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A tunable diode laser sensor was designed for in situ monitoring of temperature 

in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity 

diode laser was used to generate light at 777.2 nm and laser absorption used to 

monitor the population of electronically excited oxygen atoms in an air plasma flow. 

Under the assumption of thermochemical equilibrium, time-resolved temperature 

measurements were obtained on four lines-of-sight, which enabled evaluation of the 

temperature uniformity in the plasma column for different arcjet operating 

conditions. 

Nomenclature 

e = electron charge 
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I. Introduction 

HE next generation of hypersonic vehicles needed to support the International Space Station drives the ongoing 

development of a new class of non-ablative, high temperature materials to enable the high lift-to-drag ratio 

vehicle concepts designed for efficient, regular transport.1 Novel new thermal protection systems (TPS) are also 

required for the new generation of smaller-scale planetary probes that are designed to return information and 

eventually local samples from potentially life-sustaining environments within the solar system.2 Current vehicle 

concepts envision a fraction of the total weight (12-70 %) of returning planetary probes to be devoted to heat shield, 

where a substantial portion of this TPS weight is uncertainty margin.2 Thus, reduced uncertainty in the performance 

of TPS has the potential for significant improvement in the payload capability of interplanetary return vehicles. 

 The high-power (60 MW), large-scale Interaction Heating arcjet Facility (IHF) at NASA Ames Research Center 
has been a reliable source of high-enthalpy gas (5000-8000 K, 2-9 atm) used to simulate reentry aerothermal 

environments and test new materials for TPS.3 Currently, arcjet test conditions are defined using either the expected 

heat-flux level or the anticipated surface temperature for a particular material in its envisioned application.3 While 

this is sufficient to evaluate relative performance levels, it is not sufficient for establishing absolute capability for 

materials or for integrated TPS. This lack of traceability of the TPS test environment to the actual vehicle 

performance environment significantly increases the margin of TPS uncertainty. Optimization of TPS safety 

margins, however, requires well-understood gas stream conditions that can be accurately predicted by numerical 

models and with known temporal fluctuations.  

 The IHF operates in a high temperature regime, where almost all of the molecular oxygen present in the heated 

air flow is dissociated into oxygen atoms. The spectrum of atomic oxygen at high temperatures is comprised of 

several strong electronic transitions and the populations of the excited electronic states are extremely temperature 
sensitive. In this study, the population in the 3s5S0

2 excited level of atomic oxygen is monitored by absorption of 

laser light near 777.2 nm and, by assuming the plasma to be in local thermodynamic equilibrium (LTE), temperature 

can be inferred from the composition of the input flow (air and argon) coupled with a facility measured pressure.4 

 Previous studies of the IHF arc-heated plenum via emission spectroscopy pointed to the existence of both spatial 

and temporal nonuniformities within the plasma.5 It has been suggested that short time-scale fluctuations were 

related to the complex mixing process caused by significant radial injection of cold air adjacent to the measurement 

location.5 In addition, it is speculated that a slow swirl (< 0.1Hz) of the arc-attachment, due to a current-induced 

magnetic field in the heater, promotes long time-scale fluctuations in the plenum during the course of a test run. 

Hence, to gauge the degree of nonuniformity in the plenum chamber, an external cavity diode laser (ECDL) sensor 

was developed for in situ concurrent measurements of arc-heated gas temperature at multiple lines-of-sight (MLOS). 

  

II. Theory 

 The energy diagram of a few relevant electronic transitions of atomic oxygen is shown in Fig. (1). The lower 

state of the oxygen transition at 777.2 nm is a metastable state, that is, it is not coupled to the ground state via one-

photon selection rules. At elevated temperatures, the population in this state increases to measurable levels, and the 
transition can have strong absorption intensity. Important parameters for the O(5P3

5S0
2) transition such as line 

center wavelength (o), Einstein coefficient (Aul), oscillator strength (flu), upper state energy (Eu), upper state 
degeneracy (gu),  lower state energy (El), and lower state degeneracy (gl) are shown in Table 1 below.6  
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Figure 1. Illustrative energy-level diagram of 

atomic oxygen. 
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A. TDLAS for Plasma Diagnostics 

 Tunable diode laser absorption spectroscopy (TDLAS) is a powerful, non-intrusive optical diagnostics technique 

that has been widely used for sensing gas species in a variety of harsh environments.7,8 For air plasma diagnostics, 

TDLAS is particularly attractive since strong isolated electronic transitions of excited O, N, and Ar atoms exist in 

the visible and near-infrared (NIR) regions of the spectrum where diode lasers are readily available. In addition, 

diode laser based sensors are compact, rugged, and can be easily fiber-coupled for remote operation. 
 When the diode laser linewidth is narrow compared to absorption linewidth, the light source may be treated as 

monochromatic. As the laser beam propagates through a linearly absorbing medium, the beam intensity will 

decrease exponentially according to the Beer-Lambert relation:  
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 Here, (I/Io)v is the spectral transmittance, v is the spectral absorbance, Slu (cm-1/(molecule∙cm-2)) is the 

linestrength of the transition, nl (cm-3) is the lower state number density, v is the lineshape function, L is the optical 
pathlength, kB is the Boltzmann constant, c is the speed of light, and Tex is the excitation temperature that describes 
the ratio of populations in the lower and upper states of the transition. The integrated area of absorbance is obtained 

by fitting the absorption lineshape to a Voigt profile and it can be calculated by taking the frequency integral of the 

spectral absorbance in Eq. (1): 

