
Benefits of Matching Domain Structure for Planning
Software: The Right Stuff

Dorrit Billman*+

dorrit.billman@nasa.gov
Lucia Arsintescu*+

lucia.arsintescu-1@nasa.gov
Michael Feary+

michael.s.feary@nasa.gov
Jessica Lee*+

jessica.c.lee@nasa.gov
Asha Smith*+

asha.h.smith@nasa.gov
Rachna Tiwary*+

rachna.tiwary@nasa.gov

ABSTRACT
We investigated the role of domain structure, in designing
for software usefulness and usability. We ran through the
whole application development cycle, in miniature, from
needs analysis through design, implementation, and
evaluation, for planning needs of one NASA Mission
Control group. Based on our needs analysis, we developed
prototype software that matched domain structure better
than did the legacy system. We compared our new
prototype to the legacy application in a laboratory, high-
fidelity analog of the natural planning work. We found
large performance differences favoring the prototype,
which better captured domain structure. Our research
illustrates the importance of needs analysis (particularly
Domain Structure Analysis), and the viability of the design
process that we are exploring.

Author Keywords
Complex work domains, planning, aeroastronautics.

ACM Classification Keywords
H5.2. [Information interfaces and presentation]: User
interfaces – evaluation/methodology.

General Terms
Design, Experimentation, Human Factors, Performance.

I. INTRODUCTION
Building useful software depends on understanding what is
needed. Work applications typically consist of a bounded
domain and set of required functions. If these are identified
and if software enables meeting these needs, the software
will be useful. Multiple methods may be used to identify
needs (e.g., Cognitive Work Analysis, Contextual Design),
and such methods typically precede formal requirements

specification. This paper reports on one approach to needs
analysis. This is part of a larger research agenda of
developing tools and methods: we aim to reduce costs of
the information needed to ensure good human-system
integration, particularly in high-risk domains [11,12].

Our approach to needs analysis focuses on capturing the
abstract structure of the work domain; we refer to the
product of such an analysis as a Domain Structure Analysis
(DSA). Our approach contrasts with task analyses that
capture the specifics of tasks carried out within the existing
configuration of tools and procedures. Our goal is to
identify high-value, low-cost information useful for design
and evaluation. A Domain Structure Analysis (DSA) can
guide design and evaluation of software to support work in
the analyzed domain.

This paper reports an initial demonstration of the value of
our approach to needs analysis, in a complex socio-
technological domain: the planning work of one
International Space Station (ISS) Mission Control group,
Attitude Determination and Control Operator (ADCO).
(ADCO refers to the group or an individual.) We run
through a demonstration of the role of domain structure
analysis from design through evaluation, “in miniature” for
a limited scope of work. The logic of our demonstration is
as follows: 1) We provide an example domain structure
analysis. 2) We illustrate how the analysis can be used to
select and design software by providing high-level
constraints on key properties of the design. 3) We show
how the analysis supports evaluation (as well as design) by
assessing how well a candidate design matches the domain
structure, and by making performance predictions based on
the match. 4) We report a study that evaluated two planning
tools, tested the predictions, and found dramatic
performance differences as predicted.

The paper starts by setting the context for ADCO planning
work. Then we report our research on the value of domain
structure analysis; the focus of the paper is our
experimental evaluation. Finally, we reflect on what this
study suggests about needs analysis, our approach, and its
role in producing useful and usable software.

*San Jose State University Research Foundation (SJSURF)
+NASA Ames, Moffett Field, CA 94035-1000

Copyright 2011 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

https://ntrs.nasa.gov/search.jsp?R=20140000569 2019-08-29T15:09:17+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42735133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. ADCO WORK: FLYING THE SPACE STATION
ADCO controls the attitude (yaw, pitch, & roll) of the ISS.
The operators monitor and command attitude real-time and
also develop plans in advance of real-time operations. They
are responsible for maintaining an efficient flight attitude
during quiet phases of flight and for maneuvering into
different attitudes for activities such as docking and
undocking of vehicles or to support various tests.
Supporting these activities means carrying out detailed
sequences of actions that switch among mechanisms of
controlling and applying force: the thrusters on the Russian
capsules currently docked with the ISS, the momentum
management system (large gyroscopes which can transfer
torque), and in rare circumstances the space shuttle. These
mechanisms and commanding software move the ISS to the
appropriate attitude.

ADCO closely cooperates with Russian counterparts, to
develop detailed plans supporting these activities. While the
technical complexity of these operations requires good
planning, the required international cooperation imposes an
even greater need for accurate, detailed planning well in
advance of execution.

