
The University of Minnesota NASA

Implementation of Adaptive Mesh Refinement in an
Implicit Unstructured Finite-Volume Flow Solver

Alan Schwing*, Ioannis Nompelis†, and Graham V. Candler‡

21st AIAA Computational Fluid Dynamics Conference
June 24-27, 2013

This work was sponsored in part by the NASA Johnson Space Center Academic Fellowship and the Defense
National Security Science and Engineering Faculty Fellowship. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of NASA, Johnson Space Center, or the U.S. Government.

∗ Graduate Student, AIAA Student Member
† Research Associate, AIAA Senior Member
‡ Professor, AIAA Fellow

https://ntrs.nasa.gov/search.jsp?R=20140000066 2019-08-29T15:16:08+00:00Z

Outline of Presentation

Motivation

Numerical Method

Review of AMR Implementation

High-Order Spatial Flux Validation

Implicit Time Advancement

Double Wedge Results

Conclusions and Future Work
2

Density

Vorticity

Motivation

Grid generation can be the most expensive portion of a computational analysis -
especially for complex shapes with imbedded features. Process is frequently
subjective, with user experience influencing a priori assumptions of quality.

Methods used to help ‘solve’ these problems come with their own limitations.
‣Overset Grids ‣Unstructured Polyhedra ‣Automated translation/smoothing

We are interesting in using solution-driven AMR to place the expensive, grid
generation process in the domain of the solver.

Motivational problems include:
‣Hypersonic flowfields with strong embedded shocks
‣Turbulent flowfields and flows with unsteady, separated wakes

Our first effort in assessing AMR for us in our codes addresses:
‣Understand accuracy of numerical fluxes applied to grids generated with AMR
‣Begin working with model problems in order to assess performance and limitations

3

Finite-Volume Method

The finite-volume formulation effortlessly expresses
conservation over arbitrary polyhedra with a generalized
number of faces. This same flexibility allows for simple
extension to grids with hanging nodes.

Extending to a first-order time integration with split fluxes:

4

The wake of the vehicle is highly sensitive to separation location and can be an unsteady phenomenon.
Separation location is influenced by a number of factors including grid resolution. Vehicle aerodynamics
and aerothermodynamic requirements are dependent on the resolution of the wake. Not only are surface
pressures and integrated loads a↵ected, but hot gas can be entrained in recirculation and drive thermal
considerations.

Wake environments are dominated by vortical structures, shear layer breakdown, and turbulence - all
unsteady phenomena. For static grid generation, unsteady structures require adequate resolution across a
large volume that encompasses the range of locations a feature may exhibit. The ability to track moving
structures and adjust the grid accordingly has the potential to greatly lower the fixed cost incurred by
clustering high resolution cells throughout the wake.

III. Computational Methodology

A. Flow Solver

The solution to the inviscid, compressible Navier-Stokes equations (Euler equations) is computed using a
finite volume scheme. In conservation law form, the compressible Navier-Stokes equations can be written as:

@U

@t

+r ·
⇣
~

F

c

� ~

F

v

⌘
= 0

where U = (⇢, ⇢u, ⇢v, ⇢w,E)T is the array of conserved variables and ~

F

c

and ~

F

v

are the convective and viscous
fluxes, respectively. ⇢ is the density, ⇢u, ⇢v, and ⇢w are the three-dimensional components of momentum,
and E is the total energy per unit volume. For the inviscid, Euler equations, ~

F

v

= 0. We will now use
~

F to indicate only the convective fluxes, ~

F

c

. The convective fluxes exhibit many important features of the
Navier-Stokes equations for high Reynolds number flows. There are well established flux formulations each
with associated levels of accuracy. Numerical time integration and handling of the non-linear terms are
important and determine the overall success of a computational approach. For this reason, recovering a
high-order, accurate representation of the convective fluxes on grids generated using AMR is important to
the authors.

