@ https://ntrs.nasa.gov/search.jsp?R=20140002660 2019-08-29T14:43:39+00:00Z

Autonomous Cryogenics Loading Operations Simulation
Software: Knowledgebase Autonomous Test Engineer

Walter S. Wehner Jr.
KENNEDY SPACE CENTER
Major: Computer Science
Program KSC FO Summer Session
Date: 12 08 2013

NASA USRP - Internship Final Report

Autonomous Cryogenics Loading Operations Simulation
Software: Knowledgebase Autonomous Test Engineer

Walter S. Wehner, Jr! ,
New Jersey Institute of Technology, Newark, New Jersey, 07102

Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had
the opportunity to add functionality to the physics simulation software known as KATE
(Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG
(what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary
design and implementation of a new subsystem that will provide vision services on the IHM
(Integrated Health Management) bus. The functionality I added to KATE over the past few
months includes a dynamic visual representation of the fluid height in a pipe based on
number of gallons of fluid in the pipe and implementing the IHM bus connection within
KATE. I also fixed a broken feature in the system called the Browser Display, implemented
many bug fixes and made changes to the GUI (Graphical User Interface).

Nomenclature

= arc length
fluid height
cord length
sector height
pipe radius
= sector angle

@XN0 >
I

I. Introduction

ATE (Knowledgebase Autonomous Test Engineer) is a software system that uses a physics model of an
environment to monitor and identify suspected component failures. The environments are defined by a
knowledgebase approach which allows for the abstraction or rules and behaviors from the environment. This level of
abstraction gives the knowledgebase approach to modeling environments power and flexibility not available in an
expert system. The physics model is implemented in KATE by creating reusable objects. These objects are then
consumable in a new knowledgebase. This approach of implementing reusable objects allows a new environment to
be modeled starting with all the previous objects.

Working on the KATE codebase I added a GUI (Graphical User Interface) object to KATE that represents the
amount of fluid in a horizontal pipe, fixed a broken feature known as the CUI (Compact Unique Identifier) Browser
and implemented the connection to the IHM (Infrastructure Health Management) bus. In support of KATE I created
an application that allows a schematic to be designed in a WYSIWIG (what-you-see-is-what-you-get) style editor. I
also began the design and implementation of a new service that will be available on the IHM bus. This service will
provide image analysis and computer vision support to the ACLO (Autonomous Cryogenics Loading Operations)
project and the other subsystems on the IHM bus.

The remainder of this paper is organized as follows. Section II will describe the changes and additions to KATE.
Section three will describe the xyFile format, the class architecture and the implementation of the Schematic
Designer. Section IV will describe the application architecture the class design for camera control, the class design
for image analysis and the GUI implementation of the Visual Information Service and Section V will provide
conclusions.

' Computer Science Masters Student, Computer Science, New Jersey Institute of Technology.

Kennedy Space Center Page 1 8/12/2013

NASA USRP - Internship Final Report

II. KATE Changes and Additions

The initial KATE project was started in the nineteen nineties as a port from a LISP version of the software to a
C++ version. My first few changes to KATE gave me the opportunity to get familiar with the one-hundred plus file
codebase and the coding style used by the team that implemented the port. My first changes include added coloring

to different display elements so
you could easily differentiate
between modeled values and
physical value; I cleaned up
some compiler warnings and
fixed some memory leaks that
where reported running a tool
named valgrind; and I fixed
some broken code that caused
the CUI Browser to no longer
be displayed. Figure one shows
the CUI browser and the
coloring changes implemented

GLOK2012E

HFER LINE FILL VLV CLDSED #1 MERS

GLON3012E

WFER LINE FILL WLV CLOSED #2 MERS

GLOC013E

NFER LINE FILL WLV OPEN #1 HERS

GLON3013E

NFER LINE FILL VLV OPEN #2 HERS

GLON3033E

WFER LINE FILL WLV SEC SELECTED Mt

L0002

PUMP DISCHARGE FLOH RATE #1

GLOPO226A

PUNP. DISCHARGE PRESSURE 41

ABbd61

NFER LINE FILL VALVE

A8

PUMP R126 CHILL-DOWN LY (A128)

