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1 Introduction

This paper focuses on the accurate numerical rep-
resentation of complex networks of evolving dis-
continuities in solids, with particular emphasis on
cracks. The limitation of the standard finite ele-
ment method (FEM) in approximating discontin-
uous solutions has motivated the development of
re-meshing [1], smeared crack models [2, 3], the
eXtended Finite Element Method (XFEM) [4–6]
and the Phantom Node Method (PNM) [7].

We propose a new method which has some
similarities to the PNM, but crucially: (i) does
not introduce an error on the crack geometry
when mapping to natural coordinates; (ii) does
not require numerical integration over only part
of a domain; (iii) can incorporate weak disconti-
nuities and cohesive cracks more readily; (iv) is
ideally suited for the representation of multiple
and complex networks of (weak, strong and cohe-
sive) discontinuities; (v) leads to the same solu-
tion as a finite element mesh where the disconti-
nuity is represented explicitly; and (vi) is concep-
tually simpler than the PNM.

2 Brief overview of the Phan-
tom Node Method

2.1 Introduction

The static equilibrium of a body with volume Ω
under body forces with density f (acting on Ω)
and traction t acting on the boundary ΓΩ can be
expressed in the weak form as:

∫
Ω
εT(v)σ (u) dΩ =

∫
Ω

vTf dΩ +
∫

ΓΩ
vTt dΓΩ

(1)

where u is the displacement; v is the test function;
ε is the strain, related to u through the differ-
ential operator relative to Cartesian coordinates
Lx as ε = Lx(u); and σ is the stress, related
to the strains through Hook’s law as σ = Dε,
with D being the constitutive tensor. In the
PNM, Fig. 1a, each real node i (characterised by
its nodal coordinates xi and degrees of freedom,
DoF, qi) is accompanied by a phantom node i′

(with the same nodal coordinates xi′ , i.e. xi′ ≡ xi,
and associated DoF qi′ ; in general, qi′ �= qi).

2.2 Without a discontinuity

If there is no discontinuity to be modelled by the
element (e.g. before failure), the element is sim-
ply a standard finite element. The vector of nodal
coordinates is given as xΩ. In the case of Fig. 1a,

xT
Ω = [x1, x2, x3, x4] = [x1′ , x2′ , x3′ , x4′ ] . (2)

The Jacobian of the transformation from
physical (x) to natural (ξ) coordinates is:

J =
dx
dξ

=
dN
dξ

xΩ , (3)

where N is a standard matrix of shape functions.
Assuming an isoparametric formulation, the dis-
placement field u is related to the real DoF q
through the same matrix N, i.e.:

u = Nq. (4)

In the case of Fig. 1a, qT = [q1, q2, q3, q4].
The strains can also be expressed in terms of the
real DoF q as:

ε = Lx (u) = Lξ (N) J−1q = Bq , (5)

with B = Lξ (N) J−1, leading to:

K =
∫

Ξ
BTDB det (J) dΞ, (6)
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where Ξ is the integration domain (in natural co-
ordinates) corresponding to Ω (in physical coor-
dinates), and to the vector of nodal forces:

Q =
∫

Ξ
NTf det (J) dΞ +

∫
ΓΞ

NTt det (J) dΓΞ

(7)
where ΓΞ is the boundary corresponding to ΓΩ.
Equilibrium, Eq. 1, becomes then:

Kq = Q. (8)

Eq. 8 involves only the real DoF; for complete-
ness, the phantom DoF can be defined using con-
straint equations so that they coincide with the
real DoF; otherwise, they can be removed from
the system of equations during assembly.

2.3 With a discontinuity

A discontinuity in the element can be predicted
through generic stress-based criteria or otherwise;
§ 3.7 delves in more detail into propagation mod-
els and criteria. Once a discontinuity is predicted,
the points at which it crosses the element are de-
fined (points 5 and 6 in Fig. 1a). In this case, the
vector of nodal coordinates xΩ is still given by
Eq. 2, and the Jacobian J is still given by Eq. 3.
However, the element is split in two partitions ΩA
and ΩB, as indicated in Fig. 1a, and the displace-
ment u is no longer related to the real DoF q by
Eq. 4. Instead, the displacements uA and uB, in
partitions ΩA and ΩB respectively, are interpo-
lated separately from the respective DoF:

uA = NqA and uB = NqB. (9)

In the case of Fig. 1a, qT
A = [q1′ , q2′ , q3, q4] and

qT
B = [q1, q2, q3′ , q4′ ]. The strains then become:

εA = Lx (uA) = Lξ (N) J−1qA = BqA (10)
εB = Lx (uB) = Lξ (N) J−1qB = BqB.(11)

with B = Lξ (N) J−1. Note that the B matrix
(Eqs. 10 and 11) is the same for both partitions
ΩA and ΩB. The stiffness matrices for partitions
ΩA and ΩB are obtained by integrating over the
corresponding domain in the natural space, i.e.:

KA =
∫

ΞA
BTDB det (J) dΞ

KB =
∫

ΞB
BTDB det (J) dΞ.