Cell averaged values (Ū) are obtained using explicit and implicit numerical time integration from an
initial condition. The finite volume formulation allows for arbitrary polyhedra defined by a cell volume and
a number of bounding faces. We solve a weak form of the governing equations with these cell averaged values.
Numerical fluxes are calculated at each of the faces and by employing the divergence theorem over one such
computational cell, a discrete representation of the Euler equations can be derived. The Euler equations for
a cell with an arbitrary number of faces is:

V

@Ū

@t

+
X

faces

h
~

F · n̂S
i
= 0 or

@Ū

@t

= � 1

V

X

faces

h
~

F · n̂S
i

with V being the cell volume, S the face area, and n̂ the outward pointing unit normal to the face. This form
of the governing equations lends itself to unstructured grids. As long as su�cient connectivity exists that
links cells to their surrounding faces or vise-versa, it is independent of any defined ordering of the discrete
cells.

A useful deconstruction of the face fluxes represents ~

F as ~

F = ~

F� + ~

F+ where ~

F� and ~

F+ are upwinded
components of the total flux in the direction of the positive and negative running eigenvalues. With outward
pointing normals, as in the equation above, all of the upwinded fluxes ~

F+ depend on cell-averaged quantities
in the current cell and then sum of ~

F� depend on neighboring cells. The discrete equation representing a
first-order accurate method can be written as:

@Ū

@t

= � 1

V

X

faces

h⇣
~

F� + ~

F+

⌘
· n̂S

i

Higher-order methods can be developed by augmenting the numerical stencil used to generate ~

F+ and ~

F�
or by changing the flux deconstruction entirely. Aspect of this are briefly discussed in a following section.

Using a first-order, explicit time integration scheme between time level n and n+1, @Ū

@t

is approximated

as Ū

n+1�Ū

n

�t

. For such a scheme, the fluxes are all calculated at time level n. This method can be written as:

4 of 20

American Institute of Aeronautics and Astronautics

The wake of the vehicle is highly sensitive to separation location and can be an unsteady phenomenon.
Separation location is influenced by a number of factors including grid resolution. Vehicle aerodynamics
and aerothermodynamic requirements are dependent on the resolution of the wake. Not only are surface
pressures and integrated loads a↵ected, but hot gas can be entrained in recirculation and drive thermal
considerations.

Wake environments are dominated by vortical structures, shear layer breakdown, and turbulence - all
unsteady phenomena. For static grid generation, unsteady structures require adequate resolution across a
large volume that encompasses the range of locations a feature may exhibit. The ability to track moving
structures and adjust the grid accordingly has the potential to greatly lower the fixed cost incurred by
clustering high resolution cells throughout the wake.

III. Computational Methodology

A. Flow Solver

The solution to the inviscid, compressible Navier-Stokes equations (Euler equations) is computed using a
finite volume scheme. In conservation law form, the compressible Navier-Stokes equations can be written as:

@U

@t

+r ·
⇣
~

F

c

� ~

F

v

⌘
= 0

where U = (⇢, ⇢u, ⇢v, ⇢w,E)T is the array of conserved variables and ~

F

c

and ~

F

v

are the convective and viscous
fluxes, respectively. ⇢ is the density, ⇢u, ⇢v, and ⇢w are the three-dimensional components of momentum,
and E is the total energy per unit volume. For the inviscid, Euler equations, ~

F

v

= 0. We will now use
~

F to indicate only the convective fluxes, ~

F

c

. The convective fluxes exhibit many important features of the
Navier-Stokes equations for high Reynolds number flows. There are well established flux formulations each
with associated levels of accuracy. Numerical time integration and handling of the non-linear terms are
important and determine the overall success of a computational approach. For this reason, recovering a
high-order, accurate representation of the convective fluxes on grids generated using AMR is important to
the authors.

Cell averaged values (Ū) are obtained using explicit and implicit numerical time integration from an
initial condition. The finite volume formulation allows for arbitrary polyhedra defined by a cell volume and
a number of bounding faces. We solve a weak form of the governing equations with these cell averaged values.
Numerical fluxes are calculated at each of the faces and by employing the divergence theorem over one such
computational cell, a discrete representation of the Euler equations can be derived. The Euler equations for
a cell with an arbitrary number of faces is:

V

@Ū

@t

+
X

faces

h
~

F · n̂S
i
= 0 or

@Ū

@t

= � 1

V

X

faces

h
~

F · n̂S
i

with V being the cell volume, S the face area, and n̂ the outward pointing unit normal to the face. This form
of the governing equations lends itself to unstructured grids. As long as su�cient connectivity exists that
links cells to their surrounding faces or vise-versa, it is independent of any defined ordering of the discrete
cells.