A9

|
|
|
|
|
|

PUMP A127 CHILL-DOWN VLV (A129)

5§59 2 2 9 9
=13

Figure 1. CUI Browser.

where white backgrounds

denote physical elements and blue backgrounds denote modeled elements.
After familiarizing myself with the codebase and how the system worked internally, I implemented a new

Figure 2. Circle segment and target area.

pipe would allow me to solve for
the diameter of a pipe that would
be completely full. Knowing this
diameter would then allow me to
calculate the cross-sectional area
of the volume. This is the target
arc area in the original pipe that is
full represented in figure 2 as c.
Once we calculated the target area
to fill in the original pipe we are
left with two unknowns in
calculating the arc area, the height,
h, and an angle theta, ©.

In figure 3, we present the
algorithm for calculating the arc
area using an iterative approach
incrementing theta and calculating
the arc area to find the fluid
height.

The process is the same for
finding the height above half full
but instead of solving for the
remaining full we solve for the
amount empty and subtract the

Kennedy Space Center

feature known as the Fluid Height Gauge control. This new control
displays a graphical representation of the fluid height in a horizontal
pipe. The requirements for implementing the new control were that it
needed to be scalable and the only inputs supplied are pipe diameter,
length and number of gallons in the pipe. The control needed to
subscribe to updates from the system to provide real-time updates to
the number of gallons in a pipe and update its display. I inherited
from the class “UpdateObject” and implemented the necessary
functions for calculating the fluid height and creating the graphical
representation of the pipe cross-section.

Knowing the length of a pipe and the number of gallons in the

{arcArea <= targetArchrea

a += 1ncrement;

ength =

(theta - increment);

Figure 3. Algorithm for calculating theta.

Page 2 8/12/2013

NASA USRP — Internship Final Report

calculated height from the diameter of the pipe. The process of drawing the control also uses the calculated values of
theta and fluid height. We convert the values based on the control size into pixels per inch to maintain scaling of
different sized controls and various sized pipe segment. In figure 4, we show two different fluid height controls
being displayed on a schematic view within KATE.
One requirement for KATE was to be able to
communicate with the other systems in the ACLO
project. The communication between different
systems used an interface called ICE (Internet
Communications Engine). I worked with Kelvin
Ruiz to integrate the ICE code and implement the
necessary changes in KATE for connecting to the
IHM (Infrastructure Health Management) bus.
Kelvin was designing the GUI interface for what is
known to KATE as a Data Provider. The IHM bus
was a generic Data Provider class that would take
messages and convert them to a KATE friendly
structure for consumption within KATE. It also MV150 s
takes messages from KATE and publish these —
messages for other systems to consume and act *
upon. I worked on understanding the changes
needed for the communications and implementing Figure 4. Fluid Height Gauge GUI Control.
those changes in KATE while Kelvin completed
the GUI. Once Kelvin completed the GUI I worked with him to implement my changes in the new generic data
provider module.

ITII. Schematic xyFile Designer

KATE has a feature that allows for an image to be loaded and then a set of CUI’s with values be displayed on
top of the image. This feature is known as the Schematic View within the KATE application. The current method of
developing these files is by opening your favorite text editor and hand coding all the values. The Schematic xyFile
Designer application developed is a utility program created for windows that allows for the generation of “schematic
xy files” for use in KATE. This application allows for the WYSIWYG creation of the xy files so a user does not
need to know the internal structure to create the file or hand code the file in a text editor.

B KATE Schematic XY File Designer

AMPT102
AMTT202
AMTT105
PT198 i
PT199 :l

Figure 5. KATE Schematic xy File Designer.

