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In late 2014, NASA will fly the Orion capsule on a Delta IV-Heavy rocket for the 

Exploration Flight Test-1 (EFT-1) mission.  For EFT-1, the Orion capsule will be flying with 

a new GPS receiver and new navigation software.  Given the experimental nature of the 

flight, the flight software must be robust to the loss of GPS measurements.  Once the high-

speed entry is complete, the drogue parachutes must be deployed within the proper 

conditions to stabilize the vehicle prior to deploying the main parachutes.  When GPS is 

available in nominal operations, the vehicle will deploy the drogue parachutes based on an 

altitude trigger.  However, when GPS is unavailable, the navigated altitude errors become 

excessively large, driving the need for a backup barometric altimeter to improve altitude 

knowledge.  In order to increase overall robustness, the vehicle also has an alternate method 

of triggering the parachute deployment sequence based on planet-relative velocity if both the 

GPS and the barometric altimeter fail.  However, this backup trigger results in large altitude 

errors relative to the targeted altitude.  Motivated by this challenge, this paper demonstrates 

how logistic regression may be employed to semi-automatically generate robust triggers 

based on statistical analysis.  Logistic regression is used as a ground processor pre-flight to 

develop a statistical classifier.  The classifier would then be implemented in flight software 

and executed in real-time.  This technique offers improved performance even in the face of 

highly inaccurate measurements.  Although the logistic regression-based trigger approach 

will not be implemented within EFT-1 flight software, the methodology can be carried 

forward for future missions and vehicles. 

Nomenclature 

EFT-1  = Exploration Flight Test-1 

MPCV  = Multi-Purpose Crew Vehicle 

GPS  = Global Positioning System 

FBC   =    Forward bay cover 

EI  = Entry interface (400,000 feet) 

PDS   =   Parachute deployment sequence 

GN&C   =   Guidance, Navigation, & Control 

θ  = Parameter vector 

   = Feature vector 

    = Hypothesis function, parameterized by θ 

ANTARES  =  Advanced NASA Technology Architecture for Exploration Studies 

IMU   =  Inertial measurement unit 

RCS   =  Reaction control system 
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I. Introduction & Motivation 

HE Orion Multi-Purpose Crew Vehicle (MPCV) will be launched aboard a Delta IV-Heavy rocket for 

Exploration Flight Test-1 (EFT-1).  Once the vehicle completes a single revolution in the initial parking orbit, 

the upper stage will re-ignite to inject the vehicle into a highly eccentric orbit.  The orbit has a very high apogee, 

but the perigee has dropped below the surface of the Earth.  After injecting into this elliptical orbit, the vehicle will 

coast to apogee and accelerate back to Earth.  The vehicle will encounter Earth’s atmosphere at approximately 

29,000 feet per second and will fly a high-speed entry trajectory to deliver the vehicle to a targeted water landing in 

the Pacific Ocean, west of Baja California.  During entry, the vehicle will deplete its energy through atmospheric 

drag and slow itself until its becomes subsonic.  During the final descent, the vehicle will first jettison the Forward 

Bay Cover (FBC), a protective covering on the apex end of the vehicle.   Immediately after FBC jettison, two drogue 

parachutes will be deployed to dampen the vehicle attitude rates and further slow the vehicle’s descent.  After a 

given amount of time and/or altitude conditions are met, the vehicle will release the drogue parachutes and 

immediately deploy its three main parachutes.  While the main parachutes are deployed, the vehicle will continue to 

slow its descent so that the vertical velocity at water impact is survivable.  Once water impact has been detected, the 

vehicle will cut away the main parachutes. 

 This sequence of jettisoning the forward bay cover (FBC), deploying the drogue parachutes, releasing the drogue 

parachutes, and deploying the main parachutes shall be referred to as the parachute deployment sequence, or PDS.  

The PDS is designed to begin once the vehicle has fallen through an altitude threshold, currently targeted at 24,000 

feet. 

 During hypersonic entry, the vehicle will become engulfed in ionized flow, and this flow will prevent the GPS 

receiver from receiving GPS information.  During this period, the vehicle will rely on sensed accelerations from its 

inertial measurement units (IMUs) to update its navigation solution.  Once the vehicle has decelerated sufficiently so 

that there is no longer ionized flow, the GPS receiver is expected to reacquire GPS satellites and begin updating its 

navigation solution based on the high-precision measurements.  As planned, the GPS receiver is expected to 

reacquire prior to the critical parachute deployment sequence. 