 
*

int
A

v lu l

v

dv S n L        where      1
v

v

dv   (3) 

The exponential term in Eq. (2) is relatively insensitive to changes in Tex, and can be neglected in most cases, 

owing to the smallness of the term. In this study we make equilibrium assumptions with regard to the 

thermodynamic state of the heated gas, which allow for the determination of a common temperature from the  

number density in the lower excited state, nl, measured using Eq. (3).  

B. Plasma Thermodynamic State at the IHF Arc Heater 

Given the elevated temperatures in the IHF arc heater, the plasma was modeled as a 13-species (O2, N2, NO, O, 

N, Ar, O2
+, N2

+, NO+, O+, N+, Ar+, and e-) gas mixture. Thus, in order to fully characterize the thermodynamic state 

of the air plasma, one shall consider the following assumptions:  

1. Thermal Equilibrium 

 The arc heater operates at high pressures where the rates of collisional excitation and de-excitation by electron 

impact are high compared to depleting radiative rates. As a result, the relative populations of all electronic levels can 

be assumed to follow a Boltzmann distribution described by a common temperature. 
2. Chemical Equilibrium 

     In order to calculate the total number density of each species in the plasma flow, one must resort to assumptions 

of chemical equilibrium. According to collision theory, chemical reactions occur when particles collide at specific 

orientations and with sufficient energy to break or form bonds. As temperature and pressure increases, the likelihood 

that a collision will result in a reaction increases, and so does the rate at which chemical equilibrium is reached. 

Given the high temperatures and pressures in the plenum, we assume that chemical equilibrium is reached by the 

time the hot gas arrives at the measurement location. 

3.   Local Thermodynamic Equilibrium Plasma 

 Plasma is said to be in local thermodynamic equilibrium if both thermal and chemical equilibrium assumptions 

hold. In this case, the gas can be described by a common temperature T. Previous measurements on excited oxygen 

and nitrogen atoms in the arc heater yielded the same gas temperature demonstrating that the assumption of local 
thermodynamic equilibrium is applicable in the arcjet heater.4 
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C. Path-Averaged LTE Temperature Measurements 

 For LTE plasma, the lower state number density of an electronic transition can be related to the total number 

density of the absorbing oxygen atoms, by the following equation: 

  exp ( )l l l

O O B

n g E
B T

n Q k T

 
   

 
 (4) 

where B is the Boltzmann fraction, nO is the total atomic oxygen number density and QO is the atomic oxygen 

partition function. Theoretically, the partition function can be written in terms of the contribution from all energy 

levels as follows: 

 exp
j

O j

j B

E
Q g

k T

  
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 
  (5) 

In this study, the electronic partition function of atomic oxygen is modeled using the few-level approach 

described by Colonna.9 All the atomic levels are grouped into a few lumped levels with suitable average energy  
and global statistical weight G, dependent only on the energy cutoff criterion selected to lower the ionization 

potential used to truncate the partition function. Thus, QO is given by the following equation with T expressed in 

eV:
9
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 Tabulated values of G and  are shown in Table 2 for a few ionization cutoff energies, s.
9 The partition function 

is plotted in Fig. (2) as a function of temperature. Given the temperature range of interest (5000-8000 K), QO is 

nearly independent of the tabulated cutoff energies, and thus the smallest value of s = 250 cm-1 was chosen. 
 

         
 

    

 The total number density of atomic oxygen in Eq. (4) is determined from the equation of state. For plasmas, the 

ideal gas law must be modified in order to account for long range Coulomb forces since charge neutrality is not 

satisfied within the Debye length D.10 However, the IHF arc-heated plasma is weakly ionized, and the number 
density of electrons is ne ~1015-1016 cm-3. Consequently, the arc-heated plasma may be modeled as an ideal gas, and 

the equation of state is simply given as: 10   

 
324

B

B B

D

k T
P nk T nk T


    (7) 

Therefore, from Dalton’s Law of partial pressures, it follows: 

                      
Figure 2. Polynomial fit of the electron impact parameter 

as a function of electron temperature. 

Table 2. Number of levels and group data as a function of 

the ionization cutoff  energy for O atoms 
 

s 

(cm
-1

) 

Number of 

Levels 
G 

e 

(eV) 

250 94 22,940 13.4656 

500 83 22,660 13.4643 

750 79 22,564 13.4639 

1000 68 7844 13.3727 
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where XO is the mole fraction of atomic oxygen. Since chemical equilibrium is assumed, nO can be determined as a 

function of the translational temperature for a given pressure. Note that pressure is assumed constant across the 

plasma column. NASA’s program Chemical Equilibrium with Applications (CEA)11 can predict high temperature 

air composition at specified temperature and pressure up to 20000 K.  Equilibrium mole fractions for neutral and 

charged plasma species are shown in Fig. (3) for a typical mixture of 7.5% Ar in dry air at the limit arcjet pressures 

of 2 atm and 9 atm.  
 Finally, a path-averaged LTE temperature T  is calculated iteratively using Eqs. (3) and (4). 