A useful deconstruction of the face fluxes represents ~

F as ~

F = ~

F� + ~

F+ where ~

F� and ~

F+ are upwinded
components of the total flux in the direction of the positive and negative running eigenvalues. With outward
pointing normals, as in the equation above, all of the upwinded fluxes ~

F+ depend on cell-averaged quantities
in the current cell and then sum of ~

F� depend on neighboring cells. The discrete equation representing a
first-order accurate method can be written as:

@Ū

@t

= � 1

V

X

faces

h⇣
~

F� + ~

F+

⌘
· n̂S

i

Higher-order methods can be developed by augmenting the numerical stencil used to generate ~

F+ and ~

F�
or by changing the flux deconstruction entirely. Aspect of this are briefly discussed in a following section.

Using a first-order, explicit time integration scheme between time level n and n+1, @Ū

@t

is approximated

as Ū

n+1�Ū

n

�t

. For such a scheme, the fluxes are all calculated at time level n. This method can be written as:

4 of 20

American Institute of Aeronautics and Astronautics

The wake of the vehicle is highly sensitive to separation location and can be an unsteady phenomenon.
Separation location is influenced by a number of factors including grid resolution. Vehicle aerodynamics
and aerothermodynamic requirements are dependent on the resolution of the wake. Not only are surface
pressures and integrated loads a↵ected, but hot gas can be entrained in recirculation and drive thermal
considerations.

Wake environments are dominated by vortical structures, shear layer breakdown, and turbulence - all
unsteady phenomena. For static grid generation, unsteady structures require adequate resolution across a
large volume that encompasses the range of locations a feature may exhibit. The ability to track moving
structures and adjust the grid accordingly has the potential to greatly lower the fixed cost incurred by
clustering high resolution cells throughout the wake.

III. Computational Methodology

A. Flow Solver

The solution to the inviscid, compressible Navier-Stokes equations (Euler equations) is computed using a
finite volume scheme. In conservation law form, the compressible Navier-Stokes equations can be written as:

@U

@t

+r ·
⇣
~

F

c

� ~

F

v

⌘
= 0

where U = (⇢, ⇢u, ⇢v, ⇢w,E)T is the array of conserved variables and ~

F

c

and ~

F

v

are the convective and viscous
fluxes, respectively. ⇢ is the density, ⇢u, ⇢v, and ⇢w are the three-dimensional components of momentum,
and E is the total energy per unit volume. For the inviscid, Euler equations, ~

F

v

= 0. We will now use
~

F to indicate only the convective fluxes, ~

F

c

. The convective fluxes exhibit many important features of the
Navier-Stokes equations for high Reynolds number flows. There are well established flux formulations each
with associated levels of accuracy. Numerical time integration and handling of the non-linear terms are
important and determine the overall success of a computational approach. For this reason, recovering a
high-order, accurate representation of the convective fluxes on grids generated using AMR is important to
the authors.

Cell averaged values (Ū) are obtained using explicit and implicit numerical time integration from an
initial condition. The finite volume formulation allows for arbitrary polyhedra defined by a cell volume and
a number of bounding faces. We solve a weak form of the governing equations with these cell averaged values.
Numerical fluxes are calculated at each of the faces and by employing the divergence theorem over one such
computational cell, a discrete representation of the Euler equations can be derived. The Euler equations for
a cell with an arbitrary number of faces is:

V

@Ū

@t

+
X

faces

h
~

F · n̂S
i
= 0 or

@Ū

@t

= � 1

V

X

faces

h
~

F · n̂S
i

with V being the cell volume, S the face area, and n̂ the outward pointing unit normal to the face. This form
of the governing equations lends itself to unstructured grids. As long as su�cient connectivity exists that
links cells to their surrounding faces or vise-versa, it is independent of any defined ordering of the discrete
cells.

A useful deconstruction of the face fluxes represents ~

F as ~

F = ~

F� + ~

F+ where ~

F� and ~

F+ are upwinded
components of the total flux in the direction of the positive and negative running eigenvalues. With outward
pointing normals, as in the equation above, all of the upwinded fluxes ~

F+ depend on cell-averaged quantities
in the current cell and then sum of ~

F� depend on neighboring cells. The discrete equation representing a
first-order accurate method can be written as:

@Ū

@t

= � 1

V

X

faces

h⇣
~

F� + ~

F+

⌘
· n̂S

i

Higher-order methods can be developed by augmenting the numerical stencil used to generate ~

F+ and ~

F�
or by changing the flux deconstruction entirely. Aspect of this are briefly discussed in a following section.