 However, this is the first spaceflight for this particular GPS receiver and the navigation software.  In the event 

that there is an anomaly preventing the GPS receiver from reacquiring, the vehicle is equipped with three redundant 

barometric altimeters that can provide altitude information in the atmosphere.  However, the barometric altimeters 

may produce unreliable altitude estimates due to local variations in the barometric pressure. 

 In the event that the GPS receiver fails to reacquire and the barometric altimeters have failed, there exists an 

additional backup trigger (tertiary) which serves to initiate the parachute deployment sequence.  This backup trigger 

compares the vehicle velocity relative to a pre-stored velocity vector that is representative of the nominal drogue 

parachute deployment condition.  Once the vehicle velocity vector becomes close enough to the representative 

velocity vector (within some tolerance), the vehicle will activate the parachute deployment sequence.  This backup 

velocity-based trigger has been evaluated in Monte Carlo flight simulations, and its performance has been 

documented in [1] and [2].  The best altitude performance achieved with this technique produced altitude spreads in 

excess of 25,000 feet when the minimum altitude was no less than 24,000 feet. 

 As a tertiary trigger (two failures deep), this performance was deemed acceptable by the Orion MPCV Program 

for the first flight test for Orion.  However, it is desirable to develop a more accurate trigger for future missions to 

provide more robustness. 

 This paper focuses on bridging the large chasm that typically exists between the mathematical formulation of an 

algorithm and its practical implementation in actual flight software.  It introduces a statistical technique, known as 

logistic regression, which may be employed for certain problems to reduce the difficulty of identifying and 

developing robust flight software triggers. 

II. Flight Software Triggers 

In this section, an overview of the need for and typical development of flight software triggers is discussed.  A 

space vehicle’s flight software must be capable of switching from one mode to another in order to achieve mission 

objectives.  For example, once the sensible atmosphere is detected, the spacecraft should begin flying entry 

guidance.  Once hypersonic entry flight is completed, then the vehicle should initiate its final descent sequence by 

deploying parachutes to stabilize and slow itself in order to reduce its terminal descent rate for splashing down in the 

ocean.  Finally, once the vehicle splashes down in the ocean, the reaction control system (RCS) jets should be 

disabled so that the local area is not contaminated with hydrazine, a hazard to recovery forces.   

In each of these cases, the vehicle must have some criteria for activating a particular logic path or switching 

logic paths in flight software.  While conceptually simple, GN&C designers must design triggers that work reliably 
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in a wide range of potential scenarios using only the information that the on-board vehicle has at the time.  Given 

navigation system failures, the difficulty of developing triggers insensitive to knowledge errors is compounded.  For 

actual flight implementations, GN&C engineers must contend with noisy sensor data, as opposed to smooth signals.  

As a result, a simple trigger involving a threshold can be inadvertently activated by a noisy signal spiking briefly 

over the threshold.  To mitigate these spurious signals, auxiliary variables known as persistence counters are 

frequently employed.  Persistence counters simply count the number of consecutive instances that a given condition 

is true.  Once the persistence counter reaches a certain value, then the algorithm trusts that the trigger is not being 

fooled by spurious sensor noise.  However, these persistence counters must also be tuned, and by their very nature, 

they add latency to the system in detecting events, adversely impacting system performance. 

For these reasons, the triggers designed for operational flight software tend to use multiple conditions to mitigate 

noisy sensor readings and navigation system errors.  Traditionally, GN&C algorithm developers have embraced the 

use of simple comparisons that can be easily encoded into software through the use of if-then statements.  As a 

result, triggers have been primarily conceived along the lines of simple comparisons against thresholds or table 

values.   

However, for many problems, it is very difficult to accurately isolate a condition with a single variable.  Instead, 

the conditions must be based on several variables to account for the high-dimensionality of the conditions.  If the 

designer chooses to isolate the condition by using if-then statements to account for all possible scenarios, they may 

be forced to exhaustively bound the multidimensional region of acceptable solutions.  This approach is time-

consuming and prone to logical errors.  Additionally, the threshold values typically need to be tuned manually.  

Inevitably in the design cycle, there will be vehicle change or performance change which may invalidate the original 

trigger threshold values.  As a result, the designer may be required to re-tune the threshold values and revisit the 

logic to ensure its design is still valid.  Finally, once all the conditions have been defined for the trigger, the software 

complexity has grown substantially, requiring a lengthy software testing and validation effort. 

