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A novel approach of using counterflowing jets positioned strategically on the aircraft and 
exploiting its long penetration mode (LPM) of interaction towards sonic-boom mitigation forms the 
motivation for this study. Given that most previous studies on the counterflowing LPM jet have all 
been on blunt bodies and at high supersonic or hypersonic flow conditions, exploring the feasibility 
to obtain a LPM jet issuing from a slender body against low supersonic freestream conditions is the 
main focus of this study.  Computational fluid dynamics computations of axisymmetric models 
(cone-cylinder and quartic geometry), of relevance to NASA’s High Speed project, are carried out 
using the space-time conservation element solution element viscous flow solver with unstructured 
meshes. A systematic parametric study is conducted to determine the optimum combination of 
counterflowing jet size, mass flow rate, and nozzle geometry for obtaining LPM jets. Details from 
these computations will be used to assess the potential of the LPM counterflowing supersonic jet as 
a means of active flow control for enabling supersonic flight over land and to establish the 
knowledge base for possible future implementation of such technologies.  

Nomenclature 
d j  = Jet exit diameter 
dm  = Model diameter 
e  =  Total energy 
f  = Frequency 
f  = Flux vector 
F,  G  = Components of flux vector  
h  = Flux vector in space-time domain  
L  =    Length 
Lp  =    Jet Penetration length 
M j  = Counterflowing jet nozzle Mach number 
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M∞  = Freestream Mach number 
p  = Pressure 
pamb  = Static pressure outside the nozzle exit 
p j  = Static pressure of the jet at the nozzle exit plane 
p∞  = Freestream static pressure 
P0  = Total pressure of freestream 
P0 f  = Total pressure at free stagnation point 
P0 j  = Total pressure of counterflowing jet 
t  = Time  
u,  v  = Cartesian velocity components 
U  = Conserved flow variable vector 
V  = Space-time region 
x,  y  = Cartesian coordinates 
γ  = Ratio of the specific heat 
ρ  = Density 
 

I. Background and Introduction  
Sonic boom, a result of the shock systems created by supersonic (and hypersonic) vehicle flights coalescing into N-

waves at large distances, has long been a barrier for supersonic flight over land given its environmental impact. This 
constraint has had severe economic consequences for the aviation industry (both business jets and large commercial 
supersonic transports), as well as military implications. Although the theory of sonic boom1-3 as well as the methods for its 
prediction4-6 has been well established, the target of achieving low boom signals still seems elusive. Sonic boom 
minimization has remained an active area of research since the 1960’s building upon Whitham’s theory1 (the formulation of 
the “F-function” that correlated the pressure signature in the flowfield about a body of revolution to its geometric shape) 
that emphasized the need to design supersonic aircrafts as long and slender in shape, and lighter in weight. These research 
efforts could be classified into two main categories: (i) aircraft configuration studies that focused on deducing optimum 
shapes that led to smaller over-pressure and impulse; and (ii) use of external force/heat to alter the flowfield around the 
aircraft to achieve a pressure signature with smaller shock-strength and finite-rise time. Some of the key results that came 
out of the former include: (a) the study by Jones7 which showed that a delta function was the optimum near-field signature 
to reduce sonic-boom at large distances; (b) the study by Maclean8 that indicated the possibility of avoiding the formation of 
N-waves at the ground level by flying the large supersonic aircrafts at moderate altitudes and that the midfield boom 
signatures (which can be tailored by shaping of the aircraft) persisted at distances far below; and (c) the theory developed by 
George and Seebass9 for minimizing the front and rear shocks which remains the cornerstone of low-boom configuration 
studies. The study by Miller and Carlson10 explored the possibility of altering the flowfield around an aircraft, for obtaining 
a pressure signature with finite rise-time, by utilizing external heat/mass addition to create a long, well-shaped phantom 
body that envelops the aircraft. The conclusion of their study was that such an idea would necessitate power requirements 
that is at least twice of that needed to sustain a steady flight, even if one considered the system required to achieve 
heat/mass addition to be weightless. This conclusion dampened further investigation into the idea of phantom bodies. 
NASA’s High Speed project and DARPA’s Quiet Supersonic Platform program instituted in recent years has rejuvenated 
sonic-boom mitigation studies. These programs have led to significant experimental and computational studies that have 
pushed the art of supersonic vehicle technology further. However, no commercial supersonic aircraft has been developed 
since the retirement of the Concorde, primarily due to unacceptable sonic-boom levels and low energy efficiency. In this 
regard, recent efforts on the Quiet SpikeTM by Gulfstream11 and that of the supersonic bi-directional flying wing12 from the 
University of Miami, holds promise. For more details on the history of the sonic-boom research and the unsolved problems 
in the area, refer to the excellent review article by Plotkin and Maglieri.13 

