https://ntrs.nasa.gov/search.jsp?R=20140002683 2019-08-29T14:37:58+00:00Z

1

Advanced Exploration Systems Logistics Reduction and Repurposing Trash-to-Gas & Heat Melt Compactor KSC

Anne J. Caraccio Andrew Layne Mary Hummerick NASA, NE-L NASA, NE-M QinetiQ

Advanced Exploration Systems Logistics Reduction and Repurposing Trash-to-Gas

Task Lead: Dr. Paul Hintze, NE-L

KSC Team: Anne Caraccio, NE-L; Steve Anthony, NE-F; Tony Muscatello, NE-S; Jim Captain, ESC; Bobby Devor, ESC; Doug Tomlin, NE-L; Lashelle McCoy, ESC; John Bayliss, NE-L; Katie Zadjel, GP-L;²

Agenda

- 1. Project Structure
- 2. "Trash to Gas"
 - Anne Caraccio, NE-L
- 3. "Smashing Trash! The Heat Melt Compactor" — Andrew Lane, NE-M
- 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste"
 - Mary Hummerick, QinetiQ North America
- 5. Questions

LRR Project Structure

Advanced Exploration Systems Logistics Reduction and Repurposing (LRR) (JSC) Heat Melt Compactor (ARC)

Trash to Gas

(KSC)

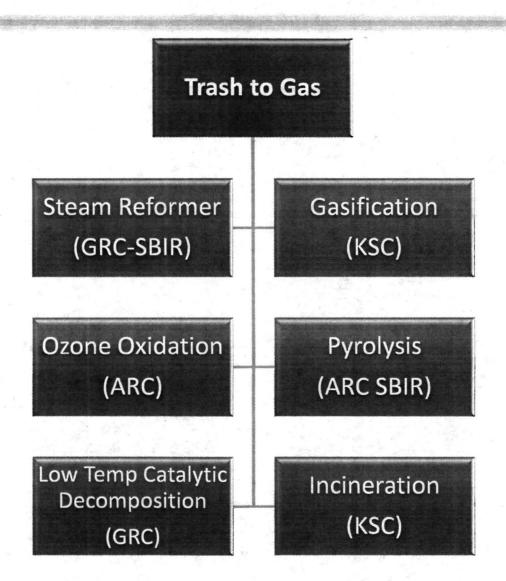
Logistics to Living (JSC)

Advanced Clothing System (JSC)

LRR Project Structure

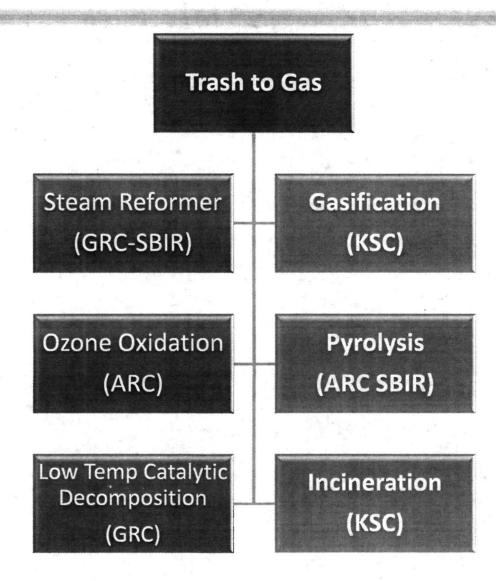
Advanced Exploration Systems

Logistics Reduction and Repurposing (LRR) (JSC) Trash to Gas (KSC)


Heat Melt Compactor (ARC)

Logistics to Living (JSC)

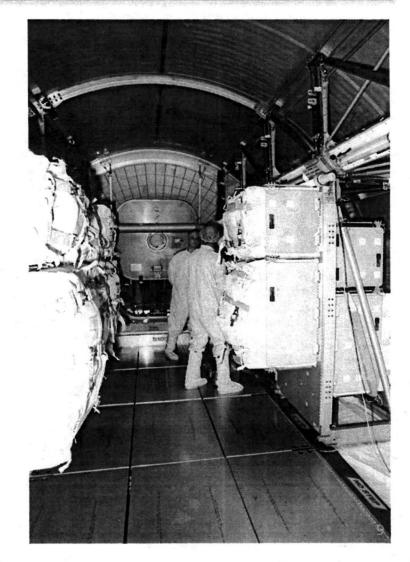
Advanced Clothing System (JSC)