III. Logistic Regression Overview 

 Logistic regression is a statistical technique used to classify data into categories.  It has been employed by 

statisticians and the machine learning community to classify data based on its characteristics.  The simplest form of 

logistic regression simply classifies data into two categories, and this simplified version is known as binary logistic 

regression.  The remainder of this paper will focus on applying binary logistic regression to the problem of creating 

triggers that activate for some targeted condition. 

Whereas linear regression attempts to fit a straight line (or surface) to a dataset to predict a continuously-valued 

output, logistic regression attempts to fit a logistic function, also known as a sigmoid function, to a dataset.  The 

logistic function is an S-shaped curve which has continuous output bounded between 0 and 1 for all input values.  

The logistic function can be written as 

  ( )   
 

     
  

 

 

 

where     is known as the hypothesis function,   is known as the parameter vector, and   is the input vector.  The 

parameter vector   holds constant values that help determine the shape of the multivariate logistic fit.  For a given 

input vector  , and parameter vector  , the value of    is determined.  This model is analogous to the linear 

regression fit which can be expressed as: 

 ( )                       ̅
  ̅ 

 

 A notional logistic function is visualized in the figure below: 
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Figure 1: Notional Logistic Function 

 While linear regression fits can be achieved in closed-form by solving the normal equation, a logistic function is 

typically fit using the least-squares gradient descent algorithm.  The output of the function,   , can be interpreted as 

the likelihood that the input vector   belongs to the target class    . 

In order to use this approach for classifying data, one must provide the algorithm with many training examples 

with their respective labels specifying to which class the example belongs.  The algorithm then iterates on   to 

minimize the error between the predicted value of    and  , the truth labels specifying the correct class.  Once the 

gradient descent algorithm has converged, the parameter vector   has been been determined, and the logistic 

function is ready to classify new data. 

The combination of the the logistic function and the parameter vector   is typically known as the classifier.  To 

classify data, a new input vector   is provided to the classifier and the resulting value indicates the likelihood that 

the hypothesis is true (that     for this input vector  ). 

IV. Application of Logistic Regression to Flight Software Triggers 

Logistic regression was identified as an alternative approach to the problem of developing flight software 

triggers because it tolerates noisy data and does not require perfect separation of classes. 

Logistic regression can be applied to this problem by providing training examples to the algorithm which show 

examples of vehicle states where the vehicle should and should not have initiated its parachute deploy sequence.  

Next, the logistic regression algorithm will determine the characteristics which tend to distinguish between the two 

classes of data.  Once the parameter vector   is determined through gradient descent optimization, the trigger is 

ready to be used. 

Logistic regression is very well suited to the problem of detecting a complex, multi-dimensional vehicle state 

with noisy data.  Whereas the IF-statement style logic is easy to conceptualize, it cannot easily account for noisiness 

in the data.  Logistic regression acknowledges that the data is noisy and that perfect separation between classes is 

generally not possible.  Even if there is no strong single indication, logistic regression may use several weak signals 

to determine whether or not the target condition is true. 

Furthermore, logistic regression can be semi-automated so that triggers can be more easily generated without 

requiring substantial tuning analysis.  The trigger is automatically developed on the ground using the logistic 

regression algorithm, and the resulting parameter vector is stored as a pre-specified vector of numbers to be used in 

flight software.  The flight software simply evaluates the logistic function with the pre-loaded parameter vector and 

the measured values from the feature vector. 

V. Implementation 

Using the 6-degree-of-freedom Advanced NASA Technology Architecture for Exploration Studies (ANTARES) 

trajectory simulation system and Orion flight software, 3000 Monte Carlo trajectories were flown from entry 
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interface (EI) to splashdown using the initial conditions for EFT-1.  During the simulated flights, the GPS receiver 

and barometric altimeters were disabled so that the navigation solution was informed solely by the inertial 

measurement unit’s (IMU’s) measurements during entry.  Additionally, the parachutes were disabled so that the 

trajectory dynamics were not influenced by parachute deployment events.   

For each trajectory, the time-series values of various trajectory parameters was recorded.  These parameters 

include: 

 Navigated altitude  

 Atmospheric relative velocity magnitude 

 Sensed aerodynamic acceleration magnitude 

 Time elapsed since 0.2Gs (1.960 m/s
2
) of acceleration was first detected 

 Navigation estimate of Mach number 

 Navigation estimate of dynamic pressure 

These parameters, among others, were included in the set of available features for the logistic regression 

algorithm for this analysis.  At each timestamp in the trajectory, the value of each variable is concatenated into a 

single vector.  Additionally, truth altitude from the simulation was recorded so that the training examples could be 

labeled with the correct command. 