Using a first-order, explicit time integration scheme between time level n and n+1, @Ū

@t

is approximated

as Ū

n+1�Ū

n

�t

. For such a scheme, the fluxes are all calculated at time level n. This method can be written as:

4 of 20

American Institute of Aeronautics and Astronautics

Ū

n+1 = Ū

n � �t

V

X

faces

h⇣
~

F� + ~

F+

⌘
n

· n̂S
i
= Ū

n +�Ū

with �Ū being shorthand for the explicit update to the cell-averaged value.
For a conformal grid with hexahedral cells, there are six faces to every element. By generalizing the

method using a summation over the faces of a given cell it is clear to see how this method can be extended
not only to non-hexahedral cells, but to non-conformal grids as well. It is this flexibility that is leveraged
when applying the finite-volume formulation to grids obtained with AMR.

B. Adaptive Mesh Refinement Implementation

AMR builds on a given grid and adds successively finer representations of that grid in order to reduce
truncation error and improve computational resolution. To di↵erentiate between the varying generations of
cells, those that are created by a subdivision are considered to be one ‘level’ finer than their corresponding
parent cell. This is consistent with the terminology initially laid out by Berger.1 The initial grid contains
cells of level 0. Cells created by the subdivision of a level 0 cell are categorized as level 1 cells, for example.

Grids used in this work are constrained to include only three-dimensional, six-sided polyhedra (hexahe-
drals). The hexahedral cells are generally not cubic and may have an arbitrary skewness. For hypersonic
applications, numerical error is introduced when trying to capture discontinuities using non-hexahedral
shapes.6 Also, by including only hexahedral cells, it greatly simplifies the generation of high-order numerical
flux stencils.

In a general sense, there is no limit to the number of cells that a parent cell can be divided into. An
obvious choice for subdivision is to refine a cell by reducing its size by a factor of two in each solution
direction. This is also referred to as isotropic subdivision. In a three-dimensional cell, this would equate to
dividing a cell into eight smaller cells. Depending on the skewness of a hexahedral element, these new cells
need not have equal size. Anisotropic subdivision allows for more flexibility in the generation of the grid and
is used by a number of researchers in the field.4,7, 8 It does, however, increase the complexity of the AMR
procedure and can lead to large changes in cell aspect ratio and size in localized regions.

The work presented here constrains refinement to be isotropic in each of the solution directions such that
grid density in a parent cell is doubled along each edge. Since the flow solver is written in 3-D, all cells
are hexahedrals. When running cases with boundaries that indicate 1-D or 2-D problems, the code only
subdivides the cell into the relevant directions. See Fig. 3 for an illustration of the three types of subdivision
considered.

(a) Original Cell (b) 1-D Subdivision (c) 2-D Subdivision (d) 3-D Subdivision

Figure 3. Illustration of three types of AMR subdivision from an original hexahedral cell.

Working with an unstructured grid, each cell can be refined independent of the others. This provides
a great deal of flexibility and reduces the creation of superfluous elements. Octree data structures for each
cell and face keep track of the parent child relationships and connectivity arrays are updated at the time of
cell creation. This added flexibility comes at a cost: there is a great deal of bookkeeping required in order
to handle connectivity and it must be updated every time a cell is refined or coarsened.

In addition to refining the grid, it is often necessary to coarsen as well. For unsteady problems, this
requirement is due to the physical movement of a feature that requires increased grid resolution. AMR
tracks moving features and without a mechanism for removing elements, the grid becomes cluttered with
cells that are no longer required. Steady problems can benefit from coarsening as well. With improved

5 of 20

American Institute of Aeronautics and Astronautics

AMR Implementation

Our solver accepts a initial grid adds
successively finer representations of the grid
by replacing coarse elements with finer ones.

5

We have a 3-D code, but constrain refinement based on boundary conditions.

