National Aeronautics and Space Administration

Reduction of Launch Mass with Solar Sail Propulsion

Mars Sample Return Concept Study

Presented by Tiffany E. Russell

DEPLOYTECH Background

 Three year project awarded to Surrey Space Center by the European Commission

Three main objectives for the DEPLOYTECH Project

- Advance technology readiness levels of space deployable technologies
- Develop updated mathematical models to analyze deployable structures
- Develop testing methods and facilities for ground based tests of space deployable structures
- Partnership between NASA MSFC and University of Surrey to aid in development of space deployable technologies
 - Principal Investigators: Les Johnson and Vaios Lappas
 - NASA MSFC Engineering Directorate Support

Planetary Science Decadal Survey Mission

- Three 'separate' missions to remain under cost caps
 - Astrobiology Explorer (Rover)
 - Sample Return Orbiter (with EEV)
 - Sample Return Lander (with Ascent Stage)

MSR ERS Modifications

Replace Sample Return Orbiter MPS system with solar sail

- Maintain EEV from Decadal Survey Mission
- Determine solar sail characteristics (size, mass, etc.)
- Determine new spacecraft characteristics (size, mass, etc.)

Mission Concept Assumptions

- Repackage the Sample Return Orbiter to minimize mass and redundancy
- Launch with Max-C rover on Atlas V 551 in 2028
- Use solar sail as main interplanetary propulsion system
 - Case 1 Mars-to-Earth transfer only
 - Case 2 Earth-to-Mars and Mars-to-Earth
- Limited RCS for course correction and sample rendezvous procedures
- Orbiter and ERS separate at Mars, ERS only returns to Earth with sample

Not to scale

Not to scale

Case 1: Mars Spiral Out

Assumptions

- Area = 18,887 m2
- Payload Mass = 200 kg
- Sail Mass = 115 kg
- 🔶 2.5 μm CP1
- Sun Synchronous Orbit
- Start at 500 km Circular orbit
- 93.2 inclination
- Characteristic
 Acceleration = 0.50
 mm/s2
- Time of Flight is 435 days

7

Case 1 & 2: Mars-to-Earth Transfer

Assumptions

- Leaving Mars at perihelion
- Initial orbit Mars orbit
- V_{inf} of arrival of 6.4 km/s2
 - Entry velocity of 12.8 km/s2
- Time of Flight is 507.5 days

Case 2: Earth-to-Mars Transfer

Assumptions

- Leaving Earth with a C3 of zero
- Sail deployed after TMI burn by launch vehicle
- Characteristic
 Acceleration = 0.50
 mm/s2
- Time of Flight is 758.5 days

9

Structures: Finite Element Analysis
 Power: Power Distribution Schematic

vance

12

1400495.

992582

7935363

4463973

2480321

1984408. 1488495. 992582. 496669.

Case 1	Predicted Mass (kg)
Max-C Entry System	1550.7
Descent Stage	1313.1
Pallet	327.5
Max-C Rover	364.5
ACO Orb+ERS	1947.5
Total	5503.3

Case 2	Predicted Mass (kg)
Max-C Entry System	1550.7
Descent Stage	1313.1
Pallet	327.5
Max-C Rover	364.5
ACO Delta Orb+ERS	508.8
Total	4064.6

Launch Summary		
2028 Atlas V 551 Mass (kg)	5150	
Delta Mass (kg)	4064.6	
Launch Contingency:	21%	

14

- Presented to the Mars
 Project for consideration
- Dual launch manifest enabled if a solar sail is utilized on a round trip
- Repackaged the Orbiter and Earth Return System into a configuration that allows stowage and deployment of the 150 M solar sail system

Met all mission requirements and would eliminate one Atlas V launch saving the project time and money!