The following characteristics of ADCO planning relate it to
other work domains: 1) High-Risk & Safety Critical. The
ADCO planning domain is part of a safety-critical, high-
risk domain [10,15,18]. The planning functions help
decouple [18] aspects of the system thus protecting real-
time operation: ADCO intensively checks plans, identifies
potential threats, and builds contingency plans. Planning
favors reuse of old, safe plan components rather than
exploration of less tested but possibly more optimal plans.
2) Products are Plans. The ADCO planning domain is
information work and the products are represented in
documents. ADCO gathers, integrates, and approves the
information making up a plan. (Plan refers to both the
abstract information and its expression in a particular
document.) Planning documents select different
information, for different users. 3) Not Real-Time Control.
The ADCO planning domain is not subject to strong time
pressure. There are planning deadlines, but in normal
circumstances, the planning activity is not heavily driven by
the real-time dynamics of unalterable, extrinsic, physical
events. Indeed, the point of planning is to remove time
pressure from decision making, thus allowing more
successful execution. 4) Complex Socio-Technical
Domain. Technically, the ISS is unique, changing,
intensively modeled, yet incompletely understood. ADCO
planning aims to ensure that planned activities are well
away from technical constraints on how the ISS flies.
ADCO draws information from several engineering support
groups rather than conducting detailed engineering work
internally. Social rather than technical constraints are the
primary drivers of planning difficulty: when information
becomes available from another group, or when others need
ADCO products.

Current planning software evolved incrementally to serve a
variety of the planning needs. Our research group became
involved with the ADCO group because of their desire to
improve the planning tool used to build and revise plans,
particularly, the plan documents used in joint planning with
their Russian counterparts.

Our observation, discussion, and document-gathering
focused on this part of the planning process. We developed
some understanding of the communication flows; however,
our focus (of both analysis and experiment) is the
operations done by an individual to build and revise the
planning documents used to communicate with the Russian
counterparts. Further, this is the aspect that key operators
thought most needed improvement.

III. NEEDS ANALYSIS

Our Process & Comparison to Other Approaches
We began our needs analysis with task analysis [8,20] at a
quite specific level; we shifted focus to capturing the
relatively high-level functions, far removed from low-level,
button-pressing. Our approach diverged further from task
analysis as we saw that many tasks should disappear or
change dramatically with better-designed tools. Although a
high-level analysis of tasks [14] aims to avoid over-
specificity, even a high-level task characterization seemed
tied to current practices. It was difficult to identify the
boundary between necessary tasks and those driven by
history or limitations in current tools. (We suspect that in
highly routine and proceduralized domains it may be easier
to identify the functions, while analyzing the “declarative”
information structure may be more tractable in open,
generative, information work.)

We shifted to identifying the structure and constraints on
ADCO planning. We sought to identify necessary elements
both of the process of planning, and of the product, namely,
the ADCO plan. A critical observation was that the ADCO
planning work is primarily a matter of producing
documents, appropriately vetted and with appropriate
content. The primary constraints concern the required
properties of the plan. Requirements on the product seemed
to be a particularly important, clear guide to what is needed
from planning software: it must support building and
editing correctly structured plans. Our focus was on
identifying the fundamental structure required in a plan,
rather than constraints on its detailed content.

We are similar to Cognitive Work Analysis (CWA)
[3,9,19,21] in prioritizing stable, structural aspects of the
domain over tasks, but we diverged from CWA concerning
the nature and source of constraint. For CWA, constraints
are fixed and external to the work: the chemical plant
operator does not re-engineer the size of the chemical tanks.
For information work, rather than lying outside the work,
the “constraints” or structure may be very much part of the
work, constructed by the work activity, expressed in the
work product, and changeable or negotiable as part of the

Figure 1. Schematic of the Domain Structure Analysis: Representations and operations in the ADCO planning domain. Increment,

Activity, and Action elements are organized by Hierarchical (Part-whole, Sister) and Temporal (Order, contiguity) relations.
Operations on these elements that are used by ADCO are shown on the right.

analysis of work products, in order to identify domain
structure.

Ontology-based approaches also focus on identifying
structural, “declarative” information about the work
domain, and our approach is most similar to this [4,5,13].
Ontologies have been developed for information work
domains, in which the structure and constraints are defined
within the work, rather than outside its boundaries.

Contextual Inquiry (CI) [1] generates information about the
needs that software should address. CI emphasizes
gathering information about users, but also gathers
information about structure or constraints, for example, in
the artifact models. CI’s emphasis on user observation may
be most effective in less technical information work, where
the domain structure can be easily understood by an
observer adopting the role of a mentee [7].

We provide an example Domain Structure Analysis, for the
ADCO planning domain. We believe this form of needs
analysis will prove most directly applicable to 1)
information work 2) for which accurate, novel, problem
solving rather than speeded performance is paramount 3)
and that is safety-critical or otherwise benefits from a very
accurate design. This paper focuses on the product of
analysis, not the process, which we continue to change
significantly. Additional information on the method used
here may be found in [2], but development is ongoing.