Kennedy Space Center Page 3 8/12/2013

NASA USRP — Internship Final Report

A. KATE xy File Format

The KATE xy file has a specific structure that allows for the loading of the graphical objects to be displayed on
the schematic view. The encoding of the file is ASCII and the newline character is “\n” as opposed to ‘\r\n” which is
standard in windows. The first line of the file is XYFILE followed by a new line. After the first line, the rest of the
file is a listing of the elements to be displayed which are separated by a newline. The element information block
consists of up to fifteen parameters depending on the class type being displayed. The first parameter is the index
value. The second parameter is the class type value and will determine if we load additional values.

Value Display Class (classtype = 0)

Fluid Height Gauge (classtype = 1)

Tank Fluid Height (classtype = 2)

name (text)
x_loc (integer)
y_loc (integer)
x1 (integer)
x2 (interger)
show (integer)

pipe length (floating point)
control width (integer)
control height (integer)
name (text)

x_loc (integer)

y loc (integer)

x1 (integer)

x2 (interger)

show (integer)

pipe diameter (floating point)

tank top height (floating point)
tank mid height (floating point)
tank bottom height (floating point)
semi major axis (floating point)
semi minor axis (floating point)
control width (integer)

control height (integer)

name (text)

x_loc (integer)

y_loc (integer)

x1 (integer)

x2 (interger)

show (integer)

Table 1. xy File types and associated parameters.

Table 1 shows the additional parameters for each classtype loaded. All parameters are delimited by a new line

character.

B. Class Design

The class structure implemented begins with an abstract class
called “Knowledgebaseltem”. This abstract class in inherited by the
“ValueDisplayltem”, “FluidHeightGaugeltem” and
“TankFluidHeightltem” classes. These classes hold the data that is
written to the file and implement the interface to alert the
framework when a property value has change. To hold these items
and use them we created a classes called “KnowledgebaseltemList”
which extends the “ObservableCollection” framework class. This
list will notify the framework when there are changes to the
collection such as adding and removing elements.

We then must implement the controls to display our data. We
start by designing a class called “KnowledgebaseltemVisual”
which will be exteneded byt three children called
“ValueDisplayltemVisual”, “FluidHeightGaugeVisual” and
“TankFluidHeightVisual”. These classes handle drawing an
individual knowledgebase item on the screen. Next, we create a
control called the “KnowledgebaseltemListVisualizer”. This class
extends the class “FrameworkElement” and implements listening to
changes in the “KnowledgebaseltemList”, drawing the
“KnowledgebasedItemVisual” classes.

C. Implementation

The implementation of our application is done by
creating a user control called “SchematicDesigner”. The
“SchematicDesigner” class which inherits from the class
“UserControl”. The “SchematicDesigner” is a control that handles
adding and removing “KnowledgebaseltemVisual”, displaying a

Kennedy Space Center Page 4

O INctifyPropertyChanged

& Fields

B _classType
_index
3 _hame
#% _position
& _visible

| © Properties

" ClassType
5 Index
ﬁ Name
5 Position
= visible

| & Methods

3% ExtractPropertyName<T>
Knowledgebaseltem (+ 1 overload)
RaisePropertyChanged
SetField<T>

ToString

WriteToFile

P N SR

| & Events

7 PropertyChanged

i ® Nested Types

Figure 6. Knowledgebaseltem Class.

8/12/2013

NASA USRP — Internship Final Report

schematic image background and the) -
dragging and dropping of the items into place. (SchematicDesigner @&
In the main application window we use | Class
this control and a ListBox control that |26 U Coinrol
loads the Knowledgebaseltems. We are able |
to drag the CUI name from the ListBox and © Fields
move them in place on the SchematicDesigner
control. The mail window class handles @ BackgroundimageProperty
loading a “KATE flatfile”, loading a “Kate xy ¥ KnowledgebaseltemsProperty
File” and saving a “KATE xy file”. | & Properties
We show the WYSIWYG Schematic
Designer application in Figure 5. The ;ﬂ Backgroundimage
application is displaying a Fluid Height Gauge rp Knowledgebaseltems
and multiple Display Value items over a = Method
background image and a list of CUI’s that are :
able to be added to the schematic. @ ClearAllitems
Please see the Appendix for a review of all | 4% KnowledgebaseltemListVisualizerRegion_DragEnter
class diagrams used in the KATE Schematic | $ LeftClickHitTestKB!
xyFile Designer. L OnBackgroundimageChanged
| 3% OnKnowledgebaseltemsChanged
¥ RightClickHitTestKBl
@ SchematicDesigner
2% SchematicDisplay_DragOver
2% SchematicDisplay_Drop f
2% SchematicDisplay_MouseDown
4% UpdateKnowledgebaseObject