 The current study focuses on the novel approach of using supersonic counterflowing jets positioned strategically 
on the nose of the aircraft, for sonic-boom mitigation by exploiting the long penetration mode (LPM) of the jet.  Previous 
studies14-17 have demonstrated the ability of LPM counterflowing jets to significantly alter the flowfield around a 
hypersonic/supersonic blunt-body vehicle and reduce the strength of the bow-shock or disperse it.  Although this idea of 
using an external flowfield seems similar to the effort described by Miller and Carlson,10 the LPM counterflowing jets 
interact in a more complex manner (to be described in detail later) than a simple heat/mass addition, thereby having the 
potential to alter the flowfield around an aircraft in a significant manner. Furthermore, the possibility of developing an 
active flow-control system around this concept makes it even more promising for sonic-boom mitigation.  Incorporating 
such a system into an already shape-optimized, low-boom configuration might be the key to overcome the limitations that 
has been haunting this field. As mentioned, since most studies on counterflowing jets have been on blunt bodies in 
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hypersonic/high supersonic flow regimes, in this study, we hope to numerically investigate the potential to obtain LPM jets 
on slender bodies and at low supersonic speeds. The numerical method used in the current study is the space-time 
conservation element, solution element (CESE) method,18 a time-accurate numerical framework for unstructured meshes 
designed to enforce strong flux conservation and capture shocks without adhoc numerical tuning. The ability of the CESE 
method to correctly predict the existence of LPM jets, as well as its behavior, has been demonstrated in our previous 
studies.16,17 The overall objectives of this initial phase of this research are to (i) investigate the existence of LPM jet 
interaction for slender bodies of interest22,23 (cone cylinder and quartic geometry) at Mach 1.6 through the use of 
computational fluid dynamics (CFD); and (ii) conduct parametric study (axisymmetric CFD computations) to determine 
optimum combination of counterflowing jet size, mass flow rate and nozzle geometry for obtaining LPM interaction. The 
actual impact on the boom-signature of these slender bodies in the presence of LPM jets and their comparison against 
available data22,23 will form the second phase of this research.  
 
 

 
(a) Short Penetration Mode: Features of the stable flowfield for a central nozzle configuration. 

 
(b) Long Penetration Mode: Features of an unstable flowfield for a central nozzle configuration 

Figure 1. Flowfield structure characterization for a jet issuing from a central nozzle against a supersonic freestream. 

II. The LPM Concept 
 Prior studies24,25 on counterflowing jets (supersonic) issuing from a central nozzle located on the nose of a blunt-

body into a supersonic freestream, indicate two modes of jet interaction, namely the short penetration mode (SPM) and the 
LPM. A strong bow shock, a jet terminal shock, a free stagnation point, and a recirculation region characterize the SPM as 
shown in Fig. 1(a). Here, the jet does not penetrate into the bow-shock and results in a stable flowfield configuration. SPM 
is observed for jets operating with large jet pressure ratios (large mass flow rates). Operating the jet under pressure 
conditions slightly larger than the nozzle design conditions results in what is known as the LPM jet. The LPM is an unstable 
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flowfield characterized by the familiar diamond-pattern jet plume that penetrates into the bow-shock, as shown in Fig. 1(b). 
When the jet, issuing from the nozzle, penetrates the bow shock, the shock standoff distance becomes significantly higher 
than that found in flows without significant shock penetration (e.g., a SPM jet or a no-jet case) and the shock strength 
decreases. The ability of the LPM to disperse and weaken the bow shock has been confirmed experimentally15 as well as 
computationally,17 as can be seen from Fig. 2. LPM jets, however, only exist for a narrow range of conditions beyond which 
the jet switches into SPM.  

The differences in the flow structures between SPM and LPM can be attributed to the difference in the ratio of the static 
pressure of the jet at the nozzle exit plane and the ambient static pressure outside the nozzle exit ( p j / pamb ). A jet with 
p j / pamb > 1 is characterized as an under-expanded jet, while for p j / pamb >> 1 , the jet is said to be highly under-

expanded. In a slightly under-expanded jet, as the flow expands into the ambient gas with low-pressures, expansion fans are 
created at the nozzle exit. The free jet boundary reflects these expansion fans as compression waves, which then coalesce to 
form an incident shock. The incident shock (see Fig. 1(b)) then undergoes a regular reflection (without forming a Mach 
disk) at the jet axis. The resulting diverging shock, once again, interacts with the jet boundary creating another incident 
shock and the process repeats resulting in the familiar diamond shock-cell structure. The consecutive deceleration by the 
shock cell slows down the jet plume until it stagnates at the free stagnation point.  At this point, the jet plume meets the 
post-normal shock flow near the centerline, with both their total pressures reaching a value of bow shock flow at P0 f . A 
normal shock occurring in the decelerating region of a flow is understood to be unstable. The LPM jets belong to this class; 
the under-expanded jet adjusts itself to get the terminating normal shock to end up in the accelerating flow region. In the 
case of the highly under-expanded jet, the incident shock forms a Mach disk, instead of undergoing a regular reflection at 
the jet. The Mach disk allows for a quick deceleration of the supersonic jet, helping it to come into equilibrium with the 
ambient flowfield.  Moreover, since this normal shock remains within the accelerating region of the jet, the flow remains 
very stable.  