(12)

Note that the integrands for partitions ΩA and
ΩB in Eq. 12 are the same; only the integration
domains (ΞA and ΞB, respectively) are different.
Similarly, the force vectors are:

QA =
∫

ΞA
NTf det (J) dΞ +

+
∫

ΓΞA

NTt det (J) dΓΞ and (13)

QB =
∫

ΞB
NTf det (J) dΞ +

+
∫

ΓΞB

NTt det (J) dΓΞ, (14)

where again the integrands are the same for both
partitions but the integration domains differ. Fi-
nally, from Eq. 1, the equations of equilibrium are:

KAqA = QA and KBqB = QB. (15)

3 Floating Node Method

3.1 Overview of the approach

§ 2 shows that, in the PNM, phantom DoF do not
need an associated position vector before the ele-
ment is split (§ 2.2; in fact, before the element is
split, the phantom nodes are also not needed, but
their presence is convenient for implementation
in existing FE codes). After the element is split,
the nodal position associated with the phantom
DoF is not the most suitable in terms of transfor-
mation to the natural coordinate system nor in
terms of integration.

This observation forms the basis of the FNM,
which we detail in this section. In the FNM, see
Fig. 1b, each real node i is characterised by its
nodal coordinates xi and associated DoF qi; in
addition, the element contains a suitable num-
ber of floating DoF without pre-defined associated
nodal position vectors.

3.2 Without a discontinuity

If there is no discontinuity to be modelled by the
element (e.g. before failure), the formulation is
the same as in the standard FEM or the PNM.
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3.3 With a discontinuity

Once a discontinuity in the element is predicted
(see § 3.7), and thus the coordinates of the points
which define the intersection between the discon-
tinuity and the element defined, the element is
split in two or more partitions. We will illustrate
in detail firstly the most typical situation in which
the element is split in two partitions, ΩA and ΩB
(Fig. 1b).

Unlike in the PNM, we define a vector of nodal
coordinates for each partition ΩA and ΩB, xA and
xB respectively. For the case in Fig. 1b, these
would be (c.f. Eq. 2):

xT
ΩA = [x5, x6, x3, x4] and xT

ΩB = [x1, x2, x6, x5] .
(16)

This is possible because x5 and x6 can be directly
obtained once the failure criterion is fulfilled and
the discontinuity is defined. Each partition has
then a separate Jacobian (c.f. Eq. 3),

JA =
dx
dξ

=
dN
dξ

xΩA and JB =
dx
dξ

=
dN
dξ

xΩB .

(17)
The displacements uA and uB, in partitions

ΩA and ΩB respectively, are interpolated sep-
arately from the respective DoF. Assuming an
isoparametric formulation,

uA = NqA and uB = NqB. (18)

In the case of Fig. 1b, which represents a strong
discontinuity, qT

A = [q5, q6, q3, q4] and qT
B =

[q1, q2, q6′ , q5′ ]. Note that there are four differ-
ent sets of floating DoF: q5 is different from q5′

and q6 is different from q6′ . If, for instance, a
weak discontinuity were to be modelled, only two
sets of floating DoF would be included in the el-
ement, and the DoF with a prime would coincide
with those without a prime.

The strains then become (c.f. Eqs. 10 and 11):

εA = Lx (uA) = Lξ (N) J−1
A qA = BAqA (19)

εB = Lx (uB) = Lξ (N) J−1
B qB = BBqB (20)

with BA = Lξ (N) J−1
A and BB = Lξ (N) J−1

B . The
stiffness matrices for partitions ΩA and ΩB are
(c.f. Eq. 12):

KA =
∫

Ξ
BT

ADBA det (JA) dΞ

KB =
∫

Ξ
BT

BDBB det (JB) dΞ.
(21)

Note that the integrands for partitions ΩA and ΩB
in Eq. 21 are different but the integration domain
(Ξ) is the same (the usual integration domain of
a standard finite element). Similarly, the force
vectors are (c.f. Eqs. 13 and 14):

QA =
∫

Ξ
NTf det (JA) dΞ +

∫
ΓΞ

NTt det (JA) dΓΞ

QB =
∫

Ξ
NTf det (JB) dΞ +

∫
ΓΞ

NTt det (JB) dΓΞ.