Original 1-D
AMR

2-D
AMR

3-D
AMR

Each cell is refined independently of the others. With an unstructured
framework, this seems the most obvious approach. Additional expense
associated with updating connectivity.

For this work, our refinement sensor is an undivided difference in a flow
variable across a face. Neighbors are refined if:

resolution, features may move to a more accurate location. Unfortunately, this can cause oscillations if the
refined region was necessary in order to correctly determine flow structure.

Solution quantities are conserved during the refinement and coarsening operations. For refinement, each
of the child cells are initialized to the solution variables in the coarse parent cell. When replacing a set of
child cells with their parent cell during coarsening, the parent cell’s solution variables are overwritten with
the volume-averaged quantities from the child cells.

C. Refinement Criteria and Procedure

A simple refinement criteria is implemented in this work based on the di↵erences across grid faces. This
is a local evaluation and does not consider global e↵ects of refinement. Other methods are also popular in
the literature. Multiscale methods as originally proposed by Harten have proven successful for hypersonic
problems.9,10 Global adjoint-based refinement has also been shown to be e↵ective for a variety of flow
conditions.11,12,13 Local truncation error and residual estimates are also common.1,14 In future work, we
intend to more fully investigate some of these methods and their application for problems of interest.

This paper employs an undivided di↵erence of user-specified flow variables (⇢, u, v, w, p, T) to indicate if
there is a su�ciently large delta between adjacent cells to merit subdivision. Di↵erences indicate that there
is a variation or discontinuity in the flow that requires additional spatial resolution. In this work, di↵erences
are normalized based on cell-centered quantities.

Equation 1 shows the criteria used for refinement of a flow variable, �. Each variable may have a separate
tolerance, �

tol

. The code loops over all faces and evaluates if the tolerance is exceeded for any targeted
variable. If it is, then both neighbors are flagged for refinement. The maximum grid level is specified by
the user and cells that are already at the maximum level are still flagged for refinement, but no subdivision
is actually performed. This ensures that for physical discontinuities that would otherwise create an infinite
number of grid levels, grid sizes remain bounded to a specified resolution.

�

tol

<

|�
i

� �

ii

|
min(�

i

,�

ii

)
(1)

With a face-based unstructured numerical method, neighboring cells may be subdivided an arbitrary
number of times relative to the neighbor cell. Figure 4(a) shows an example of a cell (far-left) that contains
subcells two levels higher than the neighbor cell (the center cell). The center cell (in 2-D), now has seven
faces defining its perimeter. Such an arrangement would not impact the finite volume formulation, but
the current method seeks to avoid dramatic changes in cell sizes. To accomplish this, the code enforces
that adjacent cells not have more than one grid level di↵erence between them. The accompanying figure,
Fig. 4(b), presents an acceptable configuration.

ii

(a) Rejected refinement of face neighbors.

ii

(b) Accepted refinement of face neighbors.

Figure 4. Computational meshes with unacceptable and acceptable refinement of adjacent cells.

Also included in this work is a concept of ‘bu↵er cells’. Cells adjacent to those flagged for refinement are
also refined. This creates a region of refined cells that allow flow features to propagate over several time steps
without drifting into a coarser region of the grid. By conservatively choosing the size of this bu↵er region,
the researcher can confidently reduce the frequency at which grid quality is assessed. This will further reduce
the overhead associated with AMR, but comes at the cost of additional refinement.

When coarsening cells, the child cells are not removed from memory, but are marked as ‘blanked’ and
unused until they are ‘unblanked’ by subsequent refinement of the parent cell. This reduces the computational
requirement since unblanking is less expensive than recreating the geometry and connectivity, but it does
incur an additional memory requirement. The criterion for coarsening is simple: to coarsen the grid and
unblank a parent cell, all children of the parent must be active and cannot be flagged to refine or maintain

6 of 20

American Institute of Aeronautics and Astronautics

High-Order Spatial Fluxes

Problems of interest to our group include problems that involve shock/
turbulence interaction and have proven to be sensitive to the method for
calculating the numerical flux. It is important to us that we can recover this
accuracy on grids constructed with hanging nodes.

The high-order methods require:
‣Gradients of flow quantities
‣Larger numerical stencils

6

weighted-least squares
high-order partners

i ih ii iih
ii iih

i ih

ii iihih
i

ii iih
ih i

ii iih
ih i

For refined high-order partners, we
use a restriction operator to calculate
scalar quantities and gradients.

