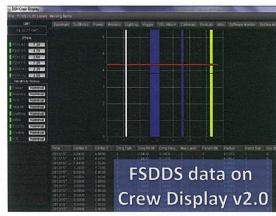
31 13/

## Flat Surface Damage Detection System (FSDDS)

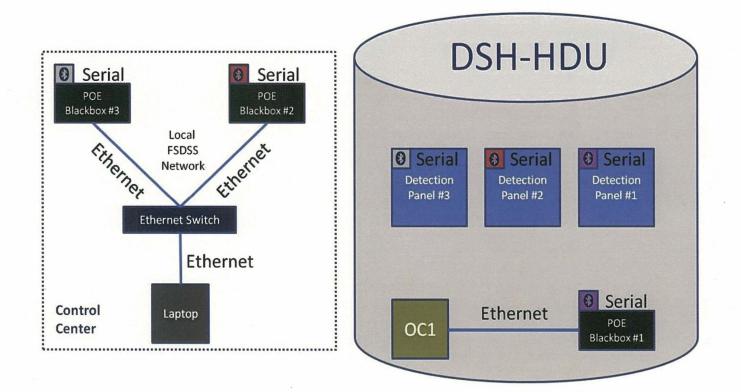
Dr. Martha Williams, Mark Lewis, Dr. Tracy Gibson and Dr. John Lane Dr. Pedro Medelius, Sarah Snyder, Dan Ciarlariello and Steve Parks, KSC Danny Carrejo and Dr. Kristina Rojdev, JSC


# Background

- KSC has been working in self healing and damage detection technologies for more than 10 years. Knowledge leveraged from the development of wiring damage detection systems.
- KSC IRTD FY11 funded project for development of hardware and software; used internal ink-jet printing technology for printing conductive traces
- Successfully demonstrated as a stand alone technology during 2011 D-RATS under IRTD.
- AES funded software modification allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC) during 2012 integration testing.
- Integrated FSDDS system and stand alone multi-panel systems (AES funded) were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF) network in 2012.
- FY13, FSDDS multi-panel integration with JSC and SNRF network
- Technology can allow for integration with other complementary damage detection systems
- Full patent application filed in 2012

#### DSH Technology & Innovations Flat Surface Damage Detection System (FSDDS)



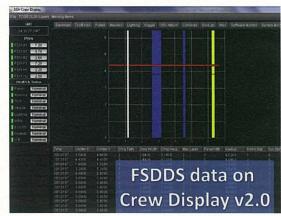

FSDDS sensory panels system at MOT 2012



FSDDS data on crew display during remote integration testing 2012

- Flat Surface Damage Detection: The Flat Surface Damage Detection system (FSDDS) is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring.
- The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI).
- The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph.
- Successfully demonstrated as a stand alone technology during 2011 D-RATS.
- Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC) during 2012 integration testing.
- Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF) network in 2012.
- FY13, FSDDS multi-panel integration with JSC and SNRF network
- Technology can allow for integration with other complementary damage detection systems NASA Kennedy Space Center 1

Raw damage data is transmitted serially and converted to Ethernet utilizing a Power over Ethernet Black Box. Each POE Blackbox has a unique IP address and Bluetooth device that is paired with a Bluetooth device on a unique detection panel, allowing monitoring of specific detection panels. The integrated panel (Panel #1) was monitored using an IPad running the crew display application. The stand-alone panels (Panels #2 and #3) were monitored using a laptop running the GUI in the control center.

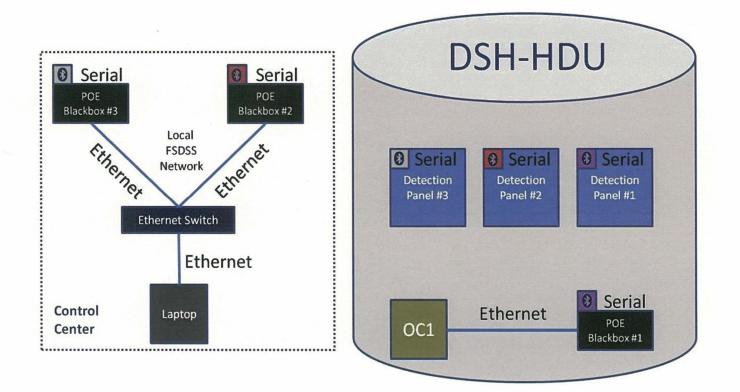



Block Diagram Pictorial Representation of the Communication Layout of the FSDDS Stand-Alone and Multi-panel Systems for FY12 NASA Kennedy Space Center 2