Need Analysis Results: Structure of the ADCO Domain.
A domain structure analysis identifies the organization of
the work domain. The structure is expressed in terms of its
elements and their relations; in addition, the operations on
the domain are identified. For an information-work domain
such as ADCO, domain structure is specified by the

structure of ADCO plans. ADCO plans compose events
into a part-whole hierarchy organized linearly in time.
Primary operations on the plans and plan components are
viewing, selecting, and editing. An overview of the high-
level organization is shown schematically in Figure 1. The
elements, relations, and operations from which the structure
is built up are summarized in Table 1, and the plan elements
described in Table 2.

 The plan elements and types were not explicit prior to our
analysis. Providing an explicit, external, representation of
key concepts known implicitly by domain experts is a
frequent, desirable outcome of many forms of work
analysis. In our case, initially there was no general and
standard term referring to Activity, to mark its importance
as more than a series of Actions. Rather, events were often
referred to very specifically, in two ways: 1) references
were made to a specific docking mission (activity) or
specific docking maneuver (action) in ways that glossed
their relationship and 2) events were often referred to in
terms of a particular format (e.g., “the UAF file”) rather
than the event it represents, which may appear in multiple
formats and documents. The construct of Increment was
explicit, both outside and within ADCO. Increments are the
largest element for planning in ADCO, spanning the period
between arrival and departure of ISS crew (i.e., from the

Table 1. Components of the Domain Structure:
Representation (Elements and Relations) and Operations.

Elements Increment, Activity, Action
Relations part-whole {part-of: contains; sister}

temporal{prior to: after; contiguous: gapped}
Operations View, Select, Compare, Edit Time, Edit

Other Attribute

Element Description Examples
Increment Duration for a

fixed ISS crew.
One lead operator.

3+ months between
Arv-Shuttle: Launch 129
Dpt- Soyuz 20.

Activity Mission goal
accomplished by
integrated events

Docking, Undocking,
Relocate, Reboost,
Thruster Test

Action Commanded
operation.
Attribute values
specify parameters.
May be point or
interval event.

Change Attitude:
Maneuver to docking
attitude
Change Control:
Handover to Russia;
Momentum Managemt;
Free Drift

Table 2. Elements of the Domain Structure

Shuttle or Soyuz). One ADCO lead is assigned to each
increment. Actions were explicit; however, types of actions
as well as types of activities were not explicit but identified
through study of documents and discussion with experts.

The temporal properties of plans are defined in terms of the
three elements. All elements have both a relative temporal
ordering and an absolute time value. Early in planning,
events may have only relative time established or be
assigned estimated times. Events at the same level are
disjoint and do not overlap. Increments and Activities have
durations. Some Action types have durations and others are
specified as a point in time.

An action belongs to one of a small number of types, and is
specified in terms of attribute values. Key attributes include
start and stop times, action type, the attitude attained or
maintained (yaw, pitch, and roll), and the control
mechanisms used at the beginning and end of the action.

To summarize, ADCO plans consist of structure built from
Increments, Activities, and Actions. The important
relations between these elements come from the part-whole
hierarchy (part-within-whole and sister-to-sister), and the
temporal structure (including order and separation of
elements). This plan structure represents events as
compatible both with how people often think about events
and future/planning [22] and with how these specific plans
are executed. Note that this plan structure is not the only
possibility. For example, in some domains plans might be
appropriately represented as regulating several continuous
flows. In those cases, the plan need not decompose into
temporally separated, internally structured hierarchical
elements.

IV. DOMAIN STRUCTURE AND SOFTWARE DESIGN

Rationale
We claim that software that matches, or aligns with, work
domain structure will function better than software that
does not. While a software system that does match can be
defeated by bad execution, we believe a mismatching
system is unlikely to be effective, whatever the details of its
execution. We used the domain structure to develop

prototype, planning software (called NEW) that does a
better job fitting the constraints specified by the domain
structure than does the LEGACY software currently in use.
By identifying the key function as planning (rather than
form- or document-editing on the one hand, or engineering
on the other), we selected a planning framework available
at NASA Ames, SPIFe (Scheduling and Planning Interface
for Exploration) [16] with time-line representation. This
was configured and modified to provide hierarchical
representation of Increments, Activities, and Actions.

NEW was designed to cover the plan revision functions of
LEGACY. (NEW did not cover the process of sending and
receiving edited files to the Russians.) All revision tasks
possible in one are possible in the other, but with very
different cost. The resulting design of NEW also supports
“for free” functions beyond those provided by LEGACY.
Specifically, work thinking about or designing a plan is
better supported by NEW; in the current system, operators
would need to do these functions “in the head” or with tools
outside LEGACY. We mention this to fill out the ‘big
picture’ view of the functionality of the two systems.