 

Experiment15 
(Schlieren) 

  

CFD17 
(Density 
gradient) 

 
 

 SPM LPM 

Figure 2. Contrasting SPM against LPM jets. 

  Given this ability of the LPM jet to weaken the bow-shock, it generated an interest to investigate its ability in 
sonic-boom mitigation. To explore that potential, time-averaged pressure signatures were extracted from numerical studies17 
at a certain distance away from the blunt-body surface (see Fig. 3(a)), for the cases of (i) without jet, (ii) with LPM jet, and 
(iii) with SPM jet. As can be seen from Fig. 3(b), the normalized pressure disturbance signatures for the no jet and SPM jet 
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cases indicate a sharp discontinuity, similar to the pressure signatures obtained from supersonic aircraft. Such a pressure 
signature is usually responsible for leading portion of the N-wave causing sonic boom. In contrast, the LPM’s pressure 
signature is devoid of any sharp discontinuities and consists of a series of ramps in pressure. The LPM jet’s notional ground 
signature (provided by Kenneth Plotkins of Wyle Laboratories, VA) was obtained using PCBoom27 to propagate the 
pressure signature 35,000 ft under the assumption of a Mach 1.4 flow, after adopting the following steps: (i) the LPM jet’s 
pressure signature was appropriately scaled in amplitude to the appropriate pressure levels of that of a low boom aircraft and 
was also scaled in length; (ii) closure ramp was added to the end of the pressure signature to account for the expansion 
region and bringing the pressure levels to that of freestream conditions. Fig. 4 shows the notional ground boom signature for 
the LPM jet, with and without rounding by atmospheric absorption. This signature is similar to some of the favorable 
pressure signatures sought after by the sonic-boom mitigation community.  
 

 

 

(a) Indication of the off-body location at which the pressure 
disturbance signature is obtained. 

(b) Normalized pressure-disturbance signature at the 
indicated location for the conditions of no-jet, SPM 
and LPM jets. 

Figure 3. Pressure disturbance signature and its extraction details for the case of a blunt-body with counterflowing 
jets. 

 

  

(a) Ground boom signature without smoothing from 
atmospheric absorption. 

(b) Ground boom signature with smoothing from 
atmospheric absorption. 

Figure 4.  Notional ground boom-signature of the LPM jet. 
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III. Space-Time CESE Method 
 

To capture the physics faithfully and efficiently, the high-resolution, genuinely-multidimensional space-time 
CESE18 framework solves the original integral form of the conservation laws rather than the differential form. The method 
is built around the concept of treating space and time synergistically and conserving fluxes in both space and time. The 
space-time CESE framework is unique for several reasons: (i) space and time are unified and treated as a single entity; (ii) 
local and global space-time flux conservation is enforced; (iii) no dimensional-splitting approach is used, resulting in a truly 
multidimensional scheme; (iv) both the conservative flow variables and its spatial derivatives are treated as dependent 
variables; (v) a space-time staggered stencil is used such that fluxes at the cell interfaces can be evaluated without solving 
the Riemann problem; (vi) schemes are built from non-dissipative (space-time inversion invariant) core schemes which 
allows for efficient control of numerical dissipation; and (vii) it is naturally compatible with unstructured triangular and 
tetrahedral meshes. To date, the CESE based solvers have been utilized to solve a variety of problems including inviscid 
acoustic waves, traveling and interacting shocks, detonation waves, and cavitation flows.19 – 21 

To bring out the clear conceptual difference between conventional CFD algorithms (finite-difference and finite-
volume methods) and the CESE framework, consider the differential form of a conservation law in multiple spatial 
dimensions that is given by 

 
∂U
∂t

+∇⋅ f (U) = 0  (1) 

where U is the conserved variable, f (U) is its spatial flux vector, and the symbol ∇⋅ denotes the divergence operator in the 
spatial domain. Finite-difference schemes model only the differential form of Eq. (1). Note that a set of physical 
conservation laws, in their original form, is a collection of flux conservation equations in space-time. These conservation 
laws are represented by a set of integral equations. The differential form of these laws is obtained from the integral form 
using an extra assumption that the physical solution is smooth. Consequently, by modeling only the differential form, finite-
difference schemes, in general, lack the capacity to capture solution discontinuities and to ensure flux conservation. In an 
attempt to capture physics more accurately, conventional finite-volume schemes model the flux-balance form of Eq. (1) 
over a fixed spatial domain, i.e., 

 d

dt
U dV

V
∫ = −  f (U)• ds

S(V )
∫  (2) 

where S(V) is the boundary of a spatial control volume, V, and directional elemental area, d s = dσ n  with dσ  representing 
the area and n  the outward unit normal vector of a surface element on S(V). Eq. (2) essentially states that the rate of 
increase of the total amount of a conservative substance contained in a fixed spatial domain V is equal to the net flux of that 
substance entering the boundary of V. Finite-volume methods concentrate on evaluation of the right hand side of Eq. (2), 
and the left hand side of Eq. (2) is usually discretized by finite-differencing, such as the Runge-Kutta method. Thus, there is 
a clear distinction in the way the temporal and spatial derivatives of Eq. (2) are treated in a conventional finite-volume 
scheme.  