High-Order Spatial Flux Validation

The effect of AMR and hanging nodes on five numerical fluxes are evaluated
in this work:
‣Modified Steger-Warming fluxes (O(Δx) and O(Δx2))
‣Low-dissipation Kinetic Energy Consistant (KEC) fluxes (O(Δx2), O(Δx4), and O(Δx6))

To limit the effect of the error generated by the time advancement, a third-
order RK3 scheme was used with a CFL or 0.1.

Our test problem is a 1-D and 2-D Gaussian density pulse convecting in a
periodic domain.

The error in the solution was generated by comparing the numerical results
after one cycle. The RMS error from each computational cell is weighted by
the cell volume to provide a consistent measure between adapted and
uniform grids.

7

1-D Pulse
2-D Pulse

1-D Density Pulse Results

8

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

Uniform Distributions

1o
2o
4o
6o

Uniform MSW (1o)
Uniform MSW (2o)
Uniform KEC (2o)
Uniform KEC (4o)
Uniform KEC (6o)

Uniform Grid

Cases performed with AMR begin with an initial grid having only 10 cells.

The initial grid is refined to the initial conditions of the density pulse and then
allowed to convect.

1-D Density Pulse Results

9

Initial

t = 0 s

t = 5 s

t = 10 s

10

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

AMR (10 points, stol 1e-6)

1o
2o
4o
6o

AMR MSW (1o)
AMR MSW (2o)
AMR KEC (2o)
AMR KEC (4o)
AMR KEC (6o)

1-D Density Pulse Results

AMR Grid (ρtol = 1E-6)

1-D Density Pulse Results

11

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

AMR (10 points, stol 1e-8)

1o
2o
4o
6o

AMR MSW (1o)
AMR MSW (2o)
AMR KEC (2o)
AMR KEC (4o)
AMR KEC (6o)

AMR Grid (ρtol = 1E-8)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

Uniform Distributions

1o
2o
4o
6o

Uniform MSW (1o)
Uniform MSW (2o)
Uniform KEC (2o)
Uniform KEC (4o)
Uniform KEC (6o)

2-D Density Pulse Results

12

Uniform Grid

2-D Density Pulse Results

13

Initial t = 0 s

t = 5 s t = 10 s

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

AMR (10 points, stol 1e-6)

1o
2o
4o
6o

AMR MSW (1o)
AMR MSW (2o)
AMR KEC (2o)
AMR KEC (4o)
AMR KEC (6o)

14

2-D Density Pulse Results

AMR Grid (ρtol = 1E-6)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

R
M

S
 E

rr
o
r

Number of Cells in Uniform Grid

AMR (10 points, stol 1e-8)

1o
2o
4o
6o

AMR MSW (1o)
AMR MSW (2o)
AMR KEC (2o)
AMR KEC (4o)
AMR KEC (6o)

2-D Density Pulse Results

15

AMR Grid (ρtol = 1E-8)

High-Order Spatial Flux Validation

These result indicate that it is possible to recover the accuracy desired for the
high-order spatial fluxes using AMR and grids that incorporate hanging
nodes.

The minimum attainable error is highly dependent on the choice of refinement
threshold. There is still ambiguity about the proper tolerance for the
refinement criteria.
‣For practical problems, a generalized, automatic sensor would prove beneficial.
‣We continue to study feature-based criteria and sensors based on error estimates.

16

Moving onto more practical problems, we desire implicit methods to enable
timesteps larger than the maximum stable explicit timestep (CFL=1.0).

‣For steady problems, time to convergence can be reduced if larger timesteps are taken.
‣Viscous problems require small cells near the wall that severely limit the maximum explicit

timestep.

Certain implicit operators can produce bias in the solution. To avoid this, we
implement Full-Matrix Point Relaxation.

Implicit Time Integration

For this work, we construct a block-diagonal matrix that is iteratively solved at
each timestep. The influence of the neighboring cells is relaxed and placed
on the right-hand side of the system.