High-Level Comparison of Software-to-Structure Match

Figures 2A & 2B illustrate the difference in match for the
NEW and LEGACY systems. Each shows the three key
elements, the part-whole and temporal relations, and the
operations on element, which were identified in the DSA.
The left panel shows that only a subset of the elements and
relations are supported for LEGACY. Representation of
high-level structure is impoverished: no Increment
representation, no relationships between Activities, and few
operations on Activities. Further, representation of
Activities and all temporal relations are minimal. The right
panel summarizes the match provided by the NEW
prototype. All the elements and relations are represented,
and almost all the operations. Comparing the information
architecture and interaction design of the two systems, and
how each system aligns with the domain structure can flesh
out this high level characterization.
Figure 3 shows the primary window of the LEGACY
system, used by ADCO to build and revise plans. The plan
for an activity is represented in a UAF (unified ACR file),
which is the file that lists the ACR’s (actions) making up
the UAF; each ACR represents an action in the activity.
LEGACY acts as a form editor of UAF files. The upper left
panel displays and edits metadata about the activity
represented in the open UAF file. The lower left panel is a
view-only window displaying the descriptions of about two
actions (ACR’s); the active action is highlighted. The
upper right panel displays the active action, allowing the
user to change the action’s status and to move through the
file by selecting the next or previous actions. The bottom
right panel is the primary work area for editing the plan. It
displays the attribute values for the selected action and
allows the user to type in or select values for each of the
action’s attributes. When finished editing one action, the

user saves that action to the buffer displaying the UAF;
when finished editing one activity, the user saves the UAF
to the file system. Aspects of managing versions and file
names are handled automatically.

Mapping the representation and operations available in
LEGACY to the abstract domain structure shows up its
limitations. First, it provides no explicit representation of an
increment, of multiple activities, or of relations between
activities. The resulting lack of context means little support
is provided for understanding or interpreting activities or
their component actions. We lack detailed observation, but
broadly LEGACY is used to integrate information
determined other ways, rather than aiding in conceptual
planning or checking. The interpretive work of the user
takes place in the head or with other tools. Elements that
are not represented cannot be operated on. In addition,
though activities are minimally represented (as files), inside
LEGACY files can only be selected or saved: it is not
possible to edit an activity as a unit. For example, when an
activity or set of activities slips, e.g., due to a delayed
launch, the times of each action must be individually
changed. This is a major frustration point. ADCO operators
report trying to build their own calculators that will at least
derive the values needed when times are offset by some
increment. Second, there is no visual representation of time.
While real numbers are indeed ratio scale as needed to

appropriately represent time, representation only as text
rather than also in an analog, perceptual representation
means that understanding or changing time relations is a
high-effort cognitive calculation rather than one supported
by perception [6,23]. In sum, representation of the overall
structure is very incomplete and representation of structure
components (e.g., temporal relations) is far from ideal.

We illustrate how LEGACY is used with a typical revision
task, of the sort used in our study: shift the time of the
docking maneuver in a Soyuz docking activity an hour
later. 1) Using LEGACY’S browsing window, navigate
through the file system to find the file for the correct
activity. 2) Select the file to open the edit window in Figure
3. 3) Scroll through the file to find and select the intended
action. 4) In the edit panel change the Start Time and End
Time to an hour later. 5) Click the Revise-ARC button in
the lower right panel to enter the action; then click the
Generate-UAF button in the lower left panel to save the
activity file.

Figure 4 shows the window of NEW. An increment is
represented as a plan, activities are expandable hierarchical
events in a plan, and actions are component events. 1) The
top tool bar includes functions such as zoom and undo. 2)
The left panel displays the available plans, selectable by
clicking. 3) The central panel provides timeline views of an
increment. The top two colored time-lines are relevant to

Figure 2. LEGACY system represented in Left Panel, and NEW system represented in Right Panel. Dimmed
representations or operations show structure in the domain that is not expressed in the software. The NEW system

provides much better match to domain structure than does the LEGACY system.

