
scalar quantities and gradients.




AN High-Order Spatial Flux Validation e

The effect of AMR and hanging nodes on five numerical fluxes are evaluated
In this work:

» Modified Steger-Warming fluxes (0(Ax) and 0(Ax?))
» Low-dissipation Kinetic Energy Consistant (KEC) fluxes (0(Ax2), O(Ax*), and 0(Ax®))

To limit the effect of the error generated by the time advancement, a third-
order RK3 scheme was used with a CFL or 0.1.

Our test problem is a 1-D and 2-D Gaussian density pulse convecting in a

©

periodic domain.
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2-D Pulse

The error in the solution was generated by comparing the numerical results
after one cycle. The RMS error from each computational cell is weighted by
the cell volume to provide a consistent measure between adapted and
uniform grids.



1-D Density Pulse Results

Uniform Grid
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M 1-D Density Pulse Results @

Cases performed with AMR begin with an initial grid having only 10 cells.

E— T —

The initial grid is refined to the initial conditions of the density pulse and then
allowed to convect.




1-D Density Pulse Results

RMS Error
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1-D Density Pulse Results

RMS Error
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2-D Density Pulse Results

Uniform Grid
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2-D Density Pulse Results

Initial
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2-D Density Pulse Results

RMS Error
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2-D Density Pulse Results

RMS Error
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AN High-Order Spatial Flux Validation

These result indicate that it is possible to recover the accuracy desired for the
higdh—order spatial fluxes using AMR and grids that incorporate hanging
nodes.

The minimum attainable error is highly dependent on the choice of refinement
threshold. There is still ambiguity about the proper tolerance for the
refinement criteria.

» For practical problems, a generalized, automatic sensor would prove beneficial.
»We continue to study feature-based criteria and sensors based on error estimates.

Implicit Time Integration

Moving onto more practical problems, we desire implicit methods to enable
timesteps larger than the maximum stable explicit timestep (CFL=1.0).

» For steady problems, time to convergence can be reduced if larger timesteps are taken.

»Viscous problems require small cells near the wall that severely limit the maximum explicit
timestep.

Certain implicit operators can produce bias in the solution. To avoid this, we
implement Full-Matrix Point Relaxation.
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Full-Matrix Point Relaxation

For this work, we construct a block-diagonal matrix that is iteratively solved at
each timestep. The influence of the neighboring cells is relaxed and placed
on the right-hand side of the system.
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M Inviscid Double Wedge @

Shock-shock interactions are an important component in many hypersonic
flowfields. A popular model problem used to validate computation code is
the double wedge.

The flowfield exhibits characteristics found in real-world hypersonic
environments and will help us understand how AMR might contribute to
problems similar to these.

From the experience of others, we selected a test case exhibiting steady flow
with attached shockwaves.
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M Grid Generation

Previous studies under these conditions showed that 1024x1024 cells were
required in order achieve grid converged results.

We created grids with 32x32, 256x256, 512x512, and 1024x1024 in order to
aIIfow comparison between uniform and AMR grids at various levels of
refinement.

When comparing grids created by AMR from the 32x32 grid and the 512x512

uniform grid, discrepancies are evident in the region near the 15°-35° corner.

These differences have noticeable impact on the resulting solution and are
caused by our subdivision routine which subdivides cells without clustering or
smoothing.

0,=15° J ©,=35° Uniform
AMR
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M Inviscid Double Wedge Results

AMR results for this case use a combination of two criteria to refine a solution
from an initially coarse (32x32) grid.

\pi — pz‘z‘\
min(p;, Pi; )

pi — piil
min(p;, pii)

pror = 0.01 < pior = 0.01 <

Refinement was performed after the density residual had dropped five orders
of magnitude from its original value. Once the maximum number of grid
levels are obtained, it runs until convergence.

3 Levels of AMR 4 Levels of AMR 5 Levels of AMR 5 Levels of AMR
(256x256) (512x512) (1024x1024) (2048x2048)
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Inviscid Double Wedge Results
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M Inviscid Double Wedge Results

Results are promising and illustrate that the AMR method shown here can
replicate the physics seen in the inviscid shock-shock interaction.

» Predictions closely matched the analytical results in regions 1,2, and 5.

» The AMR simulations were consistent and converged to refined result as additional grid
levels were added.

There were differences between the solutions obtained on the uniform grid
and those obtained with AMR. These inconstancies are attributed to the
m?thod iIn which we subdivide, without smoothing, when performing
refinement.

One of the expected impacts of AMR is improved efficiency caused by the
reduction in the number of points required for a given simulation.

Additional cases were run that used more frequent invocation of the AMR
subroutine. We were interested in understanding if refinement frequency
greatly impacted the efficiency of the method.
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Inviscid Double Wedge Results

Cell Count Relative to Uniform Grid
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3

Inviscid Double Wedge Results

Wall Time Relative to Uniform Grid
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M Conclusions and Further Work

Grids generated using AMR with hanging nodes are compatible with high-order
fluxes created for uniform grid.

» Handling of gradients and high-order partners appears to be sufficient.
»Work is required in extending the proper refinement tolerance to more general problems.

AMR shows promise at simulating phenomena associated with problems
iInvolving shock-shock interaction.

» Drastically reduced element count and significant computational speed-up.
» Hanging nodes do not appear to be a source of error.

Future work:

» Incorporate the viscous fluxes into the flow solver

» Investigate more advanced implicit methods

» Continue to test other criteria for refinement

» Develop method for surface projection and grid
smoothing

» Parallelize by means of OpenMP and MPI to enable
more complex and three-dimensional problems
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Residual Convergence
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Residual Convergence
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