Full-Matrix Point Relaxation

17

U

Construct matrix: (ignoring boundaries)

7.1 Point Implicit

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

7.2 Point Implicit AMR

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

RHS Becomes =

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � ˆ̃Di,j@Ũi+1,j � ˆ̄Di,j@Ūi+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

5

Construct matrix: (ignoring boundaries)

7.1 Point Implicit

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

7.2 Point Implicit AMR

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

RHS Becomes =

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � ˆ̃Di,j@Ũi+1,j � ˆ̄Di,j@Ūi+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

5

Construct matrix: (ignoring boundaries)

7.1 Point Implicit

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

7.2 Point Implicit AMR

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

RHS Becomes =

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � ˆ̃Di,j@Ũi+1,j � ˆ̄Di,j@Ūi+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

5

Construct matrix: (ignoring boundaries)

7.1 Point Implicit

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

7.2 Point Implicit AMR

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

RHS Becomes =

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � ˆ̃Di,j@Ũi+1,j � ˆ̄Di,j@Ūi+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

2

666666664

. . . 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 Âi,j 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0
. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

5

RHS Becomes =

0

BBBBBBBB@

...

...

...

�Un
i,j � B̂i,j@Ui,j+1 � Ĉi,j@Ui,j�1 � D̂i,j@Ũi+1,j � Êi,j@Ūi+1,j � F̂i,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k

ˆ

Ai,j = I +

⇣
A+i,j (

˜

Si+1/2,j +
¯

Si+1/2,j)� A�i,j Si�1/2,j +B+i,j Si,j+1/2 � B�i,j Si,j�1/2

⌘

ˆ

Bi,j = B�i,j+1 Si,j+1/2
ˆ

Ci,j = � B+i,j�1 Si,j�1/2
ˆ

˜

Di,j =
˜

A�i+1,j
˜

Si+1/2,j
ˆ

¯

Di,j =
¯

A�i+1,j
¯

Si+1/2,j
ˆ

Ei,j = � A+i�1,j Si�1/2,j

7.3 DPLR (lines are in in J)

2

666666664

. . .
. . . 0 0 0 0 0

. . .
. . .

. . . 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 Ĉi,j Âi,j B̂i,j 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0
. . .

. . .
. . .

0 0 0 0 0
. . .

. . .

3

777777775

0

BBBBBBBB@

...

...

...
@Ui,j

...

...

...

1

CCCCCCCCA

k+1

=

0

BBBBBBBB@

...

...

...

�Un
i,j � D̂i,j@Ui+1,j � Êi,j@Ui�1,j

...

...

...

1

CCCCCCCCA

k / k+1

6

U

By relaxing all of the neighbors, it is easy to expand this to incorporate hanging
nodes. Â is updated to include the impact of the new face and another term is
added to the right-hand side.

Shock-shock interactions are an important component in many hypersonic
flowfields. A popular model problem used to validate computation code is
the double wedge.

The flowfield exhibits characteristics found in real-world hypersonic
environments and will help us understand how AMR might contribute to
problems similar to these.

From the experience of others, we selected a test case exhibiting steady flow
with attached shockwaves.
‣M∞ = 9.0
‣ɣ = 1.4
‣ϴ1 = 15°
‣ϴ2 = 35°

Inviscid Double Wedge

18

Grid Generation

Previous studies under these conditions showed that 1024x1024 cells were
required in order achieve grid converged results.

We created grids with 32x32, 256x256, 512x512, and 1024x1024 in order to
allow comparison between uniform and AMR grids at various levels of
refinement.

When comparing grids created by AMR from the 32x32 grid and the 512x512
uniform grid, discrepancies are evident in the region near the 15°-35° corner.

These differences have noticeable impact on the resulting solution and are
caused by our subdivision routine which subdivides cells without clustering or
smoothing.

19

Inviscid Double Wedge Results

20

 0

 20

 40

 60

 80

100

 0 0.5 1 1.5 2

p
/p
∞

Running Length [m]

p1/p∞ = 11.24

256x256
512x512

1024x1024

p2/p∞ = 79.95

Region 2

p5/p∞ = 42.14

Region 5

AMR results for this case use a combination of two criteria to refine a solution
from an initially coarse (32x32) grid.

Refinement was performed after the density residual had dropped five orders
of magnitude from its original value. Once the maximum number of grid
levels are obtained, it runs until convergence.