 

 
 

 In order to illustrate the high temperature sensitivity of the measurement scheme, the Boltzmann fraction in Eq. 

(4) is plotted versus temperature in Fig. (4). Note that the fraction of the oxygen atoms in the 5S0
2 state increases by 

more than an order-of-magnitude for every increase of 1000 K in temperature.   

 

 

D.  Plasma Line Broadening Mechanisms 

 Broadening of an absorption feature occurs due to various physical mechanisms that perturb transition’s energy 

levels or the way light interacts with individual gas species in the medium. For the air plasma, the lineshape of the 
metastable oxygen transition at 777.2 nm can be determined by Gaussian (Doppler, instrumental) and Lorentzian 

a) b) 

     
Figure 3. Chemical equilibrium analysis using NASA CEA software for a 13-species air model at the limiting arc heater pressures 

of 2 atm and 9 atm. The plots above show the variability of equilibrium mole fractions for a) neutral species and b) charged species. 

Figure 4. Boltzmann fraction of atomic oxygen in 
5
S

0
2 state. 
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(van der Waals, Stark, natural, resonance) broadening effects, where a convolution of both constituent distributions 

result in a Voigt profile. In order to accurately model the absorption profile for a given arcjet operating condition, it 

is important that contributions from each broadening mechanism are properly accounted for.12 In the IHF, effects of 

natural, resonance, and instrumental broadening of the 777.2nm feature are insignificant, and are neglected here. 

Note the laser linewidth ( 300 kHz) is less than 10-5 of the absorption linewidth. The dominant mechanisms are 

Doppler, van der Waals, and Stark broadening, and a brief description of these effects follows.   
1. Doppler Broadening 

 The Doppler broadening is due to the thermal motions of the gas medium. When an absorbing particle travels 

with a velocity component in the same direction as the propagation of the laser beam, there will be a shift in the 

frequency at which this particle will absorb a photon (known as Doppler shift).  Given that the random velocities of 

the absorbing species can be described by a Maxwellian distribution function, the lineshape function will have a 

Gaussian form; the Doppler full-width at half-maximum (FWHM) is related to the translational temperature 

according to the following equation: 

 
2

8 ln 2
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D o
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m c
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2. Van der Waals Broadening  

  In plasmas, van der Waals broadening arises from the dipole interaction of an excited atom with the induced 

dipole of a neutral atom in the ground state via collisions. The resulting lineshape can be described by a Lorentzian 

profile with a FWHM given by the following expression by Griem13 for an absorber a colliding with perturber p: 
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Here, Ep, , me, vap, and np are the perturber resonance-level excitation energy, reduced Planck constant, electron 

mass, relative speed between absorber and perturber, and perturber number density, respectively. In the above 

expression, the square of the coordinate vector is: 
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where E∞ and EH are the ionization potential of the absorber and the hydrogen atom, E is the excitation potential of 

the upper state of the transition, l is the orbital quantum number, and z is the number of effective charges.14 In this 

case, for an atomic oxygen absorber E∞ = 13.614eV, EH = 13.6eV, E= 10.75eV, l = 1 and z = 1. 
 In Eq. (11), the relative velocity term can be written in terms of the mean speed: 
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Here, apm is the reduced mass of the absorber and the perturber. According to Fig. (3), for the operating conditions 

of the IHF (5000-8000 K, 2-9 atm), the plasma in the arc heater is weakly ionized and mainly composed of neutrals. 

Therefore, a summation is carried over all major perturbers in the plasma and Eq. (11) can be rewritten as: 
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In the above equation, Xp is the mole fraction of the perturber p. The values of apm and Ep for the major air plasma 

species are listed in Table 3 below.14  
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3. Stark Broadening  
 Coulombic interactions between the absorbers outer electrons and the charged particles in the plasma (electrons 

and ions) lead to broadening of the feature. For non-hydrogenic species, the theoretical Stark broadening width 

(FWHM) S (Å) can be described by the following equation:15 
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where ne (cm-3) is the number density of free electrons and Te is the electron temperature. The electron impact 

parameter w (Å) and the ion broadening parameter  are obtained from tabulated values by Griem,16 and fitted with 
a polynomial and exponential decay function, respectively. Both parameters are plotted in Fig. (5) as a function of 

electron temperature for atomic oxygen. 

 

 
 The total Gaussian and Lorentzian broadening widths of the transition can be calculated by summing the 

contributions from each of the individual broadening mechanisms described above.  The total Gaussian FHWM is: 

  G D     (17) 

and the total Lorentzian FWHM is:  

 L vdW S       (18) 

 These parameters will vary according to the conditions at which the IHF is operating. In Fig. (6) below, the 

FWHM widths are plotted as a function of temperature, for the two limiting pressure cases assuming a mixture of 

7.5% Ar in dry air. In the low pressure regime, Doppler and van der Waals broadening are dominant when 

temperatures are below ~6000 K, but as temperature increases the contribution from Stark broadening also 

increases. In the higher pressure regime, Doppler broadening remains constant since it does not depend on pressure, 

and the van der Waals broadening is dominant. Like in the lower pressure scenario, Stark broadening is more 

significant at higher temperatures. 