|
\ /

Figure 7. SchematicDesigner Class.

IV. Visual Information Services Application

The VIS (Visual Information Services) is an application that will add computer vision and image analysis
support to the ACLO project. The requirements for VIS are that it be a windows based application but the
application logic be developed in C++ and be portable to Linux; and the application will be available for other
systems on the IHM bus.

D. Application Architecture

The Windows GUI is written in C# using WPF (Windows Presentation Foundation). C# is a managed language
and uses the NET Framework. The application code is packaged in a DLL (Dynamic Link Library) and is written in
native C++. To use the native DLL in the .NET Framework I needed to implement a managed C++ wrapper to
handle creating and disposing of the native objects and converting between native data types and managed data
types. There are many benefits to this design including portability between platforms; flexibility in GUI design and
application implementation; and reusability of image processing and computer vision functions.

I have created a DLL called “CameraControl.dll” that is responsible for communications between the application
and the network cameras in the Cryogenics Test Bed. This DLL provides functions to move a camera, retrieve
images from a camera and query/set some camera parameters. This DLL is written in native C++ and is wrapped by
a DLL called “ApplicationBridge.dll”. I expose a few underlying classes in this application wrapper and handle all

Kennedy Space Center Page 5 8/12/2013

NASA USRP - Internship Final Report

memory management for the native object creation. The
“ApplicationBridge.dll” is then consumed by the GUI written in
C# and I use the GUI to load a database of CUI locations, request
images and perform image processing and analysis.

The image processing and analysis routines are in another
DLL which is currently written in C#. The goal will be to write
this DLL in native C++ to make it portable between platforms
and consumable by any client application. In the image
processing DLL we have implemented functions for gray scale
conversion, binary conversion, skeletonization, edge detection
using Sobel filtering, image smoothing and circle detection by
Edge Oriented Hough Transform.

E. Camera Control and Application Bridge Classes

The “CameraControl.dll” contains the classes used to
communicate directly to the cameras. We have a class “Camera”
that implements all the necessary functions to directly
communicate with the camera. There is a class called
“CameraClient” that has a camera and implements high level
camera access. This allows the consumer to call a single function
to retrieve an image or move the camera and the class
implements all the calls needed to the camera.

The “ApplicationBridge.dll” DLL provides the managed
classes used in C#. We have wrapped the needed
“CameraControl.dll” classes and implemented all the native
memory management. The “CameraClient” class is wrapped as
“ManagedCameraClient” and provides the managed facilities to

(P IDisposable The

(ManagedCameraClient
| Class
| 2
‘ = Properties
- ™5 CameralpAddress

5 CameraName

% CameraPort

= Displaylmage
= Methods
~ManagedCameraClient
Dispose (+ 1 overload)
GetCameraPosition
GetPresetPositions
GetStillimage
ManagedCameraClient (+ 3 overloads)
RequestVideoStream
SetCameraPosition
ToString

;] /

pixels.

O oo oo e e

Figure 9. ManagedCameraClient Class.