⇢
tol

= 0.01 <
|⇢

i

� ⇢
ii

|
min(⇢

i

, ⇢
ii

)
p
tol

= 0.01 <
|p

i

� p
ii

|
min(p

i

, p
ii

)

Inviscid Double Wedge Results

21

3 Levels of AMR
(256x256)

4 Levels of AMR
(512x512)

5 Levels of AMR
(1024x1024)

5 Levels of AMR
(2048x2048)

Inviscid Double Wedge Results

22

 0

 20

 40

 60

 80

100

 0 0.5 1 1.5 2

p
/p
∞

Running Length [m]

p1/p∞ = 11.24

256x256
512x512

1024x1024
2048x2048
4096x4096

p2/p∞ = 79.95

Region 2

p5/p∞ = 42.14

Region 5

Inviscid Double Wedge Results

Results are promising and illustrate that the AMR method shown here can
replicate the physics seen in the inviscid shock-shock interaction.
‣Predictions closely matched the analytical results in regions 1,2, and 5.
‣The AMR simulations were consistent and converged to refined result as additional grid

levels were added.
There were differences between the solutions obtained on the uniform grid

and those obtained with AMR. These inconstancies are attributed to the
method in which we subdivide, without smoothing, when performing
refinement.

One of the expected impacts of AMR is improved efficiency caused by the
reduction in the number of points required for a given simulation.

Additional cases were run that used more frequent invocation of the AMR
subroutine. We were interested in understanding if refinement frequency
greatly impacted the efficiency of the method.

23

Inviscid Double Wedge Results

24

 0.00%

 5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

500 2000 4000 6000 8000 10000

C
e

ll
C

o
u

n
t

R
e

la
tiv

e
 t

o
 U

n
ifo

rm
 G

ri
d

Refinement Interval [iterations]

Convergence

3 Levels of AMR
4 Levels of AMR
5 Levels of AMR

 0.00%

 5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

500 2000 4000 6000 8000 10000

C
e

ll
C

o
u

n
t

R
e

la
tiv

e
 t

o
 U

n
ifo

rm
 G

ri
d

Refinement Interval [iterations]

Convergence

3 Levels of AMR
4 Levels of AMR
5 Levels of AMR

Inviscid Double Wedge Results

25

 0.00%

 2.00%

 4.00%

 6.00%

 8.00%

10.00%

12.00%

14.00%

500 2000 4000 6000 8000 10000

W
a

ll
T

im
e

 R
e

la
tiv

e
 t

o
 U

n
ifo

rm
 G

ri
d

Refinement Interval [iterations]

Convergence

3 Levels of AMR
4 Levels of AMR
5 Levels of AMR

 0.00%

 2.00%

 4.00%

 6.00%

 8.00%

10.00%

12.00%

14.00%

500 2000 4000 6000 8000 10000

W
a

ll
T

im
e

 R
e

la
tiv

e
 t

o
 U

n
ifo

rm
 G

ri
d

Refinement Interval [iterations]

Convergence

3 Levels of AMR
4 Levels of AMR
5 Levels of AMR

Conclusions and Further Work

Grids generated using AMR with hanging nodes are compatible with high-order
fluxes created for uniform grid.
‣Handling of gradients and high-order partners appears to be sufficient.
‣Work is required in extending the proper refinement tolerance to more general problems.

AMR shows promise at simulating phenomena associated with problems
involving shock-shock interaction.
‣Drastically reduced element count and significant computational speed-up.
‣Hanging nodes do not appear to be a source of error.

Future work:
‣Incorporate the viscous fluxes into the flow solver
‣Investigate more advanced implicit methods
‣Continue to test other criteria for refinement
‣Develop method for surface projection and grid

smoothing
‣Parallelize by means of OpenMP and MPI to enable

more complex and three-dimensional problems

26

BACKUP

27

Residual Convergence

28

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

 0 0.0004 0.0008 0.0012 0.0016

R
e
si

d
u
a
l M

a
g
n
itu

d
e

Simulation Time [s]

256x256
512x512

1024x1024

Residual Convergence

29

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

 0 0.0016 0.0032 0.0048 0.0064

R
e
si

d
u
a
l M

a
g
n
itu

d
e

Simulation Time [s]

4096x4096
2048x2048
1024x1024

512x512
256x256