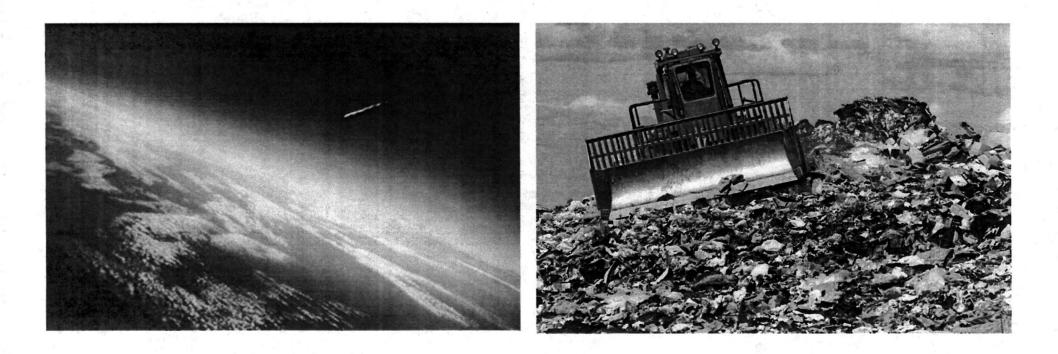

Trash to Gas Project Structure

Trash to Gas Project Structure

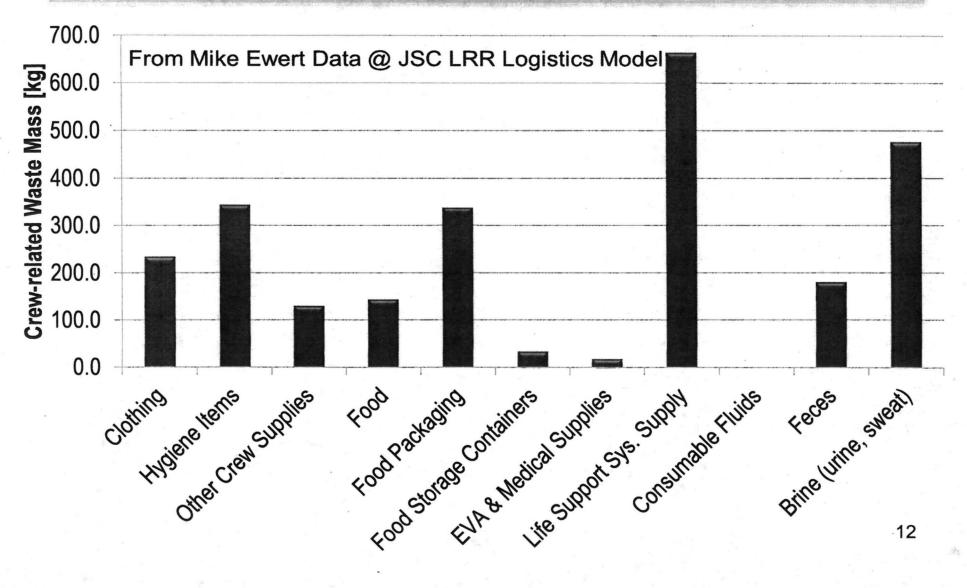
7

生活-2月2012年2月2日


Why?