#### DSH Technology & Innovations Flat Surface Damage Detection System (FSDDS) FY12-F13 Status

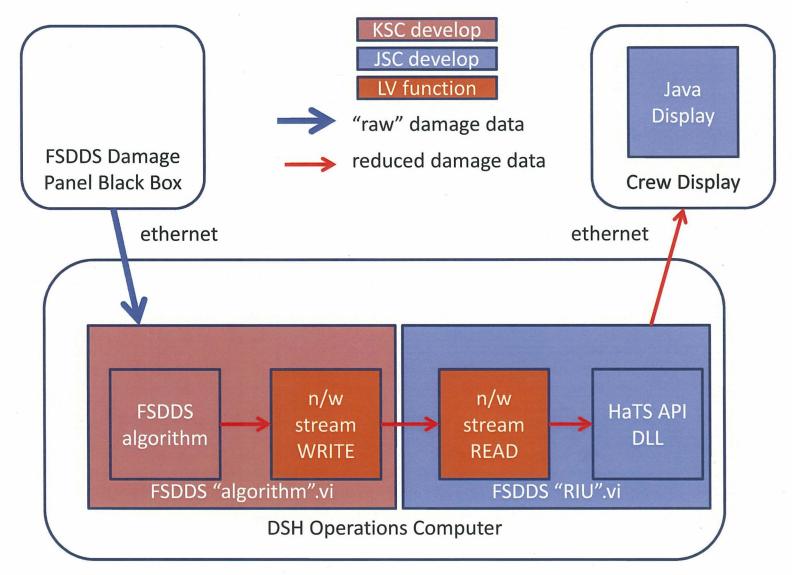


FSDDS sensory panels system at MOT 2012




FSDDS data on crew display during remote integration testing 2012

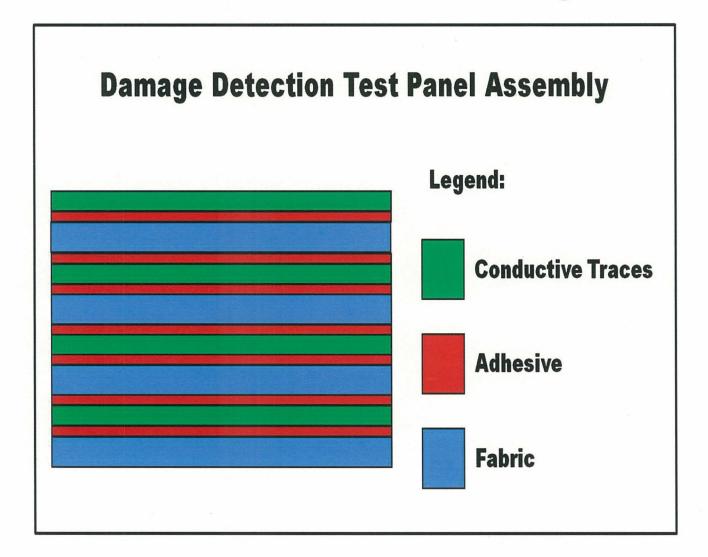
- Flat Surface Damage Detection: The Flat Surface Damage Detection system (FSDDS) is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring.
- The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI).
- The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph.
- Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF) network in 2012 (pictures left).


NASA Kennedy Space Center 3

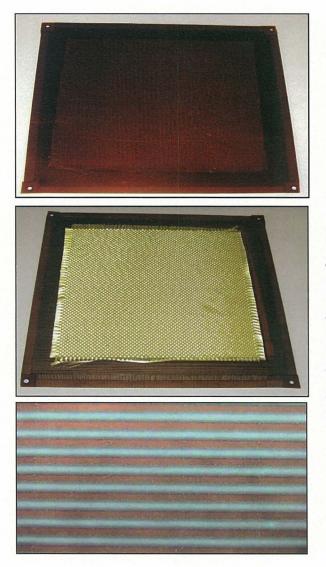
Raw damage data is transmitted serially and converted to Ethernet utilizing a Power over Ethernet Black Box. Each POE Blackbox has a unique IP address and Bluetooth device that is paired with a Bluetooth device on a unique detection panel, allowing monitoring of specific detection panels. The integrated panel (Panel #1) was monitored using an IPad running the crew display application. The stand-alone panels (Panels #2 and #3) were monitored using a laptop running the GUI in the control center.