Kennedy Space Center Page 6

“Cluster”,

candidate circles

L 2K 2R 2R 2B J2F 2K 2K 2R 2R 2N 2K 2R 2R

~CameraClient
CameraClient (+ 1 overload)
GetCameraAudioStream
GetCameralpAddress
GetCameraName
GetCameraPort
GetCameraPosition
GetCameraVideoStream
GetPresetPositions
GetStilllmage
SetCameralpAddress
SetCameraName
SetCameraPort
SetCameraPosition

Figure 8.

together

CameraClient Class.

communicate at a high level with the camera.
additional
“CameraControl.dIl”
“CameraPosition”,

“CameraPresetPositionList”, and “CameraHttpResponse”.
Please see the appendix for the class diagrams of all classes
in the “CameraControl.dll”.

F. Image Processing and Analysis Classes
The main image processing and analysis classes
currently implemented are “ImageUltilites”, “HoughCircle”,
“Skeletonization”
“ImageUtilites” provides functions to manipulate an image
such as image binarization, image smoothing, edge
detection and thinning.
facilities for circle detection. “Cluster” is used to group
when performing object
detection. “Skeletonization” provides the implementation
of an image thinning algorithm and “ImageMatrix” is used
for directly accessing and manipulating an image and its

and

G. GUI Implementation

The implementation of our GUI is done in C#. The
main application provides the facilities to load a database
of cameras and their IP addresses, load a database of

8/12/2013

“HoughCircle” provides

classes implemented in
are “CameraParameter”,
“MPEG4Stream”, “AudioStream”,

“ImageMatrix”.

the

Please see the appendix for the class diagrams in the
Image Processing library.

NASA USRP — Internship Final Report

predefined CUI’s and their locations, request and display an image from a camera, query the camera for its list of
preset positions and perform analysis on the images to detect gauges.

BT ManWe I e+ s

[Browses wm[\fdﬂo'l‘

omers (RG] ot

{Building SE Corner|172.127.1.120{80) Pressure Panels

{Suction South{172.127.1.121|80} Discharge Panel
{Suction North{172.127.1.122|80} Suction Panel
{PU101 Fixed|172.127.1.126{80) Purge Panel
{PU102 Fixed|172.127.1.127]80} Bearing Temps
{Pump Skid PTZ]172.127.1.123|80} Pump Housings
{Valve Skid PTZ|172.127.1.124/80) VFD
{Vehicle Skid PTZ]172.127.1.125/80} Dump Pond
{North View[172.127.1.12880) Tank Inlet/Outlet
i 3K Supply Panel
Double Doors

Gauge Locations
f Total Time: 1.9656

{237, 53, 23) .
i {135, 42, 22) Binary Threshold gp [¥] Apply Smoothing
] {198, 212, 23)
| 40, 35, 22) Method | skeletonize v
i {238, 54, 23}

Radius Min 22
. Radius Max 26
|
1l o ——
o= - e — e TR T — = ——— — R s 77-5? T R e RO 1 ey e

Figure ;10. 'Géﬁge Location Gﬁl Wi‘l‘ldow.

V. Conclusion

The projects I worked on have been a great learning experience. I see KATE as a great tool for use in the future
and the computer vision application I begin developing will be valuable to every system on the IHM bus. I have
developed a framework for this new computer vision service and implemented some features to show proof of
concept. Some of the services I implemented in the new system are the ability to move cameras to see specific
CUTI’s; being able to take images and send them to clients; and being able to identify different gauges. Some features
for future expansion will include reading gauge values; automatically identifying all the CUI’s in the system and
creating a 3-D map of the CUI’s. These features will allow the automatic creation of KATE Knowledgebase files
which can contain thousands of items currently entered by hand and would be useful when there are configuration
changes. As another data source for KATE it will also enhance the reasoning ability for fault detection and diagnosis
of a failed component. Expanding the vision services beyond CUI’s and values to inputs such as boiling liquid vapor
recognition and infrared heat maps of the flow path would also be very useful data for KATE.