!"#$%&'$()&

!*$)+&
!,)-).%&
!*$)+&/0-%$1-)&
!"#$%&'$()&
!"#$%&2%3)4&

!*$)+&
!,)-).%&
!*$)+&/0-%$1-)&
!"#$%&'$()&
!"#$%&2%3)4&

!*$)+&
!,)-).%&
!*$)+&/0-%$1-)&

!"#$"%"&'(')*&%+ 21)45%$678&

!"#$%&

!"#'()*&

+%",-.-%)&

!"#$%&

!"#'()*&

+%",-.-%)&

!",(')*&%+-".+
/,,+0($'123*,"+$",(')*&%+"4#,)5)'+

6)%'"$+$",(')*&%+(7*&8+/5')*&%+9+(7*&8+/5'):)')"%+"4#,)5)'+

;"7#*$(,+$",(')*&%+)&+:)%<(,=+$(')*1%5(,"+:)"2+

!"#$"%"&'(')*&%+

!*$)+&
!,)-).%&
!*$)+&/0-%$1-)&
!"#$%&'$()&
!"#$%&2%3)4&

!*$)+&/0-%$1-)&
!"#$%&'$()&
!"#$%&2%3)4&

21)45%$678&

!*$)+&
!,)-).%&
!*$)+&/0-%$1-)&
!"#$%&'$()&

!*$)+&
!,)-).%&

!"#$%&

+%",-.-%)&

!"#'()*&

+%",-.-%)&

!"#$%&

!"#'()*&

0($'123*,"+$",(')*&%+>?@A+,*2+,":",+

6)%'"$+$",(')*&%+>?@A+B*$+/5')*&%+

;"7#*$(,+$",(')*&%+)7#,)5)'+)&+'"4'+:(,<"%+*B+/5')*&+')7"%+

!",(')*&%+-".+

Figure 3. Screenshot of LEGACY system showing the four main function panels for editing plans. (The Actions attribute values
shown here are invented, do not reflect a real event, but illustrate the types of individually possible values .)

Figure 4. Screenshot of NEW system, showing the four main function panels for editing plans outlined in red. Dotted circles show 4

of the 5 repesentations of Activities

the tasks reported here. The top, Activities time line,
summarizes events at the activity level. The second, Plan
Hierarchy time line, provides two ways of accessing
actions from activities: a) the list on the left expands the
row to list the actions; b) the activity name within the
timeline can be clicked to expand to show the component
actions. The duration of activities and actions is indicated
by their display size in the timeline. Actions and activities
can be dragged and dropped to new times; a text field
displays the precise time of the current start point to guide
dropping. (Implementation issues limited the ease with
which events could be precisely dropped.) 4) The right,
Details-Edit panel allows display and edit of the attribute
values of a selected event. For a selected activity, its
component actions, time information, and meta-data are
displayed. For a selected action, the engineering data
(attitude, control, mass properties index, etc) and meta-data
are displayed. In addition, collections of actions can also be
selected and edited: if a constant value, say an updated
Mass Properties Index, is needed for all selected actions,
this can also be set through the Details Editor.

The following steps illustrate how to shift the time of the
docking maneuver in a Soyuz docking activity an hour later
in NEW. 1) Scan the increment plan for the intended
activity, and if needed, double click on the Activity in the
timeline or list at the left to open it. 2a) Drag and drop the
intended action in the timeline one hour later OR 2b) Click-
select the intended action, then type in the new start and end
time in the Details Edit Panel. [3) Plans are automatically
updated over an editing session and saved at the end of an
editing session.]

Mapping the representation and operations of NEW’s
information architecture and resulting interface to the
abstract domain structure shows the high-level
correspondence. Increments are represented as Plans,
setting the period displayed in the timeline. Activity and
Actions have four parallel representations; Activity has an
additional representation, in the Activities timeline. Four of
the representations of activities are circled in dotted
turquoise. The fifth, available for Actions as well, is a view
that appears with tooltip rollover. The tooltip display (not
shown) can be used to compare values of a second event
with the values of a selected event, shown in the Details
Edit Panel. NEW includes some additional functions not
relevant to this report. In sum, the overall domain structure
with all its elements and almost all relations is represented,
and represented in a way that allows relationships to be
quickly identified.

Predictions
The comparison of interaction designs with the domain
structure generates two types of predictions. First, if one
design provides better overall match than another, we
predict better overall performance with the better matching

system (particularly when the points of match of one
system are a subset of the match points of the other).
LEGACY provides a proper subset of the matches provided
by NEW. Better overall match should enable tasks to be
accomplished with fewer operations and should provide a
more coherent model of the work domain, thus enabling
better overall performance in NEW than in LEGACY.
Second, the mapping identifies the locus of match or
mismatch; the locus of differential match should predict the
locus of greatest performance difference. Differences in
representations and operations are greatest at the level
Activity. In contrast to NEW, LEGACY provides only
implicit representation of Activities (as a file), and no
editing operations can be done at the Activity level. Rather,
changes must be made individually to each action that
requires a change. Further, LEGACY does not enable
viewing at an Increment level or of any time span larger
than one activity, thus preventing seeing an Activity in
context. Thus, we predict that operations at the level of
Activity will be particularly disadvantaged in LEGACY vs
NEW.

We conducted a lab study comparing performance using
NEW vs LEGACY. This study focused on revising plans,
included a variety of tasks, and took two days. Tasks were
designed both to represent the types of editing normally
done by ADCO and to assess predicted differences between
systems. This paper reports Day 1 data for one editing task.
Preliminary analysis of the remaining edit data is consistent
with the pattern of findings reported here.

V. EXPERIMENT METHOD

Participants
Participants were technical students and thus rough
surrogates for ADCO trainees. The design was between-
subjects with nine LEGACY and eight NEW condition
participants. Degree of expertise varied within and was
matched between conditions. Each condition included 3
graduate students in aerospace engineering and 1 doctoral
student in another physical science, with upper level
undergraduates in science or engineering as the remaining
participants.