Block Diagram Pictorial Representation of the Communication Layout of the FSDDS Stand-Alone and Multi-panel Systems for FY12 NASA Kennedy Space Center 4


## **FSDDS DSH software interfaces**

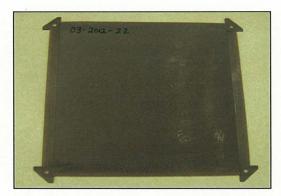


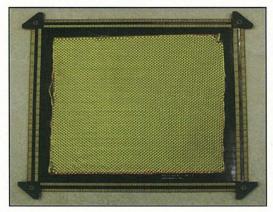

## **FSDDS Operations Summary**

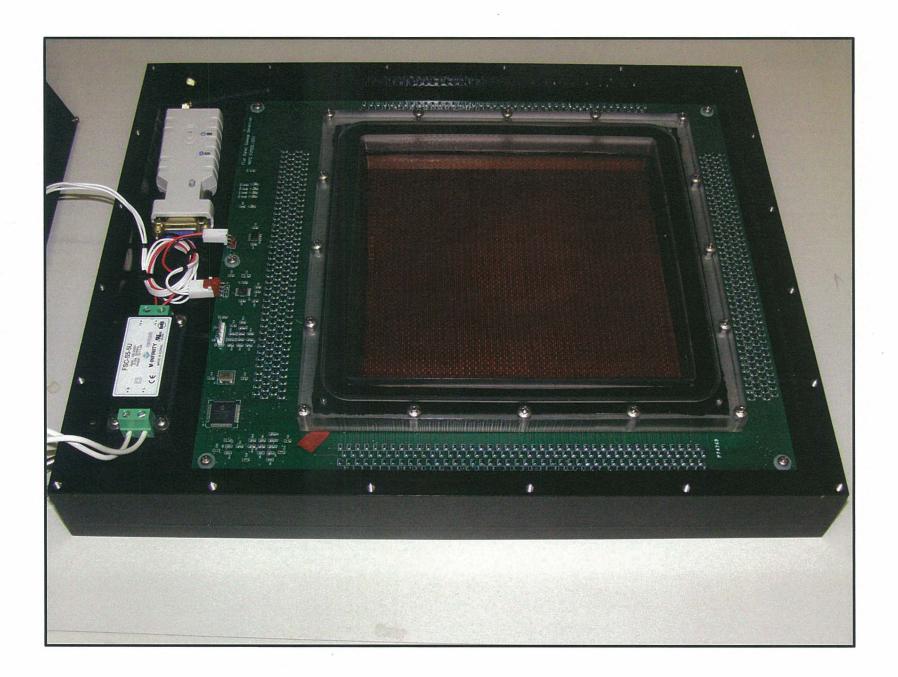
- The operation of the damage detection system is based on the use of parallel **conductive traces placed on a firm or flexible surface**.
- Several detection layers can be implemented, where alternate layers are arranged in an orthogonal direction with respect to adjacent layers. The orthogonal arrangement allows for pinpointing the exact location of the damage to the surface under test. Multiple detection layers allow for the calculation of the depth of the damage to the surface under test.
- Minimizes the use of active electronic components to reduce the risk of incorrect operation due to radiation factors. The FSDSS circuit uses only two active components: a microcontroller, and a serial port bidirectional driver/receiver. Wireless communication.
- Microcontroller is used to inject and monitor test signals to determine the integrity of the sensing lines
- The data is transmitted wirelessly to a central commuting system
- A GUI monitors and controls the system.