 

Figure 5. An arbitrary space-time region V in E3. 

 
Consider a special case of Eq. (1) with two spatial dimensions. Let x- and y- be the spatial coordinates and F and G be 

the flux components of the flux vector f (U)  in the x- and y-directions, respectively.  Let (x, y, t) be the coordinates of a 
three-dimensional Euclidean space, E3, shown in Fig. 4, and let the symbol ∇⋅ denote the divergence operator in the space-
time domain E3.  Then, Eq. (1) reduces to 
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∇ ⋅h ≡

∂U
∂ t

+
∂F
∂x

+
∂G
∂y

= 0  (3) 

where h = (F,G,U)  is the space-time flux vector. If the Navier-Stokes equations are solved as the governing equations with 
perfect gas flow assumption, then U is defined as U = (ρ, ρu, ρv, e), where the flow variables ρ, u, v, and e represent density, 
two velocity components, and total energy (defined as e = p /(γ −1) + ρ(u2 + v2) /2 , where p denotes the pressure), 
respectively. The flux vectors F and G include both the inviscid (Euler) and the viscous parts.  Invoking Gauss’s divergence 
theorem in E3, Eq. (3) can be expressed in the following integral form: 

  h ⋅ds
 S(V )∫ = 0  (4) 

S(V) is the boundary of an arbitrary space-time region V (see Fig. 2) in E3.  Because  h ⋅d s  is the space-time flux of  h  
leaving the space-time region V through the surface element ds , Eq. (4) simply states that the total space-time flux of  h  
leaving V through its boundary vanishes, i.e., the rigorous statement of the space-time flux conservation law associated with 
Eq. (3). Unlike Eq. (2), the form presented in Eq. (4) treats both the temporal and spatial terms of Eq. (1) in a unified 
manner. This is a crucial difference that, at the conceptual level, separates CESE schemes from the conventional finite-
volume schemes. More details on CESE schemes can be obtained from Refs. 18 and 26. 

IV. Test Geometries and Flow Conditions 
 Because of its interest to the High Speed project under NASA’s Fundamental Aeronautics Program (FAP), all the 
studies for this effort have been carried out on an 8.6-inch long 6.48-degree (full-angle) cone cylinder and a 2-inch long 
quartic geometry (see Fig. 6), described in Refs. 22 and 23, respectively. The flow condition tested in this initial round of 
study was that of a Mach 1.6 flow at an altitude of 45,000 ft and zero angle of attack. This corresponds to a static pressure 
of 0.1462 atm, a static temperature of 216.65° K, and a unit Reynolds number of 7.912x106 /m.  
  

 

 
                               (a) Cone-cylinder geometry.                                            (b)  Quartic geometry. 

Figure 6.  Baseline geometries. 

 

 
 

(a) Truncated cone-cylinder with nozzle. (b) Quartic geometry with nozzle. 

Figure 7. Modified geometries with nozzle included. 

 To facilitate shooting a counterflowing jet from the body’s nose, some modifications needed to be performed to the 
cone-cylinder geometry - the cone-cylinder was truncated by 1-inch at the nose to accommodate the nozzle from which the 
jet issues. No major modification was needed for the quartic geometry. Fig.7 shows these final modified geometries with the 
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nozzle in place. Contoured nozzle designed for an earlier study15 with jet exit number of Mach 2.94 was predominantly used 
in this study, by scaling it appropriately to facilitate its placement into the geometry of interest. The exact sizing of the 
nozzles utilized will be given in the subsequent section. The nozzle inlet was assumed to be connected to a reservoir 
chamber at stagnation conditions of 300° K and that its pressure was varied according to the desired jet pressure and its 
corresponding mass flow rate. 

V. Computational Details 
Given that the focus of these studies lies in gaining a better understanding about the existence of LPM jets in slender 

bodies and at low supersonic flow conditions, the computational domain shown in Fig. 8 encompasses only the near-field 
region, unlike many other sonic-boom prediction studies28 focusing on these geometries.  Use of such a small computational 
domain also permits one to cost-effectively conduct the multiple CFD computations needed in a parametric study. Also, for 
these two baseline geometries, most prior studies28 have been Euler computations, with focus on mesh adaptation 
techniques to capture the farfield pressure signature. With the LPM jet being the focus in this work, viscous effects are very 
important. Through previous studies on the counter-flowing jets,16, 17, 29-32 we have understood that capturing LPM jets 
requires an extremely fine mesh; the precise requirement will be given in the next section.  As a result, we devote one 
region of the mesh towards this, denoted as the jet flow region in Fig, 8, where the cells remain almost uniform in cell size. 
This region extends several nozzle exit-diameter lengths away from the nose of the body. Away from this region, the mesh 
still needs to be fine enough to predict the propagation of the pressure-disturbances arising from the jet, but not as fine as 
the jet flow region.  