Materials & Tasks
To build the plan content used in the experiment, we
reconstructed the series of events of one as-flown increment
from ADCO documents. The content of our plans exactly
matched the actual plan, with the following exceptions
designed to make it easier for our users: 1) we divided that
increment into 3 smaller, “mini-increment” plans, 2) we
compressed the timing between activities, 3) we regularized
the timing and naming of actions within activities. In
addition, for users of LEGACY, we tried to make the file
directory structure as clear, simple, and best matched to
task demands as we could.

Revision of times and attitudes in response to updated
information forms the bulk of actual ADCO editing tasks.
Our experimental tasks also focused on time and attitudes.
Our goal was to have our users engage in tasks typical of
ADCO plan revision work and that also might best reveal
differences between systems.

Procedure
Participants began with training about the ADCO domain,
studying text and diagrams and answering questions. After
roughly an hour of ADCO training in the lab, participants
were trained for roughly a half hour on their respective tool
(less time on the simpler LEGACY). The tool training was
interactive and included “now you do it” actions for all of
component functions needed. After training, the participant
did two blocks consisting of 4 core editing tasks, including
Group Times. After these two blocks, users did a variety of
more conceptual tasks. They returned for a second day,
repeating and extending tasks from Day 1. This paper
reports Day 1 Group Times data.

The 12-item Group Times Task required users to reschedule
the times of four different collections of events: of an
activity, of several adjacent actions within an activity, of an
action, and of several adjacent actions spanning activities.
Table 3 details this structure. Presentation was blocked in
an effort to make it easier.

We predict different patterns of difficulty in NEW vs APU.
In NEW changing time of an Action or an Activity will be
comparable and fast, because the user can operate on a
single element. Changing the time of a group of actions,
within or between activities, will be slower. In APU,
changing the time of a single Action will be much faster
than changing the time of an Activity. Time to make a
change will be primarily a function of number of actions to
change, with some cost of switching Activities.

VI. EXPERIMENT RESULTS

Differences in Overall and in Pattern of Performance
Performance on Group Times items was better in NEW
than LEGACY, with average times of 59 seconds (SE=8.6)
versus 124 seconds (SE=8.2) per trial. We anticipated that
users would work as slowly as needed to be accurate, but in
fact error rates were high at 13% for NEW and 27% for
LEGACY. We did analyses with and without error
responses, with and without dropping outliers, aggregating
and separating blocks. We got very similar results.

Figure 5. Response time in seconds for the LEGACY and the
NEW conditions, on the 4 Group Times item types: shift an
Activity, shift Actions within an Activity, shift an Action, and
shift Actions spanning Activities.

Analysis with errors dropped, outliers included, blocks
pooled are reported, from a 2 (condition) x 4 (item type)
MANOVA.

The first question was whether overall performance was
better for participants who used NEW versus LEGACY.
LEGACY users took twice as long, and the condition effect
on time was strong, F(1,26)=23.20, p<.001. Overall greater
ease in NEW is mirrored in error rates half that of
LEGACY, as well.

The second question is whether the pattern of performance
differs between conditions as predicted. Response times are
shown in Figure 5. The condition by item type effect is also
strong, F(1.9,50.10)=9.9, p<.001, Greenhouse-Geisser
adjusted. Main effect of Item type is also strong
F(1.9,50.10)=32.43, p<<.001,Greenhouse-Geisser adjusted.
Most importantly, the relative difficulty (measured by time)
of the item types is very different, in the predicted pattern.
For LEGACY changing the time of a whole activity is
much slower (156 sec) than changing the time of a subset of
actions (119 sec), t(14)=2.46, p=.02; while for NEW the
reverse holds, with 23 sec. to change an activity and 76 secs
for a subset of actions within an activity t(14)=-6.39,
p<.001. Further, changing an activity takes the same time as
changing an action in NEW, but is much harder than an
action in LEGACY.

 Activity Actions in Activity Action Actions across Activity

trial 1 2 3 4 5 6 7 8 9 10 11 12

Block 1 6 2 5 4 2 3 1 1 1 6 5 3

Block 2 5 2 8 4 2 4 1 1 1 5 4 5

Ave #Act 4.67 3.17 1 4.67

Table 3. Group Times Items: Activity trials shift an activity. Actions-in-Activity shift a subset of actions in an activity. Action
shifts one action. Actions-across-Activities shift consecutive actions running across activities. Cell values are number of

actions in each item to be shifted, with average for each type of trial listed below. Trial shows item order.

Figure 6. Proportion errors for the LEGACY and the NEW

conditions, on the 4 Group Times item types: shift an Activity,
shift Actions within an Activity, shift an Action, and shift

Actions spanning Activities.