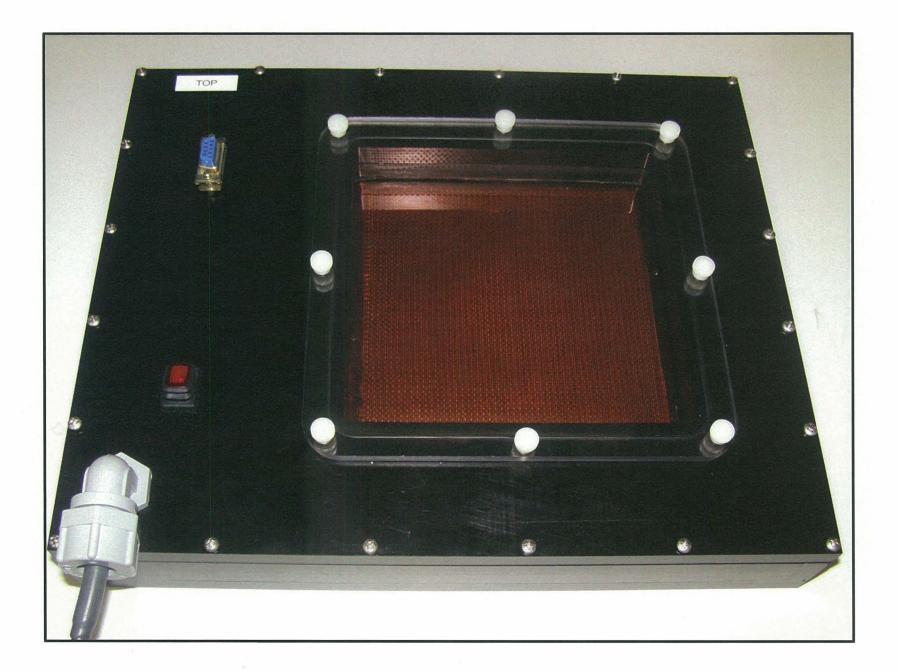
### **FSDDS Detection Panel Design**

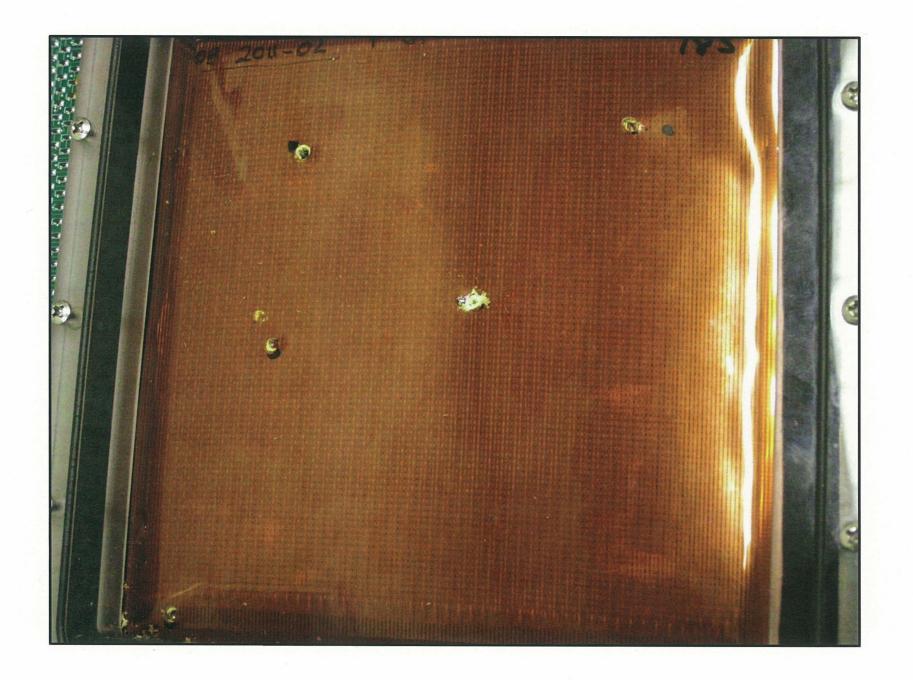


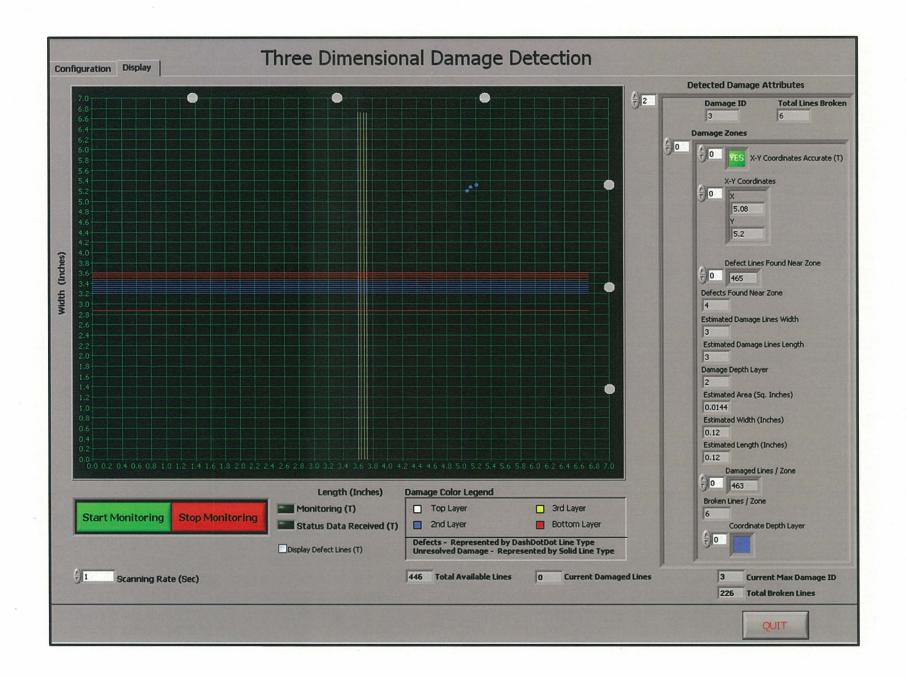

## **Damage Detection Panel Fabrication**



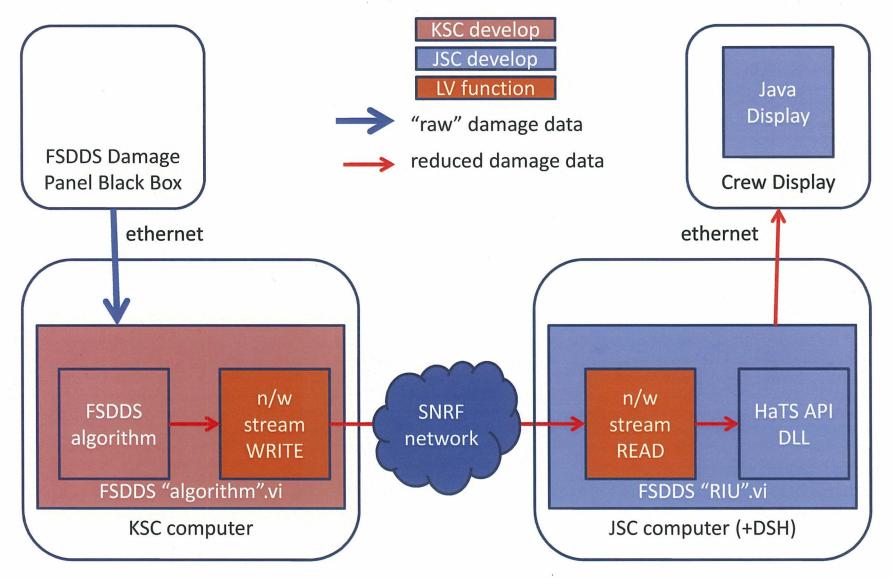


Insulation side of laboratory (left) and commercially (right) printed circuitry


Fabric side of laboratory printed and assembled multilayered system (left) and commercially (right) printed circuitry and laboratory assembled multilayered system (right)


Close up of laboratory ink-jet printed circuitry(left)