Table 3. Van der Waals perturber constants for an atomic oxygen absorber 
 

Perturber 

*

apm   

(10
-26

 kg) 

pE  

(10
-18

 J) 

O 1.33 1.52 

N 1.24 1.65 

O2 1.77 0.99 

N2 1.69 2.02 

NO 1.73 0.88 

Ar 1.90 1.86 

 

a)                                 b) 

     
Figure 5. a) Polynomial fit of the electron impact parameter w as a function of electron temperature. b) Exponential decay fit of 

the ion broadening parameter   as a function of electron temperature.  
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E. Lineshape Function: Voigt Profile 
 The Doppler and collisional broadening mechanisms discussed above are decoupled, and neither can be 

neglected for the conditions at which the IHF facility operates. Therefore, the appropriate lineshape to model the 

absorbance will be a convolution of a Gaussian and Lorentzian lineshapes known as Voigt lineshape: 
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Here, w is the non-dimensional line position, D(vo) is the line center magnitude of the Doppler lineshape, and a is 

the so-called Voigt “a” parameter, which is defined as a ratio between the Lorentzian and Gaussian FWHM 

broadening coefficients: 
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 For a given measured absorption profile, the Voigt lineshape is fitted using the numerical approximation 

algorithm by Humlicek17 and a value for the integrated area is directly obtained. Thus, a LTE temperature can be 

computed  by following the steps described in the previous subsections. Figure (7) shows a plot of the integrated 

area as a function of temperature for a typical IHF input gas mixture of 7.5% Ar in dry air at different pressures. 
 

 

 
Figure 6. Broadening widths (FWHM) for the atomic 

oxygen transition at 777.2 nm.  

         
Figure 7. Integrated absorbance area vs. LTE temperature 

for an optical pathlength of 12 cm.  
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III. Experimental Setup 

A. Interaction Heating Facility: IHF 

 The 60 MW Interaction Heating arcjet Facility has the 

capability to generate high temperature hypersonic flows for 
several minutes, which simulate reentry aerothermal environments 

suitable for ground test of TPS,3 as shown in Fig. (8). The IHF arc 

heater consists of two sets of electrodes, separated by a constrictor 

tube made of multiple stacked water-cooled copper disks.3 To 

ensure easy start of the arc and sufficient ionization in the vicinity 

of the electrodes, argon gas is used to sheath each electrode disk.10 

Test gas (usually air) is radially injected into the constrictor tube 

and heated by an electric arc attached between the electrodes. Free 

electrons, accelerated by an applied electric field, transfer kinetic 

energy to heavy particles through collisions thereby heating the 

gas. Typically, the arc heater operates at pressures of 2-9 atm and 
temperatures of 5000-8000 K.3 The hot, high pressure plasma 

expands through a convergent-divergent nozzle and flows into an 

evacuated chamber at hypersonic speeds (5-10 km/s) over a test 

article positioned downstream of the nozzle exit. A schematic of 

the IHF arcjet is shown in Fig. (9). 

 At the IHF arc heater, for certain run conditions, a significant amount of room temperature air is transversely 

injected upstream from the nozzle inlet in order to tailor the flow enthalpy to desired conditions (henceforth, we 

shall refer to this as “add-air” injection). The add-air mixes with the hot gas, rapidly cooling the arc-heated stream 

and lowering its bulk enthalpy. Due to high heater pressures, the rate of particle collisions is relatively high, and the 

plasma is expected to reach equilibrium prior to entering the nozzle. However, the add-air disrupts the chemical 

equilibrium condition of the flow and for runs at the lower pressure regime, with significant add-air injection, 
mixing with the working fluid may not be complete.   

 In addition, in order to reduce copper erosion at the electrode surface due to thermal loads caused by the attached 

electric arc, a current-induced magnetic field is used to spin the arc-attachment and minimize local heating.10 A 

reduction in electrode erosion means less flow contamination as well as reduced facility downtime for maintenance. 

 Both the add-air mixing process and the arc-attachment swirl are not well understood phenomena. There is still 

significant amount of uncertainty as to how these two processes affect the thermal field of the plasma, and their 

relative contributions to flow nonuniformities in the arc heater. In order to further investigate these processes, an 

experimental study was conducted using laser absorption techniques to optically probe the cross-section of the arc 

heater, adjacent to the nozzle inlet, at multiple lines-of-sight.  

 

    

B. Optical Disk 

 Figure (10) shows a copper segment from the arc heater modified to mount several optical telescope assemblies 

and direct laser light across the column of gases. There is some concern that a significant radial gradient in gas 

temperature exists in the arc-heated gases, thus the optical disk was designed to allow for simultaneous diagnostics 

at four different optical ports. Port B (L = 12.0 cm) corresponds to the cross-section centerline, ports A and C (L = 

10.8 cm) are symmetric with respect to the centerline, and port D (L = 6.5 cm) investigates gases near the wall.  