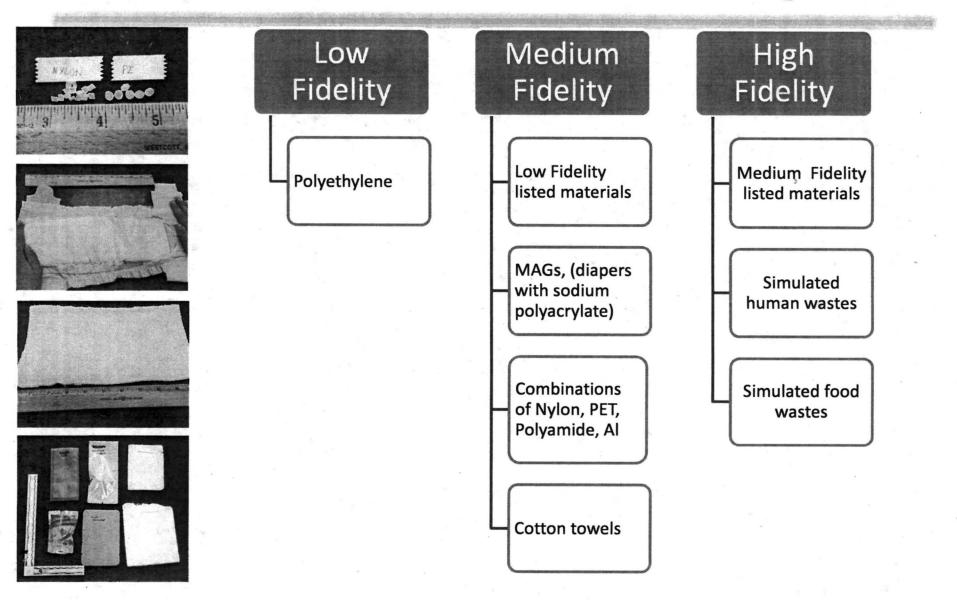

Mass & Volume

Where Does the Trash Go?