At each time step (1Hz) in each trajectory, each feature vector  ̅ was associated with its respective label   .  For 

all feature vectors above a truth altitude of 25,000 feet, the associated label was    , indicating that the parachute 

deployment sequence should not be initiated.  This altitude of 25,000 feet was selected so that the spread of altitude 

at PDS initiation was biased slightly above 24,000 feet, the lowest acceptable altitude for PDS initiation.  It is much 

more acceptable to deploy slightly too early at a higher altitude than to deploy too late at a lower altitude.  All 

feature vectors below a truth altitude of 25,000 feet were labeled as    , indicating that the parachute deployment 

sequence should be initiated.  Using gradient descent, a statistical fit was produced for the provided training data and 

labels.  The final output of the algorithm was the parameter vector  . 

Within flight software, the trigger can be evaluated (tersely) in a single line of code.  However, for clarity, the 

logic shall be expanded into multiple lines for the purposes of this paper.  In the MATLAB programming language, 

the code can be expressed as: 

 
>> h = 1 / (1 + exp(transpose(-theta)*x)); 

>> command = h > threshold; 

 

This small snippet of code evaluates the logistic function and compares the value against a pre-specified 

threshold.  If the current value of the logistic function exceeds the threshold, then the trigger is activated. 

This trigger does not require many lines of code for on-board implementation and is easy to verify.  

Additionally, the evaluation of the trigger is computationally inexpensive, requiring only a single exponentation of a 

vector.  This approach mitigates the massive complexity associated with the traditional IF-statement approach.  

Because the equation is easily vectorized, one can add or subtract new features from the feature vector and continue 

to use the exact same logistic function code.  This flexibility allows engineers to continue to improve performance 

even after flight software code has been frozen for development.  Changes to the trigger can be made completely 

through configuration data. 

Designers are able to specify the activation threshold that the logistic function output must exceed to activate the 

command.  A higher activation threshold effectively requires the trigger to be more confident in its input signals 

before activating, whereas a lower activation threshold is more prone to triggering with less reliable information.  

The model fitting process attempts to balance the false positives and false negatives in its classification performance.  

Consequently, for a well-fit model, the mean PDS initiation altitude tends to be very near the targeted altitude 

condition.  In this application, the vehicle tends to deploy at higher altitudes when the activation threshold is low; 

conversely, for higher activation threshold, the deployment altitudes tend to be lower.  It is desirable to ensure that 

the lowest deployment altitude should not fall below the targeted altitude.  As a result, one may select an activation 

threshold slightly less than 0.5 such that the altitude spread is shifted slightly higher so that no deployments occur 

below the target altitude. 

VI. Results 

A large set of trajectory parameters were evaluated for their fitness with respect to logistic regression.  A subset 

of those trajectory parameters, their associated classifiers, and their classifier performance are presented in this 

section, as well as a selected vector of the best trajectory features used to perform multivariate logistic regression. 
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Each trigger presented was trained on 200 trajectories and tested against 600 trajectories.  For each trajectory, the 

altitude at which the trigger first commanded the parachute deployment sequence (PDS) was recorded, and the PDS 

altitudes were plotted in a histogram to visualize the distribution.  For each altitude distribution, statistics were 

computed to characterize performance, allowing for easy comparison between features and classifier models. 

For numerical reasons, all input features were normalized such that all values of the variable are mapped into the 

[-1, 1] domain.  This technique increases the speed of convergence when fitting the parameter vector.  As a result, 

all values of the features shown in the following plots will be normalized between -1 and 1. 

A. Truth Altitude 

As a test case, it is instructive to see how this approach subsumes the standard approach of comparing the 

altitude against some threshold, such as: 

 
IF (altitude < ALTITUDE_THRESHOLD) THEN Deploy 

 

For this reason, the truth altitude was used as the only feature available in the training data.  All data points in 

which the truth altitude is below the targeted deployment altitude of 25,000 feet are labeled with a “1” and all cases 

above that altitude are labeled as a “0.”  As one should expect, there is perfect separation between these two classes, 

as shown in Figure 2.  Given the perfect separation between classes, the fitting a logistic function to this dataset 

should result in an excellent fit.  The training dataset and the resulting model are shown below. 