 
Figure 9. Schematic of the IHF arcjet. TDLAS experiments at multiple lines-of-sight are carried upstream from the nozzle 

inlet. 

 
Figure 8. Top view of the IHF test cabin during a TPS 

test run. 
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Since the test gas is heated by high-current, high-voltage arcs, any instrumentation on the arc heater or nozzle 

expansion must be electrically isolated. In addition, physical access to the optical disk is severely limited by a 

multitude of cooling lines and by the close proximity of the optical disk to the nozzle base plate. Therefore, fiber-

coupled optical strategies are ideally suited for remote sensing at the IHF. Figure (11) shows the optical disk 

assembled in the cathode electrode package. Note the very short path between the optical disk and add-air injection.  

 

     

C.  External Cavity Diode Laser Sensor 

 Laser light from a New Focus Vortex II ECDL (~50mW) is fiber-coupled into a single-mode optical fiber, with 

40% coupling efficiency. The effective laser power output (~20mW) is then split four ways by a fiber-coupled 

beam-splitter and laser light is routed to the arcjet using four polarization-maintaining, single-mode optical fibers 

(PM780-HP, 5m core diameter, 0.13 numerical aperture (NA)). At the measurement location, laser beams are 
collimated using fiber-coupled aspheric lens collimators. Each beam is collimated using an 8.00 mm focal length, 

0.50 NA fiber-coupled lens collimator with an approximate output beam diameter of ~1.5 mm. Each collimator is 
fixed to an alignment fixture with pointing and translation adjustment for optimization of signal throughput. The 

laser beams are pitched into free space and directed across the hot gas in the arc heater with specially designed 

telescopes housing small, AR-coated fused silica optical windows. A schematic of the optical telescope is shown in 

Fig. (12). After the light beams pass through the column of gas, they are collected with a second set of telescope 

assemblies and focused onto multimode fibers (400m core diameter, 0.48 NA).  The laser beams exiting the fibers 
are then focused onto switchable gain, silicon detectors with narrow band-pass filters to reduce emission noise 

(center frequency: 780±2 nm, FWHM: 10 ± 2 nm). The laser sensor was assembled in a single relay rack, which 

houses the laser head, laser controller, and a computer with a LabVIEW-based user interface to control laser output, 

collect absorption signals, perform data analysis and provide real-time temperature readout. The sensor rack is 

located ~15 m from the arc heater for operator access during the arcjet runs, as illustrated in Fig. (13). 

 Laser beam alignment is perhaps the most important procedure when setting up an experiment in the IHF. A 

properly aligned beam is critical for successful absorption measurements as it ensures reduced beamsteering noise 
caused by the interaction between laser light and the plasma, as well as minimal facility access time between runs 

for adjustments. The limited physical access due to the multiple cooling lines coupled with the lack of optical access 

to the inner section of the arc heater makes alignment in a mounted electrode package a cumbersome and time 

consuming task. Therefore, in order to ensure an optimized signal throughput, the disk is pre-aligned prior to 

electrode package assembly, and alignment is monitored throughout the assembly process, until the electrode is fully 

mounted on the arcjet. A full system checkup is performed before lighting the arc, during water and air leak tests, to 

ensure the signal baseline is steady and unaffected by mechanical vibrations and optical telescopes have good 

vacuum seal.   

 
Figure 10. Arc heater optical disk, designed to mount multiple telescope 

assemblies and direct laser light across the column of hot gases. 

 
Figure 11. Assembled cathode electrode package 

containing optical disk and add-air disks. 

 
Figure 12. Optical telescope and window assembly with fixture for adjustment of laser beam alignment. 
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D. Laser Sensor Validation: Microwave Plasma Discharge 

 In order to validate laser scanning capabilities, laboratory tests of absorption sensing of the excited 5S0
2 state of 

atomic oxygen were conducted using a discharge flow tube as illustrated in Fig. (14). A low pressure (0.5-4 Torr) 

flow of oxygen is directed through a 13mm diameter glass tube.  A microwave discharge at 2.45 GHz is initiated in 

this flow in an Evenson cavity.  The plasma dissociates a fraction of the molecular oxygen and the electron impact in 

the plasma produces a non-equilibrium distribution of electronic states in the atomic oxygen.  This is in contrast with 
the arc heater which operates at high temperatures, pressures of several atmospheres, and is in LTE. The ends of the 

discharge tube are terminated with windows angled at Brewster’s angle and the laser light is directed through a solid 

etalon (2.00 GHz free spectral range) and  along the length of the tube.  The laser is tuned in wavelength across the 

atomic oxygen absorption feature near 777.2 nm, and example absorption data are shown below in Fig. (15).  

  

 
     

 

 
Figure 13. Schematic of the TDL sensor setup at the IHF. 