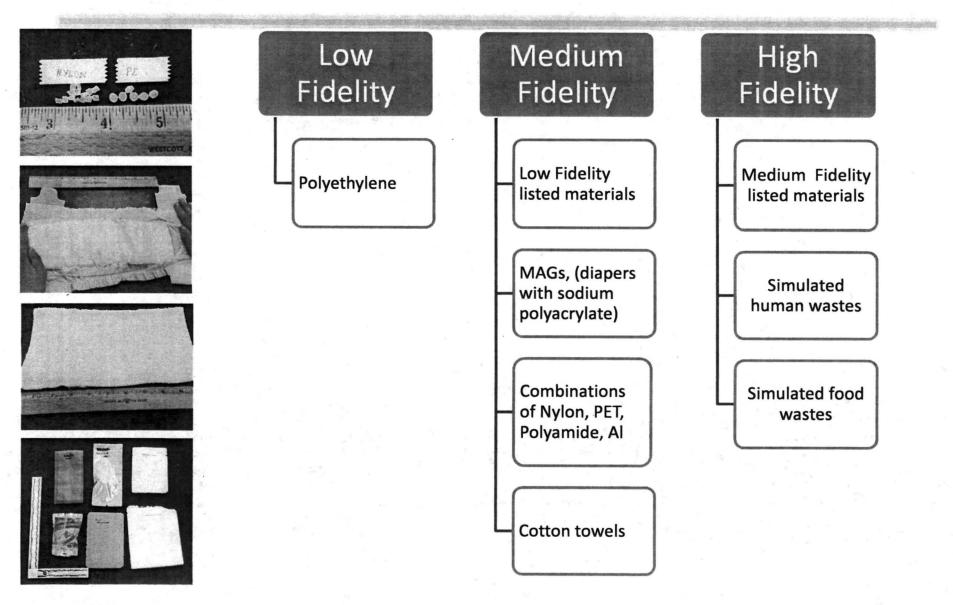

Waste Processing Objectives

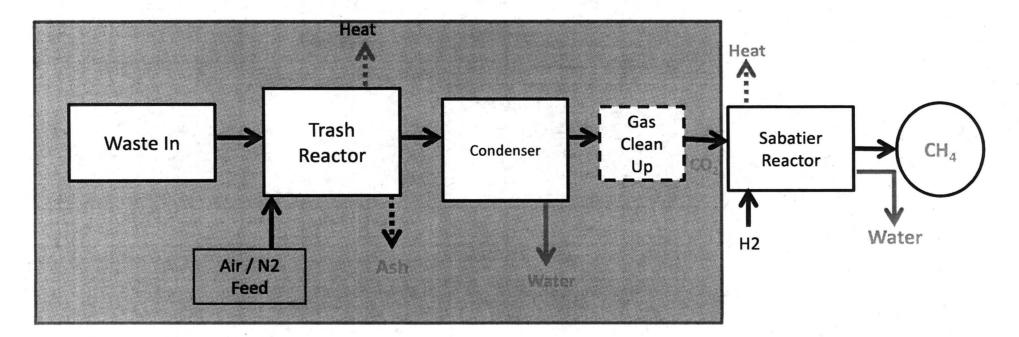
- Propellant (methane)
- Environmental control and life support system gas (water and oxygen)
- ISRU/Utilizing resources wisely
- Volume reduction
- Resitojets

TRASH \rightarrow H₂O + CO₂ + Ash $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

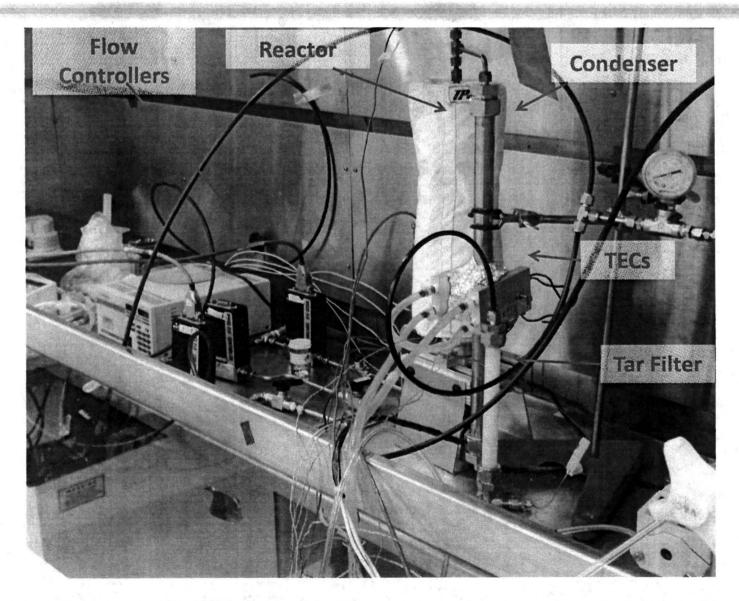


Waste produced by a crew of 4 on a 360 day exploration mission (by mass), ~2500kg/yr