 
Figure 2: Distribution of  altitude classes and the logistic model fit 

The model is fit such that errors are balanced about the target condition, resulting in the ideal model activation 

threshold of 0.5.  However, it is instructive to demonstrate how the altitude performance varies when the activation 

threshold is varied between values of 0.1 to 0.9.  For each activation threshold, the spread in deployment altitude is 

shown for 600 dispersed trajectories. 

Each red dot represents the altitude at PDS initiation for a single case.  The dashed red line represents the desired 

target altitude for PDS initiation (25,000 feet).  The dashed black lines connect the ±3σ altitude cases, shown as 

black triangles, and the black squares represent the mean PDS initiation altitude for each distribution. 
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Figure 3: Altitude spread at PDS using a truth altitude classifier at varying activation thresholds 

For the activation threshold of 0.5, the spread in altitude for the 600 dispersed trajectories tested is 550 feet with 

a minimum altitude of approximately 25,200 feet.  This indicates that the trigger is very well-tuned. 

This example demonstrates the viability of this approach for idealized, perfect information, and it demonstrates 

the best altitude spread achievable using the logistic regression approach.  Unfortunately, the spacecraft does not 

have knowledge of the true altitude.  The spacecraft’s knowledge is limited to the accuracy of the navigation 

solution, which may grow in error when measurements are scarce. 

B. Navigated Altitude 

For actual implementation in real flight software, the truth altitude is unavailable.  Instead, the navigation 

solution must be used as the source of altitude information.  For this scenario when the vehicle does not have GPS or 

barometric altimeter measurements, the navigation accuracy degrades throughout hypersonic entry due to navigation 

attitude errors at entry interface.  Specifically, the navigation altitude errors at low altitudes are sensitive to 

navigation attitude errors at entry interface.  Due to small errors in the navigation attitude solution will lead to 

aerodynamic accelerations being applied to the slightly “wrong” direction during entry.  Consequently, the altitude 

errors at low altitude tend to be relatively large after substantial aerodynamic acceleration has been experienced 

during entry flight. 

For this case, the navigated altitude was used as the singular feature in the training set.  After associating each 

navigation altitude with the truth label (above or below the targeted deployment altitude), the two groups are 

visualized in Figure 4. 
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Figure 4: Class distribution for navigated altitude 

Inspection reveals significant overlap between the two classes.  The overlap between the classes serves to reduce 

the tightness of the fit model, which will tend to increase the classification errors. 

After fitting the model, the new trigger is evaluated against the test data over a range of activation thresholds.  

The altitude spread for each activation threshold is shown in Figure 5.  Each red dot represents the altitude at PDS 

initiation.  The dashed red line represents the desired target altitude for PDS initiation.  The dashed black lines 

connect the ±3σ altitude cases, shown as black triangles, and the black squares represent the mean PDS initiation 

altitude for each distribution. 

 

 
Figure 5: Altitude spread at PDS using a navigated altitude classifier at varying activation thresholds 

Given the noisy altitude data, it is clear that the altitude deployment spread has grown substantially.  As shown 

in the figure above, the spread of altitude at PDS initiation is unacceptable; many cases crash before initiating the 

parachute deployment sequence.  For this reason, it is clearly unacceptable to attempt to initiate the PDS solely 

based on navigated altitude in the no-GPS, no-barometric altimeter failure scenario. 

C. Truth Relative Velocity Magnitude 
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In this example, the training set uses only truth atmospheric relative velocity magnitude as the single feature.  

The intent is to determine how suitable relative velocity magnitude is as a training parameter.  Visualizing the 

distribution of the values of truth velocity magnitude for the different classes reveals some minor overlap between 

classes.  The fit model output is shown in Figure 6 for the spread of normalized velocity values.  The fit logistic 

function reaches its peak value in this interval of [-1 1] just above 0.6.  This implies that setting activation thresholds 

above 0.7 will result in cases never initiating the PDS. 

 
Figure 6: Class distribution for truth relative velocity magnitude 

This model has been evaluated against the testing data to assess its altitude performance for a range of activation 

thresholds, and the altitude performance is shown in Figure 7.  Each red dot represents the altitude at PDS initiation.  

The dashed red line represents the desired target altitude for PDS initiation.  The dashed black lines connect the ±3σ 

altitude cases, shown as black triangles, and the black squares represent the mean PDS initiation altitude for each 

distribution. 