(22)
Finally, from Eq. 1, the equations of equilibrium
are:

KAqA = QA and KBqB = QB. (23)

3.4 Different geometries for the discon-
tinuities and integration

Fig. 1b (see also Fig. 2a) shows one particular
case for the intersection between a quadrilateral
element and a strong discontinuity. Another pos-
sibility (needed also to represent accurately the
crack tip, see § 3.6) is shown in Fig. 2b. Finally,
other possibilities for the intersection may lead to
different partitions of Ω (Figs. 2c, 2d, 2e, 2f, 2g
and 2h. Cohesive cracks (Fig. 2i) can be repre-
sented by partitioning the integration domain Ω
into two quadrilaterals (ΩA and ΩB) and a surface
(ΓΩc).

3.5 Representation of discontinuities

Representing a discontinuity across an entire
mesh implies passing information which defines
this discontinuity to each element. With this in-
formation, the element will follow the appropri-
ate integration procedure (see Fig. 1b). Level set
methods are for instance well suited for this pur-
pose. We present below an alternative to the level
set method which offers some advantages for the
representation of complex crack networks.

We firstly define an edge status variable μ for
each edge with global index j:

μ(j) =

⎧⎪⎪⎨
⎪⎪⎩

−1, if no discontinuity at edge Ej ;
0, if Ej is at a crack tip;
1, if a crack crosses through Ej .

(24)
and then define a dataset for each edge j:

μ(j) , ξ(j) (25)

3



where ξ(j) contains the natural coordinates of
the intersection of a discontinuity with edge j,
if such intersection exists. The dataset is then
made available to all elements that include edge
j. The initial status of a discontinuity (prior to
an analysis) can be defined through an array of
initial values for the dataset in Eq. 25.

3.6 Representation of a crack tip

Considering Fig. 2j, suppose that the strong dis-
continuity terminates at edge E2, i.e., the element
to the right of E2 has not failed. The existence of
a crack tip at edge E2 implies that q6 = q10. Clos-
ing the crack tip can be achieved through inter-
nal assembly of floating nodes or using constraint
equations.

Considering Figs. 3a and 3b, it is clear that
closing the crack tip is not sufficient for an accu-
rate representation of the crack tip; in fact; the
transition from a strong discontinuity to no dis-
continuity can lead to an artefact whereby the el-
ement at the crack tip (see Figs. 3a and 3b) does
not have the adequate topology for connecting to
the adjacent uncracked element (lack of compat-
ibility). Figs. 3c and 3d show that this can be
mitigated to an extent using constraint equations
which define the DoF at the crack tip through in-
terpolation of suitable DoF of the element at the
crack tip.

A better solution is shown in Figs. 3e and 3f;
the lack of compatibility can be avoided by us-
ing a transition element at the crack tip (in fact,
the code required for doing this is exactly the
same that is used to represent weak discontinu-
ities within the FNM).

Fig. 3g shows that refinement elements can be
used as well, leading to further improvements in
the representation of the crack tip. If at least one
refinement element is used (Fig. 3g), then the one
step virtual crack closure technique (VCCT) can
be used directly to model propagation of strong
discontinuities, as detailed in § 3.7.2.

3.7 Propagation of discontinuities

3.7.1 Stress based criteria with cohesive
formulations

When a crack in a floating node element is rep-
resented through a cohesive model, with the lat-

ter having a stress-based failure initiation crite-
rion embedded in its formulation, it is natural to
also use an identical stress-based failure criterion
to decide on the eventual propagation of a crack
through an element. If the failure criterion for the
cohesive element is:

f(σ) = 0, (26)

then the propagation criterion (to activate the
floating DoF so as to form a cohesive sub-element
along the potential crack path) can be:

f(σ) = ε, with − 1 ≤ ε ≤ 0, (27)

where ε is a user-defined non-positive number
such that the floating DoF are activated before
propagation is due to occur.

3.7.2 Virtual crack closure technique

It is possible to propagate cracks without using
stress measures directly; i.e. using fracture me-
chanics concepts only. For this, Virtual Crack
Closure Technique (VCCT) [8] is particularly well
suited for using with the FNM.