        
Figure 14.   Setup for absorption measurements in a plasma discharge flow. 

a) b) 

    
Figure 15.   a) Example transmission data for atomic oxygen near 777.2 nm at 0.5 Torr. b) Absorption profile fit to a Voigt lineshape. 
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IV. Results & Discussion 

Time-resolved, path-averaged LTE temperature measurements were made during several arcjet runs for different 

plasma bulk enthalpies and varying amounts of add-air injection. The results presented in this paper are the first 

multiple lines-of-sight (MLOS) measurements in the arc heater of the IHF using TDLAS. In addition, earlier single 

line-of-sight TDLAS measurements did not have sufficient signal-to-noise ratio (SNR) for successful measurements 

with significant cold air injection.10 Thus, we present the first successful absorption measurements in the IHF arc 

heater at high add-air conditions.  

Temperature values were obtained by scanning the ECDL past the 777.2 nm atomic oxygen transition at 0.5 

kHz. Data were acquired simultaneously at four different channels (1 MHz per channel) for each individual optical 

line-of-sight during the full course of a run. A moving-average of 500 successive scans was performed to reduce 
baseline distortion noise caused by significant steering of laser light directed across the column of hot gas (i.e. 

beamsteering noise). In the present study, temperature time histories are displayed for ports A, B, C, and D of the 

optical copper segment with 1 second  measurement resolution.   

A. First-Generation MLOS Sensor:  September 2012 Measurement Campaign 

 The first successful MLOS experiments were conducted for IHF Test #251. The results presented in this section 

are for a low-enthalpy arcjet run (Run #002) with significant radial add-air injection. The arc heater settings for this 

particular run are presented in Table 4 below, where Pc is the chamber pressure, IA is the applied arc current, VA is 

the applied arc voltage, and m  is the mass flow rate for different input gases: 

 

 
  

 Due to the relatively large amount of add-air injection and the low-enthalpy, low-pressure nature of Run #002, 

data collected at optical port D with its short pathlength and lower gas temperature at the edge of the plasma column 

produced an absorption SNR that was too low to yield a usable lineshape. Figures (16) and (17) show temperature 

time histories measured at the three remaining optical ports A, B, and C with longer pathlengths. 

 For this particular run, the total test time can be divided into three major periods: startup, steady, and shutdown. 

During the arc startup period (0s – 110s), after a quick temperature overshoot, cold add-air is injected to tailor the 

heater enthalpy to desired test condition I. Once this design condition is achieved, all facility input parameters 

(air/argon flow rates, and current) are held constant while TPS articles are being tested in the evacuated test cabin 

(110s – 950s). Lastly, once testing is finalized, arc shutdown is initiated (950s – 1100s). As the amount of input add-

air decreases, the overall plenum temperature raises at all optical ports to a secondary plateau, where it remains 

constant for a short period of time before the arc is completely turned off. 
 During steady arcjet operation, the temperature measured at the centerline optical port B is higher than at ports A 

and C. Thus, the accelerated gas flow has a hotter core and colder outer region. This is expected for a variety of 

reasons such as magnetic field confinement of electron motions to the center-most region of the heater, heat transfer 

to the walls of the water-cooled copper segments, and mixing/penetration properties of radial add-air injection. 

 The laser sensor is capable of detecting both long (< 0.1Hz) and short (~1Hz) time-scale temperature fluctuations 

throughout the course of the run. Short time-scale fluctuations (i.e. temperature measurement noise) in ports A and 

C are more pronounced than in the centerline port B. Although this noise in temperature readout could be interpreted 

as incomplete mixing of cold add-air with hot arc-heated gas, it is more likely due to weak line-of-sight absorbance 

coupled with significant beamsteering noise which affected baseline fitting and increased measurement error. 

Further investigation into beamsteering noise reduction was required to improve overall SNR and properly assess 

the add-air mixing process. 
 Long time-scale fluctuations were also observed. Although the temperatures at the symmetric ports A and C are 

nearly equal, a periodic discrepancy between measurements in these two ports serves as an indication that the 

thermal profile of the plasma is unsteady, and assumptions of an axisymmetric flow may not always hold throughout 

the test period. These long time-scale fluctuations seem unrelated to add-air injection since input flow rates were 

maintained constant during steady arcjet operation.  Rather, they were more likely caused by the arc-foot rotation 

due to current-induced magnetic fields in the heater, to prevent electrode erosion. Experiments at other arcjet 

operating conditions were needed in order to validate this prediction.   

Table 4. Arc Heater Settings: IHF Test #251. 

Condition  Run # 
PC  

(atm)  

IA 

(A) 

VA 

(V) 
main airm   

(g/s) 

add airm 

(g/s) 

argonm  

(g/s) 

I 002 2.29  1770 2360  80 340 31 
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Figure 16. Path-integrated temperature measurements and facility data  

for IHF Test #251 Run #002. 

             

 
Figure 17. Detailed temperature time history for condition I at optical ports A, B, 

and C.  
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B. Beamsteering noise reduction efforts 

   Improvement of sensor performance in order to more accurately evaluate nonuniformities in the arc heater 

relied on suppression of beamsteering noise which limited the sensor’s detectivity range due to low SNR. The add-

air injection occurs just upstream of the TDL measurements, inducing high-frequency noise (~30 kHz) and 

distorting absorption lineshapes. Although data averaging helps reduce random distortions, errors in integrated 

absorbance area obtained by fitting distorted profiles propagate as errors in measured temperature. 
   In graded-index multimode-fibers, modal dispersion occurs due to fiber imperfections, where higher-order 

modes traveling near the edges of the fiber core are delayed with respect to low-order modes traveling near the 

center of the core upon arriving at the fiber exit and light power carried by each of these modes will be out of phase. 