All the computations have been carried out with the CESE-based18 Navier-Stokes code — ez4d,26 by using unstructured 
meshes with the assumptions of a laminar axisymmetric flow.  The jet Reynolds number (based on the nozzle exit diameter 
and the flow conditions there) for the all the cases computed was in the range 10,000 – 30,000. As per the experimental 
study by McLaughlin et al.,33 this falls under the low-to-moderate Reynolds number range where the flow was found to be 
in laminar or transitional regime.  Hence, the laminar flow assumption made here is reasonably justified. The boundary 
conditions employed are shown in Fig. 8. 

 
 

 
Figure 8. Computational domain and boundary condition details. 

In an attempt to estimate the needed grid resolution requirements and to demonstrate the importance of the mesh 
within the jet flow region, computations were done on a sequence of meshes for the truncated cone-cylinder geometry. The 

nozzle used in these studies had an exit diameter of 0.025in ( d j /dm ≈
1

4
). The total pressure of the jet was assumed to be 

9.0 atm, corresponding to a nozzle pressure ratio (NPR) of 61.5, whereNPR = P0 j / p∞ .  
The coarse mesh had triangular cells with near-wall spacing of 1x10-4 in. (2.54x10-6 m) near the nozzle walls and 

nozzle exit region, which quickly coarsened into isotropic triangles with edge lengths of 1.5x10-3 in. (3.8x10-5 m) in the jet 
flow region, resulting in approximately 273,000 cells in the jet flow region. The second mesh had a near-wall spacing of 
5x10-5 in (1.27x10-6 m) that gradually coarsened into cells with edge lengths of 8x10-4 in. (2.03x10-5 m) in the jet flow 
region, resulting in approximately 419,000 cells in the jet flow region. The fine mesh had a total of approximately 784,000 
cells in the jet flow region, with a near-wall spacing of 5x10-5 in (1.27x10-6 m) that gradually coarsened into cells with edge 
lengths of 6x10-4 in. (1.5x10-5 m) in the jet flow region. For comparison purposes, an estimation of y+ = 1 (non-dimensional 
near wall spacing) based on freestream conditions amounts to a grid spacing of approximately 1x10-4 in. (2.54x10-6 m).    
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(a) Coarse mesh results (~273,000 cells). 

  
(b) Medium mesh results (~419,000 cells). 

  
(c) Fine mesh results (~784,000 cells). 

Figure 9. Influence of mesh on jet development. Instantaneous Mach contours are shown on the left and the close-up 
view of the mesh near the nozzle exit is shown on the right. 

As can be seen from Fig. 9, when the mesh quickly coarsens in the jet flow region, the jet appears to wrongly settle 
into the SPM, indicating a mixing enhancement due to numerical dissipation. This happens despite the near-wall spacing 
being y+ = 1. Although not shown here, a mesh with near-wall mesh spacing y+ = 5 was also tested and that also indicated a 
jet settling in to SPM. As indicated by the medium and fine mesh results, one is able to capture the LPM jet with a smaller 
disparity across cell sizes in the critical region. This indicates the need for a uniform cell-size distribution within the jet flow 
region, so that one can capture the highly unsteady jet-shear layer found in LPM jets.  The time-averaged jet penetration 
lengths from the computations done using the medium and fine mesh are almost equal (although the results shown here are 
at slightly different time instances, causing a small difference in the penetration lengths), indicating grid convergence of the 
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solution. Given that a wide range of pressure conditions need to be tested in the parametric study, the fine mesh was utilized 
throughout. A mesh with similar grid resolution was used in the study of quartic geometry also.  

VI. Parametric Studies  
 In an attempt to understand the ability to achieve LPM jets issuing from slender bodies at low supersonic speeds, 
some key parameters, indicated by earlier studies on counterflowing jets,25, 34-36 were explored. Results from those studies 
form the crux of this section.  

A. Influence of Nozzle Exit-to-body Diameter Ratio 
Given that the primary motivation is to make the LPM jet push the leading shock as far away from the body as 

possible, thereby weakening it and creating a more favorable pressure signature that would mitigate the sonic boom, it is 
expected that the mass flow rate of the jet would play a key role. To determine the optimum nozzle size, nozzle of two 
different exit diameters, obtained by scaling the baseline nozzle geometry, were tested for the truncated cone-cylinder and 
quartic geometries.  
 

  
(a) d j /dm ≈ 1/2 (SPM). (b) d j /dm ≈ 1/4  (LPM). 

Figure 10. Influence of nozzle size on jet development for cone-cylinder geometry for NPR 61.5 (Mach contours are 
shown). 