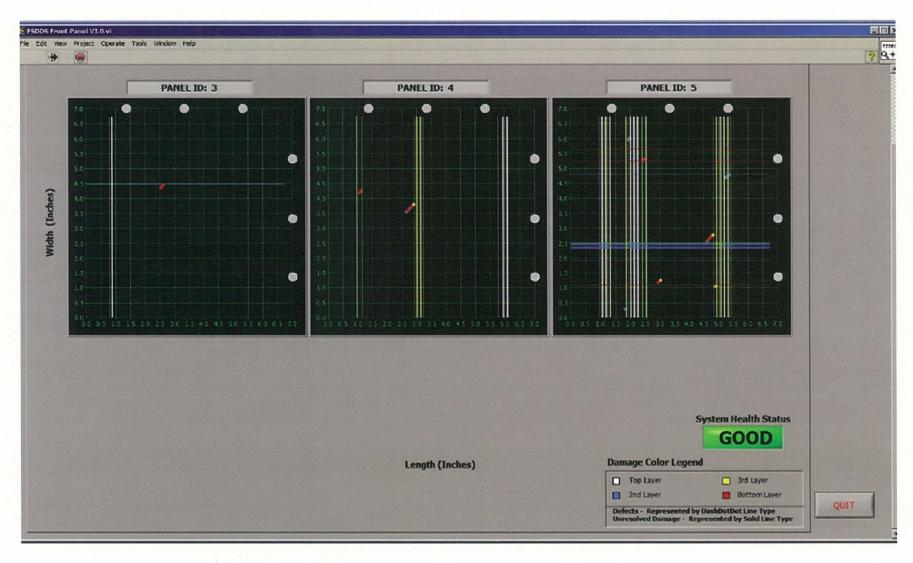

## **FSDDS DSH test configuration**



| ile TCS/ECLSS Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wissing items | 5         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |            |         |             |              |           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|---------|-------------|--------------|-----------|---------|
| GMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Summary       | Tcs/Eclss | Power       | Avionics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lighting | Veggie   | GeoLab Wsn | Cameras | Software Mo | onitor Syste | m Monitor | Network |
| 15:03:38 GMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |            |         |             |              |           |         |
| PDUs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |           |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lime     | Center X | Center Y   | Damage  | Damage      | Damage       | Max Layer | Pan     |
| PDU-A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 34      | 0.0400      | 0.0400       | 2         | 1       |
| A REAL PROPERTY AND A REAL |               |           |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 35      | 0.0400      | 0.0400       | 4         | 1       |
| PDU-B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 36      | 0.0400      | 0.0400       | 1         | 1       |
| PDU-B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 37      | 0.0400      | 0.0400       | 1         | 1       |
| PDU-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 38      | 0.1600      | 0.0400       | 1         | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/130 | 0.0000   | 0.0000     | 39      | 0.0400      | 0.0400       | 1         | 1       |
| PDU-H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 4.1600   | 2.3200     | 1       | 0.1200      | 0.1200       | 4         | 1       |
| PDU-H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |           |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 3.8400   | 4.0800     | 2       | 0.0400      | 0.1600       | 2         | 1       |
| Health & Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/130 | 4.4000   | 4.4000     | 3       | 0.4400      | 0.1200       | 2         | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           | "关闭"的"      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 1.6400   | 1.3200     | 4       | 0.1200      | 0.1200       | 4         | 1       |
| Power Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           | 120.00      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 3.2800   | 5.2800     | 5       | 0.6800      | 0.0800       | 2         | 1       |
| Avionics Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 6       | 0.0400      | 0.0400       | 1         | 1       |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |             | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 7       | 0.0400      | 0.0400       | 1         | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012/130 | 0.0000   | 0.0000     | 8       | 0.2400      | 0.0400       | 3         | 1       |
| Veggie Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           | and the set |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012/130 | 0.0000   | 0.0000     | 9       | 0.0400      | 0.0400       | 2         | 1       |
| Lighting Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |             | and the second s | 2012/130 | 0.0000   | 0.0000     | 10      | 0.0400      | 0.0400       | 4         | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012/130 | 0.0000   | 0.0000     | 11      | 0.0400      | 0.0400       | 1         | 1       |
| WSN Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012/130 | 0.0000   | 0.0000     | 12      | 0.0400      | 0.0400       | 1         | 1       |
| ECLSS Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012/130 | 0.0000   | 0.0000     | 13      | 0.1600      | 0.0400       | 1         | 1       |
| Geolab Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2012/130 | 0.0000   | 0.0000     | 14      | 0.0400      | 0.0400       | 1         | 1       |

U.E.