Depending on how the plasma steered light is coupled into the multi-mode fiber, and on how the fiber modes are 

excited, the output power profile will change, and the measured transmitted signal will fluctuate.  

 To address this problem, the catch optics system was modified to house a doublet lens mount which focused 

divergent laser light exiting the multi-mode fiber fully on the detector chip’s surface. The new light collection 

system successfully reduced signal fluctuations caused by out-of-phase modes within the fiber and significantly 

improved SNR. Figures (18) and (19) show measured transmission and absorption signals for a catch optics system 

with and without a doublet lens mount, respectively.  

 

           

          b)                    

                            
 a)         c) 

    
          d)                                        

 
 

Figure 18.  a) Original catch system without doublet lens mount. 

b) Example single scan transmission data. c) Example averaged 

scan transmission data.  d) Example measured absorption 

profile with significant distortions due to poor baseline fitting. 
 

            b)                    

                            
 a)          c) 

  
          d)                                        

 
 

Figure 19.  a) Modified catch system with doublet lens mount.          

b) Example single scan transmission data. c) Example averaged 

scan transmission data.  d) Example measured absorption 

profile free of baseline-fitting distortions. 
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C. Second-Generation MLOS Sensor:  March 2012 Measurement Campaign 

 Experiments were conducted to further investigate sensor operation for different arcjet operating conditions 

using the modified catch optics system. MLOS data were acquired during IHF Test #1313 for two different arcjet 

runs (Run #014 and Run #013). The heater settings for each run are shown in Table 5.  

 

 
 

  Run #014 was a low-enthalpy, low-pressure run at slightly higher arcjet power than Run #002 and minimal add-

air injection. Improved sensor SNR allowed for temperature measurements at all four optical ports, although 

absorbance levels in port D were still significantly low with less than 1% peak absorbance. Measured temperature 

time history for this particular run is shown in Fig. (20). Run #014 was a relatively short run (~6 min), and no 

evidence of temporal fluctuations was observed. Figure (21) expands the temperature scale to evaluate the 

temperature stability. At the centerline of the plasma, column temperature fluctuations are of the order of 0.14% . 

However, despite the steady thermal profile, a substantial difference in measured absorbance between symmetric 
ports A and C indicates that the flow is not axisymmetric during the course of the run, and spatial nonuniformities 

exist within the plasma. The thermal profile appears to be slightly skewed from an axisymmetric distribution, with 

higher gas temperatures measured below the centerline port B than above. 

 The laser sensor detected similar temperature asymmetry during Run #013, for both high (III) and low (IV) add-

air conditions, as shown in Fig. (22). These are the first successful MLOS measurements at IHF plenum at high 

pressure conditions (~6 atm) using TDLAS. These results indicate that although add-air injection increases the 

overall temperature gradient across the plasma column as expected, it is not the driving mechanism for the 

temperature asymmetry, as the difference is consistent regardless of the amount of cold air input. However, the 

significantly large variations in measured temperature at port D for the high-add air condition III, compared to the 

low add-air case IV can be interpreted as incomplete mixing between the cold and hot gases near the walls of the 

copper segment. The injection of add-air, however, does not seem to induce short time-scale fluctuations in 

temperature at the core, as the variations in measured temperature in port A, B, and C remain fairly constant.      
  A plausible explanation for similar asymmetric footprint in Run #014 and Run #013 may be that the same 

electrode package assembly was used, which may influence how the electrical arc physically attaches itself between 

the electrodes. If the plasma peak temperature shifts to an off-center position due to displacement of the arc-

attachment, the thermal profile could appear skewed and the measured temperatures across the symmetric optical 

ports A and C could differ. Another possible explanation for the observed asymmetry might be that nonuniform 

radial injection of gas produced a profile not centered at the constrictor bore. 

 Results from a nozzle sweep at the test cabin using a nullpoint calorimeter probe during Run #014 are consistent 

with the results of laser absorption experiments, where the enthalpy profile was found to be shifted towards the 

bottom half. While the enthalpy profile measured with the calorimeter was reasonably symmetric, a small level of 

asymmetry can be observed in Fig. (25a). The calorimeter sweep followed a 45 degree angle line path across the 

nozzle exit cross-section, from the lower east corner of the IHF, to the upper west corner of the facility as illustrated 
in Fig. (25b). The probe measured a hotter flow below the centerline location on the negative side of the sweep, 

which is in agreement with the higher laser light absorption measured at port C compared with port A in the plasma 

plenum for Run #014; the stratified temperature in the heater column could persist in the expansion and account for 

the asymmetry in the heat flux. Overall, these results demonstrate the measurement capability of the laser sensor to 

accurately monitor temporal and spatial nonuniformities in the plenum of the IHF arcjet during the course of a run.              