 
Nozzles with exit diameters 0.025 in. ( d j /dm ≈ 1/4 ) and 0.05 in. ( d j /dm ≈ 1/2) were tested for the truncated 

cone-cylinder geometry. These two nozzles were tested for a wide range of jet total pressures: 2.0 – 15.0 atm (NPR: 13.5 – 
102.5). Computational results indicated that one was able to obtain SPM jets alone with the d j /dm ≈ 1/2 nozzle, while it 
was feasible to achieve LPM jets with the d j /dm ≈ 1/4  nozzle. As can be seen from Fig. 10, for similar jet conditions 
( P0 j = 9.0 atm), the d j /dm ≈ 1/2 nozzle provides an SPM jet while one obtains an LPM jet with the smaller nozzle. 

Given the sharp curvature near the nose of the quartic-geometry, the largest nozzle that one could fit without 
significantly altering the baseline geometry, corresponded to a nozzle with exit diameter 0.0282 in. ( d j /dm = 1/8). The 
second nozzle chosen for the study was sized to have an exit diameter of 0.0141 in., so as to give a d j /dm = 1/16 . The 
pressure ranges studied here were similar to that of the truncated cone-cylinder case. Here again, it was found that we were 
unable to establish an LPM jet with the d j /dm = 1/8 nozzle; but it was easier to achieve LPM jets with the d j /dm = 1/16  
nozzle. Fig. 11 shows the nature of the jets obtained with these two nozzles for jet total pressures of 6.0 atm (NPR = 41.0) 
and 9.0 atm (NPR = 61.5). 
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d j /dm = 1/8 

  

d j /dm = 1/16  

  

 P0 j = 6.0 atm P0 j  = 9.0 atm 

Figure 11. Influence of nozzle size on jet development for quartic geometry. 

 
Based on the results for the two geometries, the smaller the d j /dm  ratio, the easier it is to establish LPM jets. A 

careful investigation of the computed streamline patterns shown in Fig.12, indicates that the ability to establish a dynamic 
recirculation region of considerable size above the nozzle exit region, is vital for the development of LPM jets. The shear 
layer that encompasses this recirculation region  can be divided into a part that flows over the top of the body and a part that 
flows down the frontal area (the region above the nozzle exit). A smaller d j /dm  ratio allows relatively more flow in the 
frontal area, thereby carrying more momentum downstream of the jet. A consequence of this is that the reattachment point 
becomes dynamic, thereby weakly altering the pressure in the region above the nozzle exit, leading to unsteady LPM jet 
behavior. 

To understand this behavior pattern, a few probes were placed in the region above nozzle exit region, the 
recirculating flow region and near the jet shear layer (see Fig.13). Shown in Fig. 13 is the spectrum of the data collected at 
some of these probes for the quartic geometry. The data for the d j /dm = 1/8 nozzle was for a jet with P0 j  = 6.0 atm, while 
that for the d j /dm = 1/16  nozzle was for a jet with P0 j  = 10.0 atm, corresponding to a condition at which the peak jet 
penetration distance was obtained. Approximately 100,000 data points were used in computing the spectrum for each of 
these cases. 
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(a) Truncated cone-cylinder geometry. 

  
(b) Quartic geometry. 

Figure 12. Recirculation pattern for different d j /dm  ratios. 

 
As seen from Fig. 13, the frequency spectrum of the SPM jet, obtained with the d j /dm = 1/8 nozzle, has a distinct 

and dominant peak at around 100 kHz. This distinct peak is the result of a small jet stream emanating in the region where 
the jet shear layer meets the Mach disk. This jet stream oscillates periodically, affects the curvature of the shock (shock 
standoff is unaffected), and also periodically impinges onto the body, a phenomenon well documented in studies on the 
SPM jet.24 On other hand, the probe placed in the recirculating flow region for the d j /dm = 1/16  nozzle exhibits a 
broadband spectrum. The recirulating flow region here is constantly growing and shrinking in size, and is reflected in the 
broadband nature of the spectrum. An outcome of this dynamic behavior of the recirculating region, is the unsteady 
behavior of the jet itself. The probe placed near the jet shear layer seems to exhibit  a dominant peak at around 47 kHz, 
which is also found amongst the data collected in the probe just above the nozzle exit and one in the recirculation region. 
This is probably indicative of the close relation between the conditions outside the nozzle exit and how that determines the 
jet evolution. The instability wave spectra appear to be quite similar for probes near the nozzle lip and in the recirculating 
flow region.  The two dominant peaks are at 47 and 58 kHz.  Further downstream in the shear layer, only 47 kHz retains its 
energy.  In contrast to the SPM dominated flows for the larger nozzle size,  several discrete peaks are present when the LPM 
is at work.  These multiple discrete modes are the direct outcome of the shock cell flow structures downstream of the jet for 
the LPM.  The instability wave development downstream of the jet indicates the importance of the disturbances spectra near 
the nozzle exit.  It also implies that proper instability wave control techniques such as mass injection could be used to 
promote LPM for long slender body configurations. 
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Figure 13. Probe data analysis comparison for two d j /dm ratios (quartic geometry). 
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A. Influence of Jet Total Pressures 
 The existence of a range of pressures at which the LPM jet regime can be established offers some flexibility in 

case the free-=stream condition changes continuously. This aspect could become important, especially during vehicle 
acceleration/deceleration at supersonic speeds. As a result, this part of the study dealt with establishing pressure ranges at 
which LPM jets can be found for each of these slender bodies.  