 
Figure 7: Altitude spread at PDS using a truth relative velocity magnitude classifier at varying activation thresholds 

For the activation threshold of 0.5, the minimum altitude was approximately 33,000 feet, and the altitude spread 

was approximately 9,000 feet for the 600 trajectories evaluated.  For all activation thresholds tested above 0.5, no 

cases deploy because of the statistical fit.  Regardless of how low of altitude the vehicle thinks it is at, the output of 

the logistic function is failing to deploy at all thresholds of 0.6 and higher, as evident in Figure 7.  All of the 
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initiation altitudes for activation thresholds of 0.6 and higher are all zero, implying that the vehicle never initiated 

the PDS prior to impacting the Earth.  However, for a properly selected activation threshold, the relative velocity 

magnitude has a relatively tight spread in altitude performance.   

D. Navigated Relative Velocity Magnitude 

Although truth velocity was a suitable parameter for triggering the parachute deployment sequence, the on-board 

vehicle does not know the true velocity; instead, it must use its navigated value, as was the case with altitude.  For 

the navigated velocity magnitude, the distribution of values per class is shown as well as the model fit.  

 
Figure 8: Class distribution for navigated relative velocity magnitude 

 As visible in Figure 8, there is substantial overlap between the classes for the navigated relative velocity 

magnitude.  However, there are far more data points in the     class than the     class over the majority of the 

interval, resulting in the model fit shown in red.  Only at very low velocities does the fraction of     cases exceed 

the number of     cases, and this change in relative frequency is what causes the fit logistic function to rise at low 

velocities.  As was the case in the truth relative velocity magnitude, the peak value of the logistic function does not 

reach 1.0 within this interval.  Instead, it peaks at approximately 0.57.  For this reason, all activation thresholds 

above this peak value will result in no trajectories initiating the PDS. 

 This model, only using navigated relative velocity magnitude, was evaluated at a variety of activation 

thresholds, and the resulting altitude performance was plotted in Figure 9.  Each red dot represents the altitude at 

PDS initiation.  The dashed red line represents the desired target altitude for PDS initiation.  The dashed black lines 

connect the ±3σ altitude cases, shown as black triangles, and the black squares represent the mean PDS initiation 

altitude for each distribution. 
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Figure 9: Altitude spread at PDS using a navigated relative velocity magnitude classifier at varying activation thresholds 

At the activation threshold of 0.5, there are many cases which impact the Earth without initiating the PDS.  For 

this reason, the distribution of altitude at 0.5 is non-Gaussian due to so many cases impacting the Earth; therefore, 

the ±3σ curves lay significantly outside the dataset due to the non-Gaussian distribution.  However, at the activation 

threshold of 0.4, the PDS altitude spread is relatively tight, approximately 14,000 feet; the minimum altitude of 

approximately 57,000 feet.  While this is high above the targeted condition, the spread is relatively tight in 

comparison with the navigated altitude performance documented in section B. 

 Just as with the true navigated relative velocity, the activation thresholds larger than 0.5 fail to initiate the PDS 

because the value of the logistic function is bound by a maximum value of approximately 0.57 at minimum altitude.  

For this reason, activation thresholds of larger than this value will not initiate the PDS sequence. 

 Clearly, using a classifier soley based on relative velocity magnitude is not sufficient to provide adequate 

performance.  However, relative velocity magnitude offers value as a member of a multivariate training set, 

described later. 

E. Elapsed Time since 0.2Gs 

While slight errors in an IMU alignment may result in large altitude errors after entry flight, the accelerometers 

in an IMU capture the magnitude of aerodynamic accelerations very well.  For this reason, aerodynamic acceleration 

magnitude is reliable signal with little error.  Given the reliability of this signal, it would be simple to measure the 

elapsed time from the first time that the total acceleration magnitude sensed by the IMU exceeds some small 

threshold indicating atmospheric entry.  For this study, the threshold was arbitrarily set at 1.960 m/s
2
, or 0.2 Gs.  For 

all vehicle the elapsed time was computed since 0.2Gs of aerodynamic acceleration was detected. 