Appendix

The Appendix is organized into three sub-sections. The classes for the KATE Schematic xyFile Designer are
listed in part A; the classes in the CameraControl DLL are shown in part B; in part C we show the classes in the
ApplicationBridge DLL and Camera Control GUI; and the classes in the Image Processing DLL are shown in Part
I

Kennedy Space Center Page 7 8/12/2013

NASA USRP - Internship Final Report

A. KATE Schematic xyFile Designer Classes

= Properties
PO kel
' & Methods
‘ 3% DrawArc
@ DrawKnowledgebaseitem

¥ KnowledgebaseltemVisual
.?‘. RenderName

e e e e S e

- Knowledgebaseltem Visual

= Properties
= voi
& Methods
¥ DrawKnowledgebaseitem
@ ValueDisplayltemVisual (+ 1 overload)

.

y

/

@)
= Knowledgebaseltem

& Methods
‘@ ToString
@ ValueDisplayitem (+ 2 overloads)

‘@ WriteToFile
N J/

Kennedy Space Center

Page 8

TankFluidHeightVisual

Class
= KnowledgebaseltemVisual

= Properties
= TFH
& Methods
‘¥ DrawKnowledgebaseltem
4% RenderBackdrop
‘@ TankFluidHeightVisual (+ 2 overloads)

(FluidHeightGaugeVisual
Class
= KnowledgebaseltemVisuzl

= Properties
= FHG
= Methods
¥ DrawKnowledgebaseltem
@ FluidHeightGaugeVisual (+ 2 overloads)
2% RenderBackdrop

& Fields
& _diameter
49 _length
_-a. _size

& Properties
' Diameter
= Length
= size

& Methods
¥ FluidHeightGaugeltem (+ 3 overloads)
‘¥ WriteToFile

8/12/2013

NASA USRP - Internship Final Report

INotifyPropertyChanged

| © Fields
. P _classType
g)‘ _index
& _name
_position
| ¥ _visible
- & Properties
5 e ClassType
" Index
% Name
' Position
LB visible
. E Methods
| 4% ExtractPropertyName<T>
¥ Knowledgebaseltem (+ 1 overload)
3% RaisePropertyChanged
4% SetField<T>
@ ToString
‘ @ WriteToFile
- & Events
. ¥ PropertyChanged
. @ Nested Types

Kennedy Space Center

F.l. KFluidHeightlt @\

Class
=b Knowledgebaseltem

© Fields
_bottomHeight
4% _midHeight
& _semiMajorAxis
4% _semiMinorAxis
;.3. _size
4% _topHeight

= properties
' BottomHeight
' MidHeight
Y SemiMajorAxis
" SemiMinorAxis
= Size
' TopHeight

= Methods
@ TankFluidHeightitem (+ 3 overloads)

Page 9

@ WriteToFile

' Knowledgebaseltemlist ®)
Class
=P ObservableCollection <Knowledgebaseltem >

& Methods
‘¥ KnowledgebaseltemList (+ 1 overload)
W

\.

8/12/2013

NASA USRP - Internship Final Report

(KnowledgebaseltemlListVisualizer
Class
=P FrameworkElement

& Fields

4% _visualChildren

@ BackgroundProperty

@ KnowledgebaseltemsProperty
= Properties

- Background

e) Knowledgebaseltems

™ VisualChildrenCount
& Methods

AddKBIDrawingVisual

@ CheckExistsKBI

@ ClearVisualChildren
CreateVisualChildren
GetVisualChild
kbi_PropertyChanged

‘@ KnowledgebaseltemListVisualizer
OnCollectionChanged
OnCollectionCleared

‘@ OnltemsSourceChanged

3% OnKnowledgebaseltemsChanged
3% OnRender
RedrawVisualChildren
RemoveVisualChildren

@\

Kennedy Space Center

- Window

 Fields

4% Knowledgebaseltems

4% xyFilePath
& Methods
CloseAllFiles_Click
Exit_Click
KnoledgeBaseltemsListView_DragEnter
KnoledgeBaseltemsListView_MouseMove
LoadFlatFile_Click
LoadSchematicBG_Click
LoadXYFile_Click
MainWindow
PerformCleanup

‘6" ¢ 6% """

SaveXYFile_Click
_ /

rf

SchematicDesigner

Class |
=b UserControl

© Fields

@ BackgroundimageProperty
@ KnowledgebaseltemsProperty

= Properties

ﬁ Backgroundimage
ﬁ Knowledgebaseltems

= Methods

‘@ ClearAllitems
KnowledgebaseltemListVisualizerRegion_DragEnter
‘@ LeftClickHitTestKB!