All nozzles ( d j /dm  = 1/2 and 1/4 for truncated cone-cylinder and d j /dm  = 1/8 and 1/16 for quartic geometry) 
were investigated for a wide range of pressures to identify pressure ranges within which LPM was found to exist. As was 
already established in the previous section, it was difficult to achieve LPM with the d j /dm  = 1/2 nozzle for the truncated 
cone-cylinder geometry and with the d j /dm  = 1/8 nozzle for the quartic geometry, for any range of jet pressure. For the 
d j /dm  = 1/4 nozzle, it was found that one was able to achieve LPM jets in the truncated cone-cylinder for NPR’s varying 
from 30.0 to 75.0. As for the quartic geometry with the d j /dm = 1/16 nozzle, LPM was found for NPR lying between 30.0 
and 80.0. For NPR’s below these limits, the jet operates either in a mode that oscillates between overexpanded behavior and 
SPM due to lack of momentum in the jet or was  found to be operating below nozzle design conditions, which is not 
recommended.  As was observed for the case of a blunt body17, the penetration lengths of the LPM jet varied with the NPR, 
reaching a maximum somewhere towards the end of the range. Fig. 14 shows this variation in jet penetration depth (non-
dimensionalized by nozzle exit diameter) for the quartic geometry with d j /dm  = 1/16 nozzle. Given the small size of the 
nozzle exit, the jet penetrations lengths obtained is significantly smaller when compared to the length of the quartic body. 
From  Fig. 14, it can also be seen that the mass flow rate of the jet is relatively small, indicating that relatively small system 
penalties are required if the LPM jet interaction is to be implemented in an actual flight system. A more thorough study in 
terms of system design needs to be done to confirm these early results.  

 

 
Figure 14. Variation in jet penetration length (shock displacement) with jet pressure ratios, for a quartic geometry 
with the d j /dm = 1/16 nozzle (Mj = 2.94). 

B. Influence of Nozzle Divergence Angle 
As part of the parametric study, the influence of the nozzle geometry, nozzle divergence angle to be specific, was 

also studied utilizing the quartic geometry. The contoured nozzles used in the initial study were replaced with converging-
diverging nozzles designed to provide the same jet Mach number (2.94) while retaining the same nozzle exit diameter to 
baseline body diameter ratio (1/16). Nozzles with three different semi-divergent angles (7.5°, 15°, and 30°) were 
investigated in this study by using a jet with P0 j  = 9.0 atm (NPR = 61.5). As can be seen from Fig. 15, there is not much 
difference in jet development between the computations utilizing the 7.5° and 15° semi-divergent angle nozzles, with both 
LPM jets having similar penetration lengths. However, with the 30° semi-divergent angle nozzle, the jet settles into SPM. 
The reason for the transition into SPM could be explained as follows. The high-pressure jet, as it leaves the nozzle exit, tries 
to quickly expand to match the ambient pressure conditions surrounding the nozzle exit. A large divergent angle nozzle, 
allows the jet to do so, without needing to alter its flow direction too much. Then, as the jet boundary gets deflected back 
towards the axis of the flow, due to constant pressure at the jet boundary, the resulting compression waves coalesce to form 
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shocks that undergo Mach reflection (instead of regular reflection at the jet axis) due to the large incidence angle. These 
observations are in line with previous studies36 that have explored the effect of divergence angle of the nozzle on the 
development of a jet exhausting into a static atmosphere. Those studies concluded that the effect of nozzle divergence angle 
on jet development is very small for semi-divergent angles up to 20°.  One other observation that could be made from this 
study was that, use of contoured nozzle resulted in slightly longer jet penetration length than the converging-diverging 
nozzle, for the flow condition tested.  
 

   
(a) 7.5 degree (b) 15 degree (c) 30 degree 

Figure 15. Influence of nozzle expansion angle on jet development (Mach contour, Mj = 2.94, NPR = 61.5). 