Unknown


# FSDDS data on Crew Display v1.0

| ile TCS/E | CLSS Layers              | Missing Items        | ;         |        |                           |          |           |            |           |          |        |                  |             |
|-----------|--------------------------|----------------------|-----------|--------|---------------------------|----------|-----------|------------|-----------|----------|--------|------------------|-------------|
| GM        | 1T                       | Summary              | Tcs/Eclss | Power  | Avionics                  | Lighting | Veggie    | OSU Atrium | Cameras   | GeoLab   | Wsn    | Software Monitor | r System Mo |
| 14:30:2   | 7 GMT                    |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| PD        | Us                       |                      |           | 6      | Contraction of the second |          |           |            |           |          |        |                  |             |
| PDU-A1    | 7.20                     |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| PDU-B1    | 4.70                     |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| PDU-B2    | 2.60                     |                      |           | 5      |                           |          |           |            |           |          |        |                  |             |
| PDU-F1    | 7.20                     |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| PDU-H1    | 2.20                     |                      |           | 4      |                           |          |           |            |           |          |        |                  |             |
| PDU-H2    | 2.50                     |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| Health 8  | Status                   |                      |           |        |                           |          | 1         |            |           |          |        |                  |             |
| Power     | Nominal                  |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| Avionics  | Nominal                  |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| TCS       | Nominal                  |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| Veggie    | Nominal                  |                      |           | 2      |                           |          |           |            |           |          |        |                  |             |
| Lighting  | Nominal                  |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| WSN       | Nominal                  |                      |           |        |                           | •        |           |            |           |          |        |                  |             |
| ECLSS     | Nominal                  |                      |           |        |                           |          |           |            |           |          |        |                  |             |
| Geolab    | The second second second |                      |           |        |                           |          |           |            |           |          |        |                  |             |
|           | Nominal                  |                      |           | 0      |                           |          |           |            |           |          |        |                  |             |
| U.E.      | Nominal                  |                      |           |        | 0 1                       |          | 2         | 3 4        | 5         | 6        | 7      |                  |             |
|           |                          | Time                 | Center X  | Center | Y Dmg                     | Tally D  | )mg Width | Dmg Heig   | Max Layer | Panel H  | lth Ra | adius Rslvd :    | Stat Sys St |
|           |                          | 2012/157             |           | 4.0800 | 2                         |          | .0400     | 0.1600     | 2         | 1        |        | 0200 1           | 0           |
|           |                          | 2012/157<br>2012/157 |           | 4.4000 | 3                         |          | 4400      | 0.1200     | 2         | 1        |        | 0600 2           | 0           |
|           |                          | 2012/157             |           | 5.2800 |                           |          | 200       | 0.1200     | 4         |          |        |                  |             |
|           |                          | 2012/157             |           | 0.0000 |                           |          |           |            |           |          |        |                  |             |
|           |                          | 2012/157             |           | 0.0000 |                           | 0        |           | 0 407      |           | <b>d</b> | d      | on               |             |
|           |                          | 2012/157             |           | 0.0000 |                           | 0        | .2400     | 0.0400     |           |          |        |                  |             |
|           |                          | 2012/157             | 0.0000    | 0.0000 |                           | n        | .0400     | 0.0400     |           |          |        |                  |             |
|           |                          | 2012/157             |           | 0.0000 |                           |          |           | 0.0400     |           | 1_       |        | 1000 3           |             |
|           |                          | 2012/157             |           | 0.0000 | 1                         |          | 0400      | 2.04       |           | 1        | - 0.0  | v2.              |             |
|           |                          | 2012/157             | 0.0000    | 0.0000 |                           | r        |           | 1.041      |           | 15       |        |                  |             |
|           |                          |                      |           |        | And the second second     |          |           |            |           |          |        |                  |             |
|           |                          | 2012/157             | 0.0000    | 0.0000 | 10                        |          |           | 0.041      |           |          |        |                  |             |

FSDDS Display Screen of Simultaneous (KSC and JSC) and Remote monitoring of multiple detection panels