3% OnBackgroundimageChanged
4% OnKnowledgebaseltemsChanged
‘9 RightClickHitTestKBI

‘@ SchematicDesigner
SchematicDisplay_DragOver
SchematicDisplay_Drop
SchematicDisplay_MouseDown
UpdateKnowledgebaseObject

Page 10

8/12/2013

B. CameraControl DLL Classes

NASA USRP - Internship Final Report

(Canera

Class

= Fields

4% _isStreaming
cameraHttpHost
io_service
IpAddress
Name
Port
= Methods
-getCameraHttpReply
_getCameraParameter
_getimageSizeName
_sendCameraHttpCommand

e %

_setCameraParameter
~Camera

Camera (+ 1 overload)
GetCameraPosition
GetlpAddress

GetName

GetPort
GetPresetPositionList
GetStillimage

IsinUse
ReceiveCamerafAudioStream
ReceiveCameraVideoStream
RequestCameraVideoStream
SetCameraPosition
SetipAddress

SetName

SetPort

& Nested Types

GO 6P OO O60606060606060006%% %% %

_setCameraPanTiltZoomFocus

@)

Kennedy Space Center

Page 11

(Cmd’osltiun

»)
’

Class
b CameraParameter

& Fields
g. _focus
4% _movementType
& _name
& _pan
& _tiit
& _zoom

©
=
i
g

~CameraPosition
CameraPosition
GetFocus
GetMovementType
GetName

GetPan
GetPositionCommand
GetTilt

GetZoom

SetfFocus
SetMovementType
SetName

SetPan
SetPositionCommand
SetTilt

SetZoom

& Nested Types

© 66 0606 0666066 0606666 00

ABSOLUTEM
RELATIVEM
AREAZOOM

8/12/2013

NASA USRP — Internship Final Report

-

CameraClient (&
Class

= Fields

& Methods

¥ _camera

~CameraClient
CameraClient (+ 1 overload)
GetCameraAudioStream
GetCameralpAddress
GetCameraName
GetCameraPort
GetCameraPosition
GetCameraVideoStream
GetPresetPositions
GetStillimage
SetCameralpAddress
SetCameraName
SetCameraPort
SetCameraPosition

I'E R RN RN EFEREPEEEXR

CameraPresetPositionList
Class

= Fields

@ PresetPositions

= Methods

‘¥ ~CameraPresetPositionList

‘@ AddPositionsFromHttpResponse
‘¥ CameraPresetPositionList

‘¥ GetHttpPresetPositionRequestString

p

\.

Class

& Methods

‘% ~Controller
‘Y Controller

Kennedy Space Center

) :

Page 12

= Fields
4 _data
&% _datalength
&% _headers
& Methods

~CameraHttpResponse
CameraHttpResponse
GetDataBytes
GetDatalength
GetHeaders

& & 6 € ¢

Class

 Fields

#9 _cgiPage

¥ _inquiryName

79 _settingName
= Methods
3% _getParameterValue
‘9 ~CameraParameter
‘9 CameraParameter
‘¥ GetCommandString
int_to_hex

; =y

& Methods
‘@ ~AudioStream
‘@ AudioStream

8/12/2013

NASA USRP - Internship Final Report

" MPEG4Stream @)

Class

= Fields
#% _address
_port
= Methods
4% _sendReceiverReport
‘¥ ~MPEG4Stream

‘¥ MPEGA4Stream (+ 1 overload)
\ J

C. Application Bridge DLL and GUI Classes

(ManagedCameraPosition
Class

- ManagedCameraParameter

3

= Properties
' Focus
% Name
" Pan
' PositionMovementType
= i
5 Zoom

& Methods
4% Dispose
@ GetPositionCommand
¥ ManagedCameraPosition (+ 2 overlo...
‘9 operator =
@ operator ==
‘@ SetPositionCommand
‘9 ToString