The error data divided by activity type and condition, in
Figure 6, show the same, predicted pattern as the response
times. Average times when error data were included were
very slightly longer than with errors excluded.

Results Summary
We found overall faster, more accurate performance for
participants using the system that better matches the domain
structure (NEW), than for the system with poor match
(LEGACY). Most importantly, we found the differential
patterns of performance predicted by DSA-match: NEW
was (equally) fast shifting Actions and Activities, and
slower when multiple individual actions within an activity
had to be selected; LEGACY was slow shifting Activities,
faster when only a subset of Actions in an Activity needed
to be changed, and, broadly, performance was faster the
fewer actions to move. This NEW advantage depends on
the availability of the Activity element.

Match to domain structure predicted clear, substantial
impact on usefulness and usability, both overall and in
determining where points of relative ease or difficulty will
be encountered. In turn, this suggests the value of
prioritizing domain structure analysis in conducting a needs
analysis. The study provides initial evidence that the DSA
approach is worth further development.

Our approach a) identified/created systems with large
differences in match to DSA and b) identified specific
performance patterns based on the differences in matching.
Support for these predictions provides one step in
supporting the claim that DSA distinctively contributes to
building better systems.

From a practical perspective we found that time needed for
editing tasks of the sort done by ADCO was cut in half and
errors comparably reduced with the NEW system. These
dramatic differences in performance are important, and we
hope they will contribute toward building better tools for
ADCO.

VII. CONCLUSIONS

Implications
The research we reported here illustrates how DSA can
guide the whole development cycle. We ran through the
cycle, in miniature, from needs analysis through design,
development, and evaluation. A domain structure analysis
identifies domain organization and the elements and
relations composing that organization. An explicit, external,
shared representation of this information is critical to
develop successful software. Interaction structure of a
candidate design can be matched to the DSA; alternative
designs can be compared for extent and locus of how each
matches to the DSA. Match and mismatch can generate
predictions about performance, which can be tested in the
target domain or in analogs that preserve domain structure.

When we carried out this cycle, we found large differences,
predicted by DSA match, in an experimental analog of
ADCO planning work. If validation accumulates, DSA
could be applied to novel design problems without resorting
to empirical test of predictions.

Relation to Prior Research
We share with many researchers the recognition that some
form of Needs Analysis is critical to guide the design and/or
evaluation of software and other socio-technological
systems. Several interrelated approaches have been
proposed, which prioritize different types of information yet
overlap considerably, e.g., task analysis may reveal
information about domain ontology through the objects and
agents involved in the tasks. We believe Domain Structure
Analysis can be efficiently and explicitly derived and is
particularly valuable for high-stakes, safety-critical,
problem-solving information work.

Our empirical evaluation compared a legacy system to one
designed to match the DSA, and found dramatic advantages
as predicted by DSA match. The study was ambitious in
that it sought evidence about the overall design process and
resulting system. A similar goal motivated an empirical
comparison of systems with displays that provided better
and worse match to the information needs in process
control, e.g. [17] cited in [3]; here the intent was to support
ecological interface design and the work analysis that
motivates it. Because the systems compared and the
process of developing them may differ in many ways these
system-wide comparisons cannot uniquely specify the
reason for a found benefit: multiple explanations for a
supported prediction are possible. In contrast, studies
which vary an isolated aspect of match to domain structure
can make more precise claims about the limited aspect
investigated.

Our approach compared a heuristic pair of applications: a
legacy system and a novel system that was feasible to
construct from pre-existing components. Heuristic
comparison is feasible in circumstances where assessing
minimally contrasting sets of applications is not.

Limitations
Our goal is to assess whether system performance improves
from better match to the DSA. The support from this study
is tempered because other differences between systems
might have contributed. We did not sample multiple
designs that matched versus violated the DSA, nor did we
assess minimally contrasting pairs. In a more ideal –and
very expensive study-- the effect of match to domain
structure would be assessed by testing multiple designs with
high versus low match to DSA. Further, our study did not
investigate relative effectiveness of different approaches to
needs analysis. Nor have we explored whether and when a
domain structure analysis may provide a sufficient needs
analysis and when it must be integrated with other
information. Additional investigation is called for.

Finally, a practical limitation concerning the ADCO domain
must be noted. The DSA addressed a limited scope of
work: that carried out by one individual. However,
communication, information exchange, and negotiation are
critical parts of ADCO planning work. While the prototype
we developed is a very promising basis for software
redesign, an extended Domain Structure Analysis for the
larger scope of work would be required prior to designing a
prototype adequate for actual planning.