Consider Fig. 3g, where the element at the
crack tip (refinement element labelled R) has not
failed yet, but contains a weak discontinuity. The
weak discontinuity is introduced to better repre-
sent the crack tip. It is equivalent to a local mesh
refinement, and can be extended to several ele-
ments ahead of the crack tip. Let F be the inter-
nal force vector at the crack tip and �q� be the
displacement jump at the opposing edge in the
wake element. Also, let AW be the area of the
crack surface in the element on the wake of the
crack (for a 2 dimensional problem, AW = �Wb,
where �W is indicated in Fig. 3g and b is the thick-
ness) and ACT be the area of the crack surface in
the element at the crack tip (for a 2 dimensional
problem, ACT = �CTb, where �CT is indicated in
Fig. 3g). Then, the energy release rates for modes
I and II can be calculated as [9]:

GI =
1

2AW
Fn�qn�

(
AW

ACT

)1/2

(28)

GII =
1

2AW
Ft�qt�

(
AW

ACT

)1/2

(29)

where Fn and Ft are, respectively, the components
of F in the normal and tangential directions to
the crack, and �qn� and �qt� are respectively the
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components of �q� in the normal and tangential
directions to the crack.

Once the energy release rates are known, a
criterion of the form:

f(GI, GII) = 0 (30)

can be used to decide on the eventual propaga-
tion of a crack through the element and on the
direction of the crack.

Calculating the energy release rates in Eqs. 28
and 29 requires that the element at a crack tip has
access to the displacement jump at the opposing
edge in the element in the wake of the crack. This
can be achieved by expanding the dataset for each
edge j (Eq. 25) with more information to become:

μ(j) , ξ(j) , �q�
(
j̄
)

, n
(
j̄
)

, A
(
j̄
)

(31)

where �q�
(
j̄
)

is the displacement jump at the
other (opposing) edge of the element in the wake
of the crack (W in Fig. 3g), n

(
j̄
)

is the normal

to the crack direction in element W, and A
(
j̄
)

is
the crack area in element W.

3.8 Implementation in existing FE
codes

The validation and application examples below
were obtained through an implementation of the
FNM in an User Element (UEL) subroutine in the
commercial code Abaqus [10].

4 Validation

4.1 Convergence and accuracy

We compare the mesh convergence of the PNM
and FNM in the evaluation of stress intensity fac-
tors (SIF) for an edge crack propagating in mode I
(Fig. 4a). The numerical evaluations for the FNM
are performed with VCCT as presented in § 3.7.2,
and for PNM with VCCT as implemented in the
commercial software Abaqus [10]. The model has
dimensions W = 9 mm, L = 37 mm and a =
3 mm. The Young’s modulus is E = 200 GPa and
the Poisson’s ratio is ν = 0.3. The applied stress
is σ = 1 MPa. The plate is discretised uniformly

with nW and nL four-noded plane stress ele-
ments, in the width and height directions, respec-
tively. The four meshes created have (nW , nL) =
(9, 37); (18, 75); (36, 149) and (42, 173). The re-
sults are summarized in Fig. 4b. The FNM can be
seen to converge monotonically and more rapidly
than the PNM used for comparison.

We now evaluate the stress intensity factors
(SIF) for a centre slant crack (Fig. 5a) obtained
by the FNM against the corresponding analytical
solutions [11] in mode I (KI) and mode II (KII),
for different orientations θ of the crack. The nu-
merical evaluations for the FNM are performed
with VCCT as presented in § 3.7.2. For FNM
with VCCT, when the crack separates the orig-
inal element domain into a triangle and a pen-
tagon, both the partitions shown in Fig. 2d and
that shown in Fig. 2e are employed. The model
has dimensions L = W = 10 mm and the hori-
zontal projection of the crack is a cos θ = 0.1W .
The Young’s modulus is E = 200 GPa and the
Poisson’s ratio is ν = 0.3. The applied stress is
σ = 1 MPa. The plate is discretised uniformly
with a coarse mesh (80 elements across the width
and 81 elements across the height). Plane stress
conditions are assumed. The results are summa-
rized in Fig. 5b. The data-points labelled ‘Int. 1’
are obtained with FNM-VCCT using the parti-
tion in Fig. 2d, and the data-points labelled ‘Int.
2’ are obtained with FNM-VCCT using the par-
tition in Fig. 2e.