As shown in Figure 10, it is apparent that elapsed time is a powerful feature for applying logistic regression; 

there is very small ovelap between the classes, and the logistic fit is very tight.  This type of visualization is helpful 

to the designer, indicating that a very information-rich feature variable has been identified. 
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Figure 10: Class distribution for elapsed time since 0.2G (~1.96 m/s2) 

After training a classifier using only elapsed time since 0.2G (1.96 m/s
2
), the classifier performance was 

evaluated on 600 trajectories for a range of activation thresholds.  For each activation threshold, the altitude spread 

is shown in Figure 11.  Each red dot represents the altitude at PDS initiation.  The dashed red line represents the 

desired target altitude for PDS initiation.  The dashed black lines connect the ±3σ altitude cases, shown as black 

triangles, and the black squares represent the mean PDS initiation altitude for each distribution. 

 
Figure 11: Altitude spread at PDS using a elapsed time classifier at varying activation thresholds 

It is very apparent that using elapsed time since 0.2G (1.96 m/s
2
) is a very powerful metric.  The spread in 

altitude is very consistent across activation thresholds, and so one may simply choose a suitable activation threshold 

to ensure that all PDS initiations occur above 25,000 feet, the targeted altitude floor.   

The mean value of PDS initiation altitude for the 0.5 activation threshold is nicely centered about the targeted 

altitude condition, indicating that the model fit has properly balanced the false positives and false negatives.  

However, it is desired to have no cases initiating PDS at altitudes lower than the altitude targeted floor of 25,000 

feet.  Across all activation thresholds considered, the altitude spread changes very little.  This suggests that no 

significant loss of altitude spread (accuracy) is required to shift the distribution of PDS initiation altitudes such that 

the distribution is shifted above 25,000 feet. 
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F. Multiple Features 

While the previous subsections described the altitude performance while using single features in a logistic 

regression model, this section will use multiple features to create a multivariate logistic fit in order to improve 

performance.  For each considered feature, its standalone performance was used as the criterion to determine 

whether or not it should be included in the set of features in the multivariate logistic fit.  The selected set of features 

include:  

 Navigated altitude 

 Navigated relative velocity magnitude 

 Elapsed time since sensing 0.2Gs of aerodynamic acceleration 

 Sensed aerodynamic acceleration 

 Navigated Mach number 

 Navigated dynamic pressure 

After fitting the parameter vector to the training data, one may inspect the elements of the parameter vector to 

gain insight into which parameters are powerful.  In this case, the parameter vector contained the following values: 

 

Constant Altitude Velocity Time Aerodynamic 

Acceleration 

Mach  Dynamic 

Pressure 

1.37 -1.45 -2.27 21.43 1.38 -2.16 1.43 

 

The first element of the parameter vector, referred to as “Constant” in the above table, is a non-zero constant used in 

fitting the filter.  From inspecting the elemenets, we can see that the element for elapsed time in the parameter vector 

is the largest magnitude.  This corresponds to a very steep slope in the logistic regression curve which serves to 

effectively split the classes between     and    .  After fitting the model with logistic regression, one may 

inspect the relative magnitudes of the parameter vector elements and learn more about the problem space.  This is a 

useful analysis technique for identifying the “driving” features. 

The trigger was evaluated using multiple values of the activation threshold, and the resulting altitude spread at 

PDS initiation is shown in Figure 12.  When trained on 600 trajectories, and tested against 3000 trajectories, the 

resulting altitude spreads at PDS initiation are visualized below.  Each red dot represents the altitude at PDS 

initiation.  The dashed red line represents the desired target altitude for PDS initiation.  The dashed black lines 

connect the ±3σ altitude cases, shown as black triangles, and the black squares represent the mean PDS initiation 

altitude for each distribution. 
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Figure 12: Altitude spread at PDS using a multivariate classifier at varying activation thresholds  

For the activation threshold of 0.5, the minimum altitude is approximately 4,700 feet (single outlier case), and 

the maximum altitude is approximately 35,500 feet, resulting in a total spread of approximately 30,800 feet.  The 

mean deployment altitude is approximately 24,800 feet, only 200 feet below our targeted altitude of 25,000 feet.  

This suggests that our statistical model balances false positives and false negatives such that the mean performance 

is approximately centered on the targeted altitude condition for the 0.5 activation threshold. 

If instead the 3-sigma altitude spread is considered instead of the total spread, then the altitude spread contracts 

to approximately 13,800 feet.  Only 0.43% of cases fall outside this altitude spread. 

However, if the activation threshold is selected such that no cases fall below the targeted altitude, then the 

activation threshold of 0.2 must be selected where the minimum altitude is approximately 30,900 feet.  For this case, 

the total altitude spread is approximately 23,200 feet.   