Future work
Our underlying motivation is to understand how the process
of needs analysis can be made as efficient as possible. The
foundational step is understanding what information is
important, in what contexts. Based on this, we are working
to convert this understanding to technology. For example,
we are exploring how analysis of documents might
bootstrap building a characterization of domain structure;
we are also exploring how hypothesized domain-structure
might best be represented. We are aware of the costs, as
well as the value, of needs analysis for design and
evaluation. By understanding needs analysis we hope to
identify most efficient methods and tools, and to reduce the
burden of these effective needs analysis methods.

ACKNOWLEDGMENTS
We thank Erin Reed and Tarik Ward, the ADCO’s who
worked with us, taught us, and checked materials; and
Steven Hillenius, Melissa Ludowise, Mike McCurdy, and
the SPIFe development team for help with the software.
We thank Space Human Factors Engineering for funding.

REFERENCES
1. Beyer, H., and Holtzblatt, K. Contextual Design: Defining

Customer-Centered Systems. San Francisco, CA: Morgan
Kaufmann (1998).

2. Billman, D., Feary, M., Schreckenghost, D., & Sherry, L.
(2010) Needs Analysis: The Case of Flexible Constraints and
Mutable Boundaries. In Proc. CHI 2009, ACM Press pp.
4597-4612.

3. Burns, C. M., & Hajdukiewicz, J. R. (2004). Ecological
interface design. Boca Raton, FL: CRC Press.

4. Butler, K.A, Jiajie Zhang, J., Esposito, C., Ali Bahrami, A.
Ron Hebron, R., & David Kieras. Work-Centered Design: A
Case Study of a Mixed-Initiative Scheduler. In Proc. CHI
2007, ACM Press (2007).

5. Butler & Zhang (2009) Design models for interactive problem-
solving context & ontology, representation & routines. In
Proc. CHI 2009, ACM Press pp. 4315-4320.

6. Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999).
Information visualization: Using vision to think. San
Francisco, CA: Morgan-Kaufmann.

7. Chilana, P.K., Wobbrock, J.O., & Ko, A.J. (2010)
Understanding Usability Practises in Complex Domains. In
Proc. CHI 2010, ACM Press pp. 2337-2346.

8. Diaper, D. & Stanton, N.A. (2004) The Handbook of Task
Analysis for Human-Computer Interaction. LErlbaum
Associates, Mahway, NJ.

9. Elliott, G., Crawford, J., Watson, M., Sanderson, P., & Naikar,
N. (2000). Knowledge elicitation techniques for modeling
intentional systems with Cognitive Work Analysis.
Proceedings of the Fifth Australian Aviation Psychology
Symposium.

10. Ellis, S. R. (2000). Collision in Space. Ergonomics in Design:
The Quarterly of Human Factors Applications, 8(1), 4-9.

11. Feary, M., Sherry, L., Polson, P., and Fennel, K. (2003)
Incorporating Cognitive Usability into Software Design
Processes. In Harris, D., Duffy, V., Smith, M., and Stephandis,
C. (Eds.), Human-Centered Computing: Cognitive, Social, and
Ergonomic Aspects, Volume 3, Lawrence Erlbaum, Mahweh,
NJ, p. 427-431.

12. Feltovich, P. J., Hoffman, R. R., Woods, D., and Roesler, A.
(2004). Keeping It Simple: How the Reductive Tendency
Affects Cognitive Engineering, IEEE Intelligent Systems,
May-June, IEEE Computer Society Publications Office, Los
Alamitos, CA, p.90-95.

13. Johnson, H., & Johnson, P. (1991). Task knowledge structures:
Psychological basis and integration into system design. Acta
Psychologica, 78, 3-26.

14. Kieras, D. E. (1996). Task analysis and the design of
functionality. In A. Tucker (Ed.) The Computer Science and
Engineering Handbook (2nd Ed). Boca Raton, CRC Inc.

15. Leveson, N. (1995) Safeware: System Safety and Computers.
Addison-Wesley, New York, NY, USA.

16. McCurdy, M. (2009) Planning Tools for Mars Surface
Operations: Humn-Computer Interactions Lessons Learne.
IEEE AC.

17. Moradi-Nadimian (2003). Cited in Burns, C. M., &
Hajdukiewicz, J. R. (2004). Ecological interface design. Boca
Raton, FL: CRC Press.

18. Perrow, C. (1984). Normal Accidents: Living with High-Risk
Technologies. New York: Basic Books, Inc., Publishers.

19. Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994).
Cognitive systems engineering. New York: Wiley.

20. Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (2000).
Cognitive task analysis. Mahwah, N.J.: L. Erlbaum Associates.

21. Vicente.K. (1999). Cognitive Work Analysis: Toward Safe,
Productive, and Healthy Computer-based Work. LErlbaum
Associates, Mahway, NJ.

22. Zacks, J. M. T., B. (2001). Event structure in perception and
conception. Psychological Bulletin, 127, 3-21.

23. Zhang J. (1996). A representational analysis of relational
information displays. International Journal of Human-
Computer Studies, 45, 59-74.