4.2 Crack propagation

A double cantelever beam (DCB) test is used to
simulate a propagating crack for a case in which
the analytical solution (using corrected beam the-
ory [12]) is known. The material is representative
of carbon/PEEK fibre reinforced composite [13]
and is modelled as an orthotropic material. The
geometry, boundary conditions and mesh are de-
scribed in Fig. 6a; the width of the specimen is
25.4 mm; the elements are 0.25 mm in length and
the most refined elements near the mid-section are
0.124 mm in height. The cohesive zone approach
with a standard bi-linear law and a stress-based
criterion as described in § 3.7.1 is employed to de-
termine the initiation and propagation of a crack.
Since the loading is purely in Mode I, the choice of
failure initiation criterion and mixed-mode dam-
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age propagation law are irrelevant; we therefore
use the typical quadratic interaction criteria for
both initiation and propagation.

This case is analysed with both the FNM and
the PNM (the latter implemented in the commer-
cial software Abaqus [10]). For the FNM, the
transition element shown in Fig. 3f is employed
for the element in front of the crack tip. The par-
titioning of the transition element into a floating
node element containing a cohesive sub-element
(Fig. 2i) is carried out as detailed in § 3.7.1 with
ε = 0. The propagation of the crack is then de-
termined by the failure of the cohesive elements.
The results are shown in Fig. 6b.

5 Application: modelling of the
growth of matrix crack den-
sity in a cross-ply laminate

In this section, we analyse the problem of inter-
action between matrix cracks and delamination
on a cross-ply [02/904]S laminate of toughened
glass/epoxy, tested in tension by Joffe and Varna
[14]. In this problem, correctly capturing the ma-
trix crack/delamination interaction mechanism is
important for the accurate prediction of matrix
crack saturation and consequent transition to de-
lamination.

Fang et al. [15] (see Fig. 7a) showed that us-
ing non-matching meshes at a crack intersection
(e.g. using the PNM for the 90◦ matrix cracks in
the 90◦ ply and cohesive elements at the interface
for the delamination) leads to an inaccurate repre-
sentation of the displacement jump (and hence of
the cohesive traction) at the interface. Capturing
correctly the displacement jump requires further
DoF at the intersection between cracks (Fig. 7b);
the FNM method is particularly well suited to
model intersecting cracks, capturing correctly the
displacement jump at the interface.

Based on the FNM, an element specifically de-
signed for cross-ply laminates is formed with both
real nodes and floating nodes, as shown in Fig. 7c.
It makes use of the known position of the inter-
face, so that the interface is not seeded with real
nodes (Fig. 7d); instead, it is represented by cohe-
sive elements formed with floating nodes. In this
way, minimum seeding is required during prepro-
cessing.

Failure occurs essentially under tension (mode
I) in the 90◦ ply and under shear (mode II) for
the delamination. The choice of failure initia-
tion criterion and mixed-mode damage propaga-
tion law are therefore largely irrelevant in this
case. We therefore use the typical quadratic in-
teraction criteria for both initiation and propaga-
tion. All material properties are taken from the
literature [14, 16, 17]. Since the loading is uniform
in tension, a 10% reduction on transverse tensile
strength and mode I critical energy release rate
is introduced in the element at the centre so as
to initiate failure at the centre of the model. The
model, Fig. 8a, represents half of the laminate,
with symmetric boundary conditions applied on
the bottom surface of the 90◦ plies.

Figs. 8b and 8c show the failure pattern pre-
dictions for the laminate when using the FNM el-
ement from Figs. 7c and 7d. To demonstrate how
crucial it is to have matching meshes at the crack
intersections, a second model was created, differ-
ing only in that only one cohesive sub-element
is used to model the delamination in each FNM
element (as in Fig. 7a), rather than two. This sec-
ond model corresponds very closely to a model in
which matrix cracks in the 90◦ ply are modelled
with the PNM and the delamination is modelled
independently using cohesive elements. The re-
sulting crack pattern, at the same level of strain
as in Figs. 8b and 8c, is shown in Figs. 8d and 8e.
The second model predicts significantly less de-
lamination than the FNM model. The simulation
shows that delamination does not start from the
element containing the matrix crack; instead, it
occurs firstly in the elements next to the cracked
element. This non-physical sequence of delamina-
tion propagation is expected in the formulation of
the non-matching meshes (Fig. 7a).