 

 

 

 

 

 

 

Table 5. Arc Heater Settings: IHF Test #1313 

Condition  Run # 
PC  

(atm)  

IA 

(A) 

VA 

(V) 
main airm   

(g/s) 

add airm 

(g/s) 

argonm  

(g/s) 

II 014 2.22 2000 3680 200 55 25 

III 013 4.75 3500 4300 270 330 42 

IV 013 5.95 3500 6050 545 55 42 

 



 

American Institute of Aeronautics and Astronautics 
 

 

16 

 
 

 

 

 
Figure 20. Path-integrated temperature measurements and facility data  

for IHF Test #1313 Run #014. 

        

        
Figure 21. Detailed temperature time history for condition II at optical ports A, B, 

C, and D.  
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Figure 22. Path-integrated temperature measurements and facility data  

for IHF Test #1313 Run #013. 

 

        

        
Figure 23. Detailed temperature time history for condition III at optical ports A, B, 

C, and D.  
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D. Comparison of simulated and measured path-integrated temperatures in the IHF arc heater 

 Temperature profiles in the plenum are computed using NASA’s in-house computational fluid dynamics (CFD) 
code DPLR18 based on distributions of measured enthalpy in the nozzle exit from sweeps of nullpoint calorimeters 

across the free jet. Details on the exact procedure for computing these flow fields in the plenum are described by 

Prabhu et al.18 Simulated path-averaged temperatures can be calculated directly from temperature and species axial 

distributions obtained from CFD for comparison with TDL measurements. Figure (26) illustrates the simulated 

symmetric radial profile of temperature and flow species in the plenum for Run #014.  In order to compute the path-

integrated absorbance at each LOS, the plasma is divided into 100 concentric rings in which the thermodynamic 

properties may be assumed constant and the plasma at each discretized location is assumed to be in local 

thermodynamic equilibrium. A path-integrated absorbance profile is then obtained by adding the contributions of 

each discrete ring along the optical pathlength of each line-of-sight. Simulated and measured path-averaged 

absorbance profiles are shown in Fig. (27) below for comparison. The measured absorbance on port D nearly 

matches the CFD, and port A is in good agreement. However the CFD profile seems to under-predict the centerline 
temperature, as the measured absorbance in port B is larger than the CFD absorbance. The integrated areas are 

obtained by fitting each aggregated absorbance profile with a Voigt lineshape and CFD path-averaged temperatures 

        

        
Figure 24. Detailed temperature time history for condition IV at optical ports A, B, 

C, and D.  

 

a)              b) 

 
Figure 25. a) Nullpoint calorimeter nozzle sweep for Test #1313 Run #014, showing a slightly skewed enthalpy profile, in 

close agreement with TDL measurements in the arc heater. b) Illustrative schematic showing the direction of the nullpoint 

calorimeter sweep at the test cabin (see Fig. 9) with respect to the optical disk located at the nozzle inlet.   
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are calculated for each LOS. Figure (28) shows both the simulated and measured path-integrated temperatures, 

where TDL data seem in relatively good agreement with predicted CFD thermal profile, except for the asymmetric 

temperature distribution measured experimentally and the under-predicted CFD centerline temperature (~350 K, 

5 %). The CFD framework makes use of an underlying assumption that the flow is adiabatic (i.e. lossless) in the 

inviscid core flow between the plenum and the test cabin and the discrepancy between experimental and theoretical 

results could be related to the non-adiabatic nature of the flow in the nozzle. Future examination of TDL 
measurements and CFD solutions for various arcjet operating conditions will help improve our understanding of 

uncertainties due to non-ideal processes and aid the development of enhanced models for arc-heated air plasma 

flows expanded through convergent-divergent nozzles.  
  

            
 

              

 
Figure 26. Simulated profile of temperature and species number 

density in the arc heater for IHF Test #1313 Run #014. 

 

 
Figure 27. Measured (TDL) and simulated (CFD) path-

averaged absorbance profiles for IHF Test #1313 Run #014.  

 

 
  Figure 28. Measured and simulated path-integrated temperatures at optical ports A, B, C 

and D for IHF Test #1313 Run #014. 
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V. Conclusion 

 In the present work, an external cavity diode laser sensor was developed for in situ, simultaneous measurements 

of arc-heated gas temperature at multiple lines-of-sight to probe the arc-heated gases in the plenum and monitor 

fluctuations. Experiments confirmed the TDL sensor’s capability of making precise measurements of flow 

properties at several arcjet operating conditions, including low and high add-air injection as well as different 

pressure regimes.  This work provides experimental evidence that for high add-air input conditions, the flow mixing 

near the walls of the heater may not be fully complete upon entering the nozzle inlet. Also, long time-scale 

fluctuations were carefully monitored, and are believed to be caused by the periodic displacement of the arc-

attachment due to current-induced magnetic fields in the heater. Moreover, TDL measurements and CFD solutions 

of the thermal profile in the heater show relatively good agreement, although the CFD provides a symmetric solution 
and the sensor finds a significant temperature asymmetry for some arc heater conditions/assembly.  Future analysis 

for a variety of arcjet operating conditions will help improve/anchor existing models that predict the thermal profile 

of arc-heated flows in the heater of the IHF. 
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