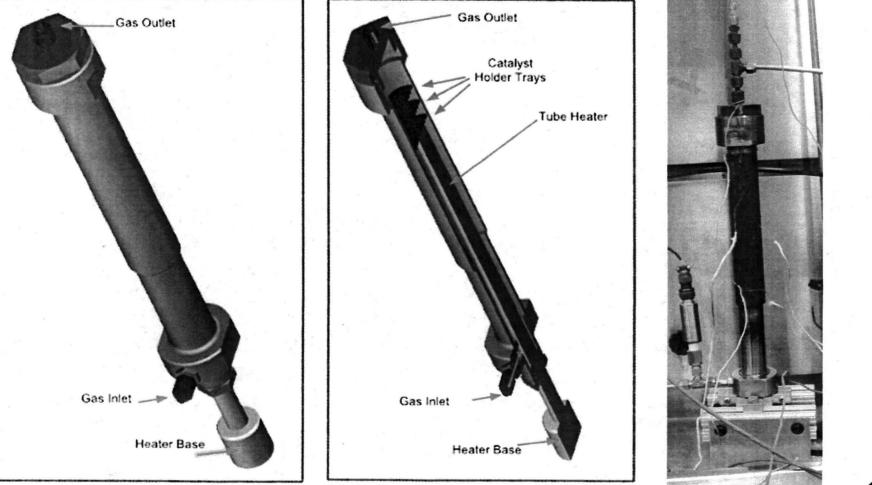

Waste Simulants

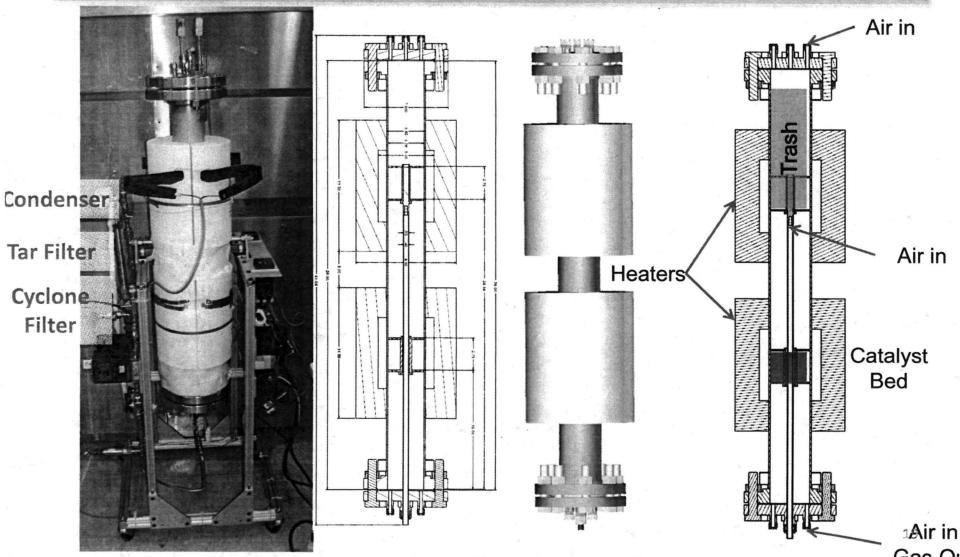


Waste Simulants


Flow Diagram

$Trash \rightarrow CO_2$ $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$


16



First Generation Reactor

Second Generation Reactor

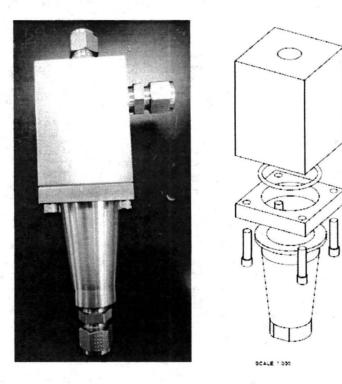
Gas Out

Test Matrix

- Goal:
 - Maximize CO2
 - Minimize: Reaction time, consumables and power
- Variables
 - 1. Inlet Flow Rate
 - 1-5 SLM
 - 2. Inlet Gas Composition
 - N_{2,} N₂/Air, Air
 - 3. Reactor Temperature
 - 1°C/min, 10 °C/min, 50 ° C/min
 - 4. Waste Simulant
 - Low / Medium / High Fidelity