Fig. 9 shows the crack density vs. applied
strain predictions. While both models are able
to capture the growth of crack density with ap-
plied strain, only the first model (with matching
mesh at the crack intersections) is able to predict
saturation accurately; the second model contin-
ues to predict an increase in crack density, albeit
at a lower growth rate, after saturation should
have occurred. This example thus demonstrates
the capability of using the FNM to construct ele-
ments for the modelling of specific geometries and
complex crack networks.
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6 Conclusion

This paper proposes a floating node method
which can be implemented in existing finite el-
ement packages. The paper demonstrates that
the floating node method has the following ad-
vantages over alternative methods, in particular
the phantom node method: (i) it does not intro-
duce an error on the crack geometry when map-
ping from physical to natural coordinates; (ii) the
integration is simple, as it does not require numer-
ical integration over only part of a domain; (iii) it
leads to the same solution as a finite element mesh
where the discontinuity is represented explicitly;
(iv) it can incorporate weak discontinuities and
cohesive cracks readily; (v) it can be readily com-
bined with VCCT; (vi) it provides accurate pre-
dictions for stress intensity factors under generic
mode ratios; (vii) it is ideally suited for the rep-
resentation of multiple and complex networks of
(weak, strong and cohesive) discontinuities; and
(viii) it can successfully predict certain interac-
tions between matrix cracking and delamination.
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(b) Floating Node Method

Fig. 1. Comparison between the Phantom Node Method and the Floating Node Method.



A FLOATING NODE METHOD
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(j) Example of local DoF, vertices and edges numbering for
the floating node element in Fig. 2g. To facilitate assembly,
a pair of floating DoF are associated with each edge, and
four floating DoF are internal.

Fig. 2. Examples of different discontinuities that can be modelled by the Floating Node Method (see key
in Fig. 1b).
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Element @ wake
(W)

Element @ crack tip
(CT)

Crack
Artefact

(a) Artefact in the transition from a
strong discontinuity to no discontinu-
ity.

Element @ wake
(W)

Element @ crack tip
(CT)

Artefact

Cohesive
element

(b) Artefact when modelling the
crack with cohesive elements.

Element @ wake
(W)

Element @ crack tip
(CT)

Interpolation

(c) Artefact is mitigated by interpo-
lating the crack tip’s DoF from neigh-
bouring DoF.

Element @ wake
(W)

Element @ crack tip
(CT)

Mid-plane of
cohes. elem.

Interpolation

(d) The mid-point (or edge in 3D) of
the cohesive element at the crack tip
is constrained.

Element @ wake
(W)

Local mesh
refinement

Transition element
(T)

(e) Using a transition element im-
proves the representation of the crack
tip.

(f) Transition element used with a co-
hesive crack.

Element @ wake
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�q�

F

��

�W
�CT

Local mesh
refinement

Local mesh
refinement

Transition element
(T)

Refinement element
(R)

(g) Use of one refinement element improves representation of crack tip
further, and allows direct use of VCCT.

Fig. 3. Using local refinement elements and transition elements to represent the crack tip more accurately
(see key in Fig. 1b).
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(b) Mesh convergence of SIF

Fig. 4. For this edge crack model, the FNM converges monotonically, unlike the PNM.



A FLOATING NODE METHOD
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(a) Slanted crack model
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(b) SIF evaluations for different angles θ

Fig. 5. For this slant crack model, the FNM captures the SIF well in modes I and II for different angles
θ.
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3.12 mm,
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P

P

(a) DCB model (b) Predictions

Fig. 6. DCB validation case, showing that, for the same mesh seeding, the FNM predicts accuratelly the
force (P ) vs. displacement curve while the PNM overpredicts the force.
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(a) Non-matching meshes at a crack intersection [15].

x

�ushear�

Interpolation

90◦
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(b) FNM element representing intersecting cracks [15].
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(c) FNM element before matrix cracking.
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C.E.
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0◦
Interpolation

(d) FNM element after matrix cracking.

Fig. 7. Modelling the intersection between matrix cracks and delamination with non-matching meshes
fails to capture the displacement jump; the FNM can address this.
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30 mm (100 elements)

h1
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2

u

(a) FNM model. Note that there is only one floating node element along the height (see Figs. 7c and 7d).

(b) Accurate modelling of the transition from matrix cracking to delamination when using the FNM element from Figs. 7c
and 7d.

(c) Zoom of FNM mesh in Fig. 8b.

(d) Model with non-matching mesh at the intersection, showing that some transition to delamination is not correctly
captured.

(e) Zoom of non-matching mesh in Fig. 8d.

Fig. 8. Modelling the transition from matrix cracking to delamination in a cross-ply composite specimen.
The red dots indicate failure at the corresponding integration points.

Fig. 9. The saturation crack density is correctly captured using the FNM element from Figs. 7c and 7d.
Non-matching mesh results in over-prediction of this density. Experimental data is from Joffe and Varna
[14].


