@l Software

¢3 Mission Data System Java
Edition Version 7

The Mission Data System framework
defines closed-loop control system ab-
stractions from State Analysis including
interfaces for state variables, goals, esti-
mators, and controllers that can be
adapted to implement a goal-oriented
control system. The framework further
provides an execution environment
that includes a goal scheduler, execu-
tion engine, and fault monitor that sup-
port the expression of goal network ac-
tivity plans. Using these frameworks,
adapters can build a goal-oriented con-
trol system where activity coordination
is verified before execution begins
(plan time), and continually during ex-
ecution. Plan failures including viola-
tions of safety constraints expressed in
the plan can be handled through auto-
matic re-planning.

This version optimizes a number of
key interfaces and features to minimize
dependencies, performance overhead,
and improve reliability. Fault diagnosis
and real-time projection capabilities are
incorporated. This version enhances
earlier versions primarily through opti-
mizations and quality improvements
that raise the technology readiness level.

Goals explicitly constrain system states
over explicit time intervals to eliminate
ambiguity about intent, as compared to
command-oriented control that only im-
plies persistent intent until another
command is sent. A goal network sched-
uling and verification process ensures
that all goals in the plan are achievable
before starting execution. Goal failures
at runtime can be detected (including
predicted failures) and handled by
adapted response logic. Responses can
include plan repairs (try an alternate
tactic to achieve the same goal), goal
shedding, ignoring the fault, cancelling
the plan, or safing the system.

This work was done by William K. Rein-
hollz and David A. Wagner of Caltech for
NASA’s Jet Propulsion Laboratory. Further in-

NASA Tech Briefs, October 2013

@ https:/intrs.nasa.gov/search.jsp?R=20140002262 2019-08-29T15:05:26+00:00Z

Jormation is contained in a TSP (see page 1).

This software is available for commercial li-
censing. Please contact Dan Broderick at
Daniel I Broderick@jpl.nasa.gov. Refer to
NPO-47804.

¢3 Adaptive Distributed Envi-
ronment for Procedure
Training (ADEPT)

ADEPT (Adaptive Distributed Envi-
ronment for Procedure Training) is de-
signed to provide more effective, flexi-
ble, and portable training for NASA
systems controllers. When creating a
training scenario, an exercise author can
specify a representative rationale struc-
ture using the graphical user interface,
annotating the results with instructional
texts where needed. The author’s struc-
ture may distinguish between essential
and optional parts of the rationale, and
may also include “red herrings” — hy-
potheses that are essential to consider,
until evidence and reasoning allow them
to be ruled out.

The system is built from pre-existing
components, including Stottler Henke’s
SimVentive™ instructional simulation
authoring tool and runtime. To that, a
capability was added to author and ex-
ploit explicit control decision rationale
representations. ADEPT uses SimVen-
tive’s Scalable Vector Graphics (SVG)-
based interactive graphic display capa-
bility as the basis of the tool for quickly
noting aspects of decision rationale in
graph form.

The ADEPT prototype is built in Java,
and will run on any computer using Win-
dows, MacOS, or Linux. No special pe-
ripheral equipment is required.

The software enables a style of stu-
dent/tutor interaction focused on the
reasoning behind systems control behav-
ior that better mimics proven Socratic
human tutoring behaviors for highly
cognitive skills. It supports fast, easy, and
convenient authoring of such tutoring
behaviors, allowing specification of de-
tailed scenario-specific, but content-sen-

sitive, high-quality tutor hints and feed-
back. The system places relatively light
data-entry demands on the student to
enable its rationale-centered discus-
sions, and provides a support mecha-
nism for fostering coherence in the stu-
dent/tutor dialog by including focusing,
sequencing, and utterance tuning mech-
anisms intended to better fit tutor hints
and feedback into the ongoing context.

This work was done by Eric Domeshek,
James Ong, and John Mohammed of Stottler
Henke Associates, Inc. for Johnson Space Cen-
ter. Further information is contained in a
TSP (see page 1). MSC-24493-1

¢® LEGEND, a LEO-to-GEO
Environment Debris Model

LEGEND (LEO-to-GEO Environment
Debris model) is a three-dimensional or-
bital debris evolutionary model that is ca-
pable of simulating the historical and fu-
ture debris populations in the near-Earth
environment. The historical component
in LEGEND adopts a deterministic ap-
proach to mimic the known historical
populations. Launched rocket bodies,
spacecraft, and mission-related debris
(rings, bolts, etc.) are added to the simu-
lated environment. Known historical
breakup events are reproduced, and frag-
ments down to 1 mm in size are created.

The LEGEND future projection com-
ponent adopts a Monte Carlo approach
and uses an innovative pair-wise collision
probability evaluation algorithm to simu-
late the future breakups and the growth
of the debris populations. This algorithm
is based on a new “random sampling in
time” approach that preserves character-
istics of the traditional approach and
captures the rapidly changing nature of
the orbital debris environment.

LEGEND is a Fortran 90-based nu-
merical simulation program. It operates
in a UNIX/Linux environment.

This work was done by Jer Chyi Liou and
Doyle T. Hall of Johnson Space Center. Fur-
ther information is contained in a TSP (see
page 1). MSC-24805-1


rertwine
Highlight