|                                                                 | FSDDS COM                            | MAND CONSOLE                                                                                                                                                 | FSDDS Configuration Parameters                                                                                     |                  |
|-----------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|
| READ ALL PANELS BASELINE DATA                                   | ALL Data Received (1)                | Read String Array (ASCII)           \$5T□         €□                                                                                                         | Hode AUTOMATIC                                                                                                     |                  |
| ERASE SELECTED PANEL MEMORY                                     | ALL Erase Baseline CHDs Received (T) | -                                                                                                                                                            | 3 Panel Qty<br>363 Detection Lines/Layer                                                                           |                  |
| 3<br>4<br>5<br>5<br>10<br>10<br>10<br>10<br>10                  | Numbers                              | Read String Array (Hex)<br>2453 5403 0010 0000 0000<br>1003 1200 0110 0011 0000<br>1003 0100 0010 0011 0000<br>1003 0100 0010 0011 0000<br>1000 0000 0000 00 | 0.04 Resolution (Inches)                                                                                           |                  |
| CREATE DAMAGE RECORDS FILE                                      | Hask Enabled (Checked)               | 1000 8000 0800 04£0 0000<br>1000 8000 0800 0000 0000<br>1000 8000 0800 0000 0000<br>1000 8000 0800 0000 0000<br>1000 8000 0800 0000 0000 ↓                   | 2203 Pert<br>Ethernet-Serial Port IP Addresses<br>30:00:5:157<br>30:07:26:2<br>10:10:26:2                          |                  |
| SCRIPT CHID EXECUTION<br>START_MONITOR 4 See                    | juonce Counter                       | CLEAR DISPLAY                                                                                                                                                | TCP Comm Good (T)<br>Network Streams HDU DATA<br>Enabled (Checked)                                                 |                  |
| Start Monitoring                                                | Monitoring (T)<br>Sampled (T)        | Display Defect Lines (1)     Edit FSDDS Configuration (1)                                                                                                    | HDU writer uf<br>//locahost:rSDDS Front Panel V3.0/reduced<br>HDU reader uf<br>//10.10.5.22:FSDDS_HOST/REDUCED_DAT |                  |
| Panel Baseline Statistics From Flash Hemory                     | FSDDS ST                             | ATUS CONSOLE                                                                                                                                                 | Damage Numb                                                                                                        |                  |
| 30 Total # Baselined Damaged Lines<br>2 Baselined Damage ID Hax | Panel Masked Baseline Damage S       | Inter cade                                                                                                                                                   |                                                                                                                    | Test Panel       |
|                                                                 | 10 Total # Baselined Damag           | ed Lines After Hask                                                                                                                                          | Layer 1: 0-167                                                                                                     | Layer 1: 336-503 |

### FSDDS Labview Display of Multi-Panel Systems



Matrix Math Software upgrade being considered

# Back up slides

#### TECH BRIEFS NASA

Damage Detection and Self-Repair in Inflatable/Deployable Structures

NASA's Jet Propulsion Laboratory Sunday, March 01 2009

Integrated sensors and self-repairing materials provide structural health management.

Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semiautonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.

A series of proof-of-concept technology sensing and self-repair technologies have recently been developed and tested individually, for future integration into a full health management system for inflatable/deployable structures. With further development, these technologies could be applied individually or as part of an entire system, depending on the particular architecture of the structure or on the specific mission needs. The technologies include:

- Arrays of thin-film capacitive or inductive sensors, made of a flexible circuit material that can be integrated into an inflatable/deployable structure for use in detecting the location and extent of damage. Damage manifests itself as changes in inductance or capacitance in elements of the sensor array.
  Strain gauges made from thin films of amorphous silicon for monitoring the integrity of thin, flexible structures. To reduce the amount of wiring required, thin-film transistors are used to construct an addressable, matrixed array of
- sensors allowing selection and readout of specific sensors in the array.
- Wireless sensors and passive (no-power) radio-frequency identification sensor tags to provide additional sensing capabilities such as strain sensing, temperature sensing, and impact or leak detection, without the need for data and
- Self-repairing elastomeric materials (such as those used to construct the bladder of a habitat), which incorporate microcapsules filled with a monomer resin and a small amount of a polymerization catalyst. Upon damage to the material, some of the capsules burst and release the monomer, becoming polymerized after making contact with the embedded catalyst and thus effecting repair of the damage.
- Sensory and self-repair features will eventually be combined into the structure to effect a unified structural health maintenance system. Sensors will alert humans to initial damage and will monitor the self-repair process, to indicate whether there is a need for human intervention for inspection and/or repair.

This work was done by Erik Brandon of Caltech, George Studor of NASA Johnson Space Center, David Banks and Mark Curry of Boeing Phantom Works, Robert Broccato of Sandia National Laboratories, Tom Jackson of Penn State University, Kevin Champaigne of Invocon, Stan Woodard of NASA Langley Research Center, and Nancy Sottos of the University of Illinois at Urbana-Champaign for NASA's Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov . NPO-44519