VII. Preliminary Farfield Pressure Signature Comparison  
 With the initial feasibility study on ability to establish LPM jets for slender bodies in a low supersonic flow conditions 
having been completed, the remaining part of the research is the vital aspect of evaluating the effect of LPM jet interaction 
on sonic-boom mitigation, by comparing farfield pressure signature against available experiments. That aspect brings with it 
a unique challenge. Previous computational studies28 for sonic-boom prediction of these geometries have all been Euler 
computations and have emphasized the need for specialized mesh generation or mesh-adaptation techniques for accurately 
capturing the propagation of the boom signature away from the body of interest. However, with viscous effects being 
tremendously important for capturing the LPM jet and given the fact that the dimensions of the nozzle from which the jet 
issues from is very small compared to distances at which experimental data is usually available, it imposes a unique 
challenge to meet the mesh requirements imposed by the viscous effects and that of capturing boom-propagation. 
Additionally, with our current flow solver of choice not having any in-built solution-based mesh adaptation capability, this 
imposed some additional constraints. As a result, in order to identify the needed mesh requirements for our solver of choice, 
an Euler computation was done for the baseline geometry of cone-cylinder. The mesh was generated by manually packing 
grid points around Mach lines emanating from the leading sharp corner and the expansion corner and iterating it a couple of 
times based on the solution obtained on those meshes. Since, the eventual goal was to study the influence of jet on the 
farfield signature, we wanted to avoid stretched high-aspect ratio triangular cells along the shock lines as that might 
introduce excessive numerical dissipation in a CESE based solver.  The flow conditions utilized were that matching the 
experimental data available22 (Mach 1.68).  
 The farfield pressure signal was obtained (at h/L = 10.0) after three rounds of manual mesh refinement (approximately 
1.5 Million cells in the farfield region – h/L > 1.0). The normalized pressure disturbance contour and a close-up view of the 
mesh are shown in Fig. 16, while Fig. 17 shows the comparison of the pressure signal between the experiment22 and the 
computation at h/L =10. As can be seen from the Fig. 17, the computational results are not able to match the peak in the 
leading portion of the shock. As for the discrepancy in the expansion region, this is due to using a plain cylinder geometry 
that ended abruptly at the tail portion of the cone-cylinder.  The conclusion from this study is that these results are still far 
from acceptable and indicate the need for a more accurate solution-based mesh adaptation and an additional level of 
refinement. 
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Figure 16. Normalized pressure disturbance signature contour and a close-up view of the mesh for the cone-cylinder 
geometry. 

 

Figure 17. Comparison of farfield pressure signature between experiment22 and CFD (h/L = 10.0). 

 

 Keeping in mind the limitations of this current approach, it was still decided to obtain a preliminary comparison of the 
influence of the LPM jet on the farfield signature. This was done by comparing the signatures against the baseline data at a 
distance closer to the body (h/L = 3.0), as it is easier to obtain a mesh that is manageable in size without compromising on 
resolution. The data for the baseline geometry and that with jet in place (P0 j  = 12.0 atm) were computed for actual flight 
conditions, as indicated in section IV (Mach 1.6). The normalized pressure disturbance signature is shown in Fig. 18. As can 
be seen from Fig. 18, the jet does introduce additional jumps in the leading portion of the pressure rise, increasing the rise 
time slightly. However, whether this is sufficient enough to alter the farfield signature at h/L = 10.0 is unclear at this point 
in time. Also, given that the jet penetration distances obtained in our studies weren’t comparable in lengths to that of the 
actual body itself, obtaining a longer penetration depth may be could bring about a more significant alteration to this 
pressure. These aspects will be explored in more detail in the coming months. 
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Figure 18. Comparison of pressure disturbance signatures at h/L = 3.0 with and without jet. 

VIII. Conclusions 
 The feasibility of achieving counterflowing LPM jets issuing from slender bodies against low supersonic flow 
conditions, as a means towards sonic-boom mitigation, was numerically investigated in this study. Two slender-body 
geometries of interest to the High Speed project under NASA’s FAP, namely a 6.48-degree cone-cylinder and a quartic 
geometry were the subject of investigation here. A parametric study on system parameters needed to achieve an LPM jet 
issuing from these slender bodies, was carried out using axisymmetric CFD computations. The parameters explored in the 
study include (i) the sizing of the jet,  (ii) optimal jet mass flow rate /pressure conditions, and (iii) nozzle geometry. From 
the parametric study, the ratio of the diameter at nozzle exit to the diameter of the body was identified to be one of the key 
factors. The smaller this ratio is, the easier it is to establish an LPM jet. A pressure range that will sustain an LPM jet was 
identified for each of the chosen geometries; and based on that, the jet mass flow rates corresponding to these pressures 
were found to be relatively small. This information on smaller mass flow rate requirements augurs well in case this 
technology has the potential for an implementation in a real flight system. Nozzle exit angle, with the exception of large exit 
angles (>30°), was found to not have much of an impact on the jet development.  
 Given the challenges in capturing the farfield pressure signature in the presence of the LPM jet and without any in-built 
mesh adaptation capability, plenty of work remains towards evaluation of the actual impact of the LPM jet interaction on 
sonic-boom mitigation. Towards this end, we may have to rely on using a signature propagation tool that will utilize the 
flow solution from the body near-field region (less than one body length).  These efforts will be reported in a later work. 
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