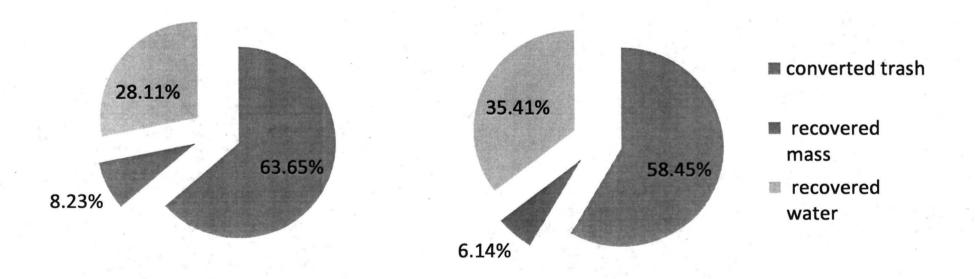
Test Matrix

Favored Test Conditions

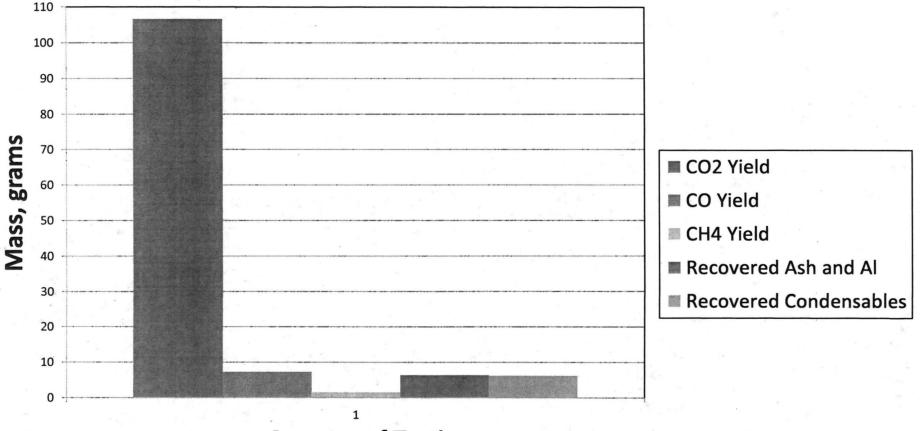

- 1. Inlet Flow Rate
 - 5 SLM
- 2. Inlet Gas Composition
 - Air
- 3. Reactor Temperature
 - Quickest Ramp to 500 600 °C
- 4. Waste Simulant
 - High Fidelity

TRASH \rightarrow H₂O + CO₂ + Al + Ash + Tars

- Major Products
 - CO_{2}
- Minor Products
 - CO, CH₄, H₂O, C₂H₄,tar, and ash



Trash Conversion


1st Generation Reactor

2nd Generation Reactor

2nd Generation Reactor with Air: 5 SLPM and ~100g of trash

Average of Testing

24

Water Analysis

Total Organic Carbon Analysis

Sample	Total Organic Carbon, (ppmC) 2.2	
Tap Water		
2nd Gen Reactor	33399	
2nd Gen Reactor with cyclone filter, granular activated carbon, heated tubes	3949	
2nd Gen Reactor with cyclone filter, granular activated carbon, heated tubes, Dolomag catalyst	2698	

Microincinerator determined not flammable.

Elemental Analysis Results to come....

Production

PRODUCTS	AIR FEED (SLM)	1st Generation Reactor (~10g trash)	2nd Generation Reactor (~100g trash)
		kg/yr	kg/yr
CO ₂	5	128.49	393.09
со	5	15.59	26.83
THEORETICAL CH4	5	46.75	143.03

According to NASA's Exploration Systems Architecture Study estimates, approximately 4,000 kg per year of O_2/CH_4 (mixture ratio of 3.6:1 by mass) propellant is needed for an ascent stage of a Lunar Exploration Mission.

