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Quality knives are typically fabricated
from high-strength steel alloys. Depend-
ing on the application, there are different
requirements for mechanical and physical
properties that cause problems for steel
alloys. For example, diver’s knives are gen-
erally used in salt water, which causes rust
in steel knives. Titanium diver’s knives are
a popular alternative due to their salt
water corrosion resistance, but are too soft
to maintain a sharp cutting edge. Steel

knives are also magnetic, which is undesir-
able for military applications where the
knives are used as a tactical tool for diffus-
ing magnetic mines. Steel is also signifi-
cantly denser than titanium (8 g/cm3 vs.
4.5 g/cm3), which results in heavier
knives for the same size. Steel is hard and
wear-resistant, compared with titanium,
and can keep a sharp edge during service.
A major drawback of both steel and tita-
nium knives is that they must be ground

or machined into the final knife shape
from a billet. Since most knives have a
mirrored surface and a complex shape,
manufacturing them is complex. It would
be more desirable if the knife could be
cast into a net or near-net shape in a sin-
gle step.

The solution to the deficiencies of tita-
nium, steel, and ceramic knives is to fab-
ricate them using bulk metallic glasses
(or composites). These alloys can be cast
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Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives
From Bulk Metallic Glasses and Composites
High-performance knives are used in hunting, fishing, sailing, diving, industrial, and 
military applications.
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High-Pressure Lightweight Thrusters
Carbon/carbon composite structures are braided over iridium-lined mandrels and densified by
chemical vapor infiltration.
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Returning samples of Martian soil and
rock to Earth is of great interest to scien-
tists. There were numerous studies to eval-
uate Mars Sample Return (MSR) mission
architectures, technology needs, develop-
ment plans, and requirements. The largest
propulsion risk element of the MSR mis-
sion is the Mars Ascent Vehicle (MAV).
Along with the baseline solid-propellant
vehicle, liquid propellants have been con-
sidered. Similar requirements apply to
other lander ascent engines and reaction
control systems. 

The performance of current state-of-
the-art liquid propellant engines can be
significantly improved by increasing
both combustion temperature and pres-
sure. Pump-fed propulsion is suggested
for a single-stage bipropellant MAV.
Achieving a 90-percent stage propellant
fraction is thought to be possible on a
100-kg scale, including sufficient thrust
for lifting off Mars.

To increase the performance of storable
bipropellant rocket engines, a high-pres-
sure, lightweight combustion chamber was
designed. Iridium liner electrodeposition
was investigated on complex-shaped
thrust chamber mandrels. Dense, uniform

iridium liners were produced on chamber
and cylindrical mandrels. Carbon/carbon
composite (C/C) structures were braided
over iridium-lined mandrels and densified
by chemical vapor infiltration. Niobium
deposition was evaluated for forming a
metallic attachment flange on the car-
bon/carbon structure. The new thrust
chamber was designed to exceed state-of-
the-art performance, and was manufac-
tured with an 83-percent weight savings.

High-performance C/Cs possess a
unique set of properties that make them
desirable materials for high-temperature
structures used in rocket propulsion
components, hypersonic vehicles, and
aircraft brakes. In particular, more atten-
tion is focused on 3D braided C/Cs due
to their mesh-work structure. Research
on the properties of C/Cs has shown that
the strength of composites is strongly af-
fected by the fiber-matrix interfacial
bonding, and that weakening interface
realizes pseudo-plastic behavior with sig-
nificant increase in the tensile strength.
The investigation of high-temperature
strength of C/Cs under high-rate heat-
ing (critical for thrust chambers) shows
that tensile and compression strength in-

creases from 70 MPa at room tempera-
ture to 110 MPa at 1,773 K, and up to 125
MPa at 2,473 K.

Despite these unique properties, the
use of C/Cs is limited by its high oxida-
tion rate at elevated temperatures. Lining
carbon/carbon chambers with a thin
layer of iridium or iridium and rhenium
is an innovative way to use proven refrac-
tory metals and provide the oxidation
barrier necessary to enable the use of car-
bon/carbon composites. Due to the
lower density of C/Cs as compared to
SiC/SiC composites, an iridium liner can
be added to the C/C structure and still be
below the overall thruster weight. Weight
calculations show that C/C, C/C with 50
microns of Ir, and C/C with 100 microns
of Ir are of less weight than alternative
materials for the same construction.
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