& Nested Types

MovementType ®
Enum
"3

AREAZOOM

RELATIVEM

ABSOLUTEM

Kennedy Space Center

ManagedCameraClient (+ 3 overloads)
ReqguestVideoStream
SetCameraPosition

ToString

Page 13

8/12/2013

NASA USRP - Internship Final Report

Cui ®)
Class

& properties
S Image
" Locations
" Name
& Methods
‘% Cui (+ 2 overloads)

‘% ToString
Ree W

D. Image Processing DLL Classes

' ImageUtiities ®
Class

& Methods
&% Apply3x3FilterMask
‘@ Apply3x3SmoothingFilter
‘@ ApplySobelFilter
‘@ SkeletonizeViaThinning
‘% ToBinarylmage (+ 1 overload)
¥ ToGrayScalelmage

N

Q IDisposable

(e
ManagedCameraParameter
Claez

“J
& Fields
?’ _cameraParameter
= Properties
e 3 CommandString
= Methods
3% ~ManagedCameraParameter

3% Dispose (+ 1 overload)
‘% ManagedCameraParameter

f)
Class

& properties
%P CameraClient
% CameraPosition
& Methods
‘@ Cuilocation (+ 1 overload)
‘% MoveToPosition

Kennedy Space Center

‘@ ToString

. . W

* HoughCircle

Class

 Fields
&% _edgelntensity
& _radiusMax
&% _radiusMin
4% _thresholdForCandidacy
4% _thresholdForClustering

= Methods

‘¥ FindCandidateCirclesNaive
‘9 HoughCircle

.

‘¥ FindCandidateCirclesEdgeOrientedFast

Page 14

8/12/2013

(ConidsteCirte @)
Class

= Properties
P Count
™ Location
& Methods
‘@ CandidateCircle

MAXRUNSERASED
OFF
ON
PONBASE
& Methods
g’ anchor
4% chkconnect
2% CORNER
4% CORNERNW
4% erasesqr
4% getring
‘@ ImageSkelotonization
2% ksize
3% sqron
2% thinring
&% width

Kennedy Space Center

NASA USRP - Internship Final Report

(Chaster
Class
> Hashtable

= Methods
‘9 Cluster

¥ IsMember

.

¥ GetTopMember

ﬁw?kd
Class

& Properties
S Intensity
= x
oy

= Methods

@ ToString
N

¥ ImagePixel

@)

| ImageMatrix
Class

= Fields
& _dpiX
;.}. _dpiY
A% _height

= properties
= opix
= Dpiv
= Height
§ this
= width

& Methods

o _width

N

& _matrixOfBytes

‘@ GetWritableBitmap
‘© ImageMatrix (+ 1 overload)

—

Page 15

8/12/2013

NASA USRP - Internship Final Report

(ImageHistogram
Class

& Fields
4% _histogram
4% _imageData
| © Properties
' FrequencyMaxValue
b IntensityMaxValue
& Methods
@ CalculateHistogram
¥ ImageHistogram (+ 2 overloads)

.

J

»)

" Triplet
Class

& properties
e il
= X
oy

= Methods
‘@ ToString

@ Triplet (+ 1 overload)
\ sl

Acknowledgments

I would like to thank Barbara Brown, Felix Soto Toro, Charlie Goodrich and Bob Panzak for selecting me for
this great opportunity. I would like to thank the NATIONAL SPACE GRANT FOUNDATION for providing the
funding for my opportunity. I would like to thank Rose Austin, Benita Desuza, Grace Johnson, Rob Cannon and
everyone in the KSC Education office for all their hard work in organizing and facilitating the internship experience.

Finally, I would like to give an extra thank you to Felix for being a great mentor.

Kennedy Space Center

Page 16

8/12/2013