However, for the activation threshold of 0.3, only two cases deploy below the 25,000 altitude target (still above 

the 24,000 altitude floor), resulting in slightly lower distribution of altitude at PDS initiation.  For this activation 

threshold, the total altitude spread (22,700 feet) is reduced by 500 feet as compared to activating the trigger at a 0.2 

threshold, and it lowers the mean PDS initiation altitude by approximately 7,200 feet to 34,800 feet. 

Using the multivariate distribution resulted in slighted improved performance as compared to the adjusted 

velocity-trigger approach [1] currently employed by Orion for EFT-1.  This approach demonstrates improved the 

PDS altitude precision by reducing altitude spread by approximately 2,000 ft.  Given the slight increase in total 

performance, it suggests that the different approaches are asympoting towards some lower limit of precision 

achievable when navigation knowledge is so degraded. 

VII. Lessons Learned 

Although logistic regression-based triggers offer several advantages, there were new challenges that were 

encountered in the development & implementation of the trigger.  For instance, one must carefully monitor the 

gradient descent optimization of the model fit.  Depending on the problem space, one may need to reduce or increase 

the step size used for gradient descent to aid in model convergence. 

Additionally, trigger performance was shown to be sensitive to the statistical model fit as produced by numerical 

gradient descent optimization.  For a particular feature set, gradient descent optimization may struggle to converge, 

and it would be relatively easy to overlook a poor model fit for a particular variable when fitting multiple 
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dimensions.  For this reason, the information in a particular feature may not be exploited well by the statistical 

model.  

Logistic regression works well for features that are monotonic, but may struggle with variables that are not 

monotonically distributed.  For instance, altitude rate was a troublesome feature.  Intuitively, the values of altitude 

rate at low altitudes are relatively tightly clustered.  However, the same altitude rate may be observed during 

hypersonic flight at shallow negative flight path angles while at high speeds.  For this reason, it was difficult to 

achieve a tight model fit for altitude rate using logistic regression.  In these cases like these, variables typically are 

transformed into new features, requiring additional analysis and insight from the algorithm designer. 

Another difficulty encountered with logistic regression was the difficulty in determining why the trigger was 

activated for a given scenario, given multiple input signals.  It is easy to compute the individual contributions, but 

understanding why a particular variable contributed more than another variable can be difficult to explain without 

first understanding the underlying statistical model. 

A final lesson learned is that logistic regression is a powerful tool for identifying strong features which easily 

separate data classes.  This technique may be employed as a valuable analysis technique for designers seeking to 

identify the key features which separate different classes of data. 

VIII. Future Work 

The applicability of multivariate logistic regression to the problem of creating robust flight software triggers was 

explored in this paper, but other techniques remain to be explored for easing the burden of “tuning” a GN&C 

system’s triggers.  Another approach under consideration is to estimate the likelihood of the vehicle being at or 

below the target altitude condition given the current navigation solution and prior Monte Carlo information.  Similar 

to logistic regression, this is a probabilistic approach which performs inference to estimate the true state of the 

vehicle given the inaccurate navigation information in double-failure scenarios.  This concept has demonstrated 

excellent performance in preliminary assessments, and it is much more “automatic” than using logistic regression, 

requiring no numerical optimization.  This approach exploits the probability of observing any value of an continuous 

input feature given that the vehicle should or should not initiate the PDS.  Armed with this information for a set of 

trajectory parameters, Bayes’ Theorem may be employed to estimate the likelihood that the vehicle should initiate 

the PDS given the output of the navigation system.  Unlike logistic regression, this approach does not assume a 

certain distribution of the probability.  This approach will be explored further as an alternative strategy to logistic 

regression. 

IX. Conclusion 

The algorithm described in this paper, binary logistic regression, has been applied to help the Orion vehicle 

determine whether or not the conditions are right to initiate the parachute sequence during descent through the 

atmosphere.  The current implementation in Orion flight software compares adjusted velocity against a threshold 

value to determine when to initiate the parachute deployment sequence when GPS and barometric altitmeters have 

failed (two failures deep).  This proposed approach using logistic regression has helped to develop a new trigger 

condition that reduces the total altitude spread to approximately 22,700 feet as compared with the adjusted velocity 

trigger approach described in [1].  This approach is less susceptible to the noise endemic to actual flight hardware 

signals, and it enables the semi-automated generation of robust flight software triggers for a new trajectory design.  

The approach is very generic, and the algorithm can be re-applied to solve several other problems for flight software 

event detection. 
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