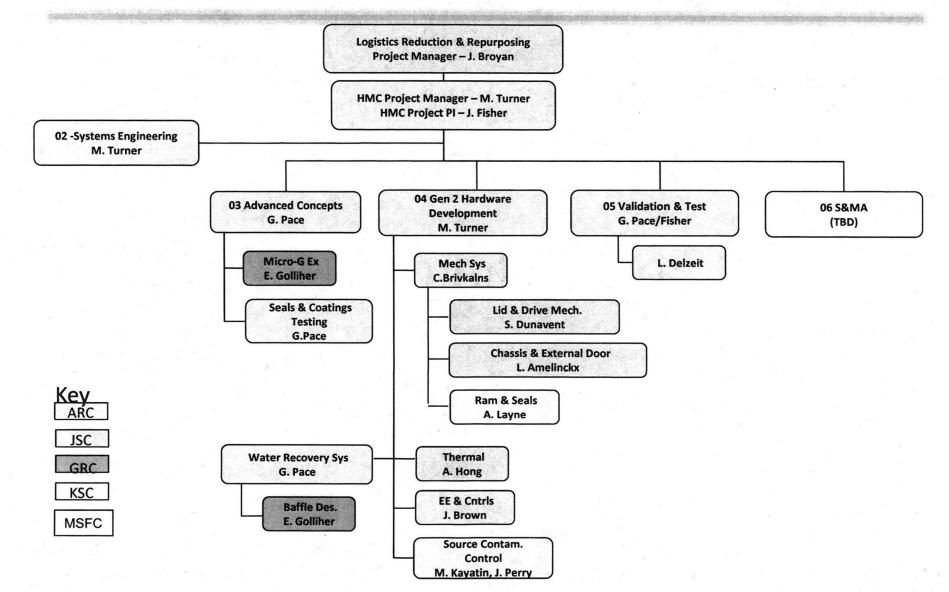
Possible Theoretical Production

- 800 1500 kg of methane/year
- At current size not enough for this specific lunar ascent vehicle of LOX/CH4 propellant

Conclusions

- Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash.
- CO₂ can be fed to Sabatier reactor for CH₄ production to fuel LOX/LCH4 ascent vehicle.
- Optimal performance: HFWS, full temperature ramp to 500-600°C
- Tar challenges exist 10
- Catalysis: Dolomag did eliminate allene byproducts from the product stream.
- 2nd Gen Reactor Studies
 - Targeting power, mass, time efficiency
 - Gas separation,
 - Catalysis to reduce tar formation
 - Microgravity effects
- Downselect in August will determine where we should spend time optimizing the 27 technology

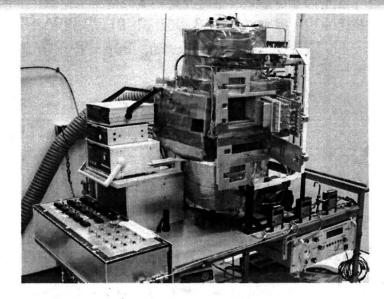
Smashing Trash!


The Heat Melt Compactor.

Andrew Layne, NE-M2

29

HMC Project Organization


HMC Project Goals

- The project shall develop a prototype Heat Melt Compactor (HMC) for ground based experimentation that will:
 - Demonstrate the feasibility of compacting trash (10:1) into a sterile puck that can be used for radiation shielding.
 - Demonstrate the feasibility of compacting trash within the constraints of the ISS/express Rack environment
 - Power
 - Heat rejection
 - Acoustic limits
 - Human Factors
 - Safety Toxicity/off-gassing/ flammability
 - ISS Express Rack volume (double middeck locker equivalent)

Note: Future Deep Space Habitats have a high likelihood of being volume and resource constrained as well.

HMC History – Generation 1

HMC Generation 1.

- 2008 Final assembly and first testing
- 2009 Testing volume reduction, water reduction, shuttle waste samples
- 2010 Converted to vertical orientation. Testing with brine. Technical design review.
- 2011 Prepared concept of operations. Rough ESM of ancillary hardware. Sterilization runs. Radiation tiles.
- 2012 More microbio analysis runs. Minicell foam testing.
- 2013 Functional limits tests. Gas characterization. Bio characterization. Squeeze tests.

HMC Generation 2.

Solids contaminant control, Gas contaminant control, Water recovery, Control and Data acquisition system, Cooling.

HMC Gen 2 System Block Diagram ENGINEERING AND Control, Data Acquisition, and Avionics Air HMC Trash Removal Door Integrated Air Cooling System Electrical User Interface Control and Data F User Readout a Avionics Air (for processed waste cooling) n **Control and Data Acquisition** Electrical Sweep Gas Pre-heater Sweep Gas and Trash Water Vapor Stream О Legend Cabin Air Water Recovery System Power **Condensing Heat Exchanger System** Control and **HMC Waste** Data Processer Heaters Untreated Sweep gas/Trash **Treated Swee** Water Vapor Air Gas From COS Condensate Heat Thermal Exchanger Avionics air Electric Compaction Cooler Moderate **Ram Actuator Drive Motor** temperature sweep gas **COS Pre-Heat Heat** High HMC Waste Processing Sub-Assembly

Condensate Collection Tank User Water Removal Port

temperature sweep gas

Sweep

Gas/Water

Vapor Flow

Control, Data Acquisition,

and Electrical

Condensate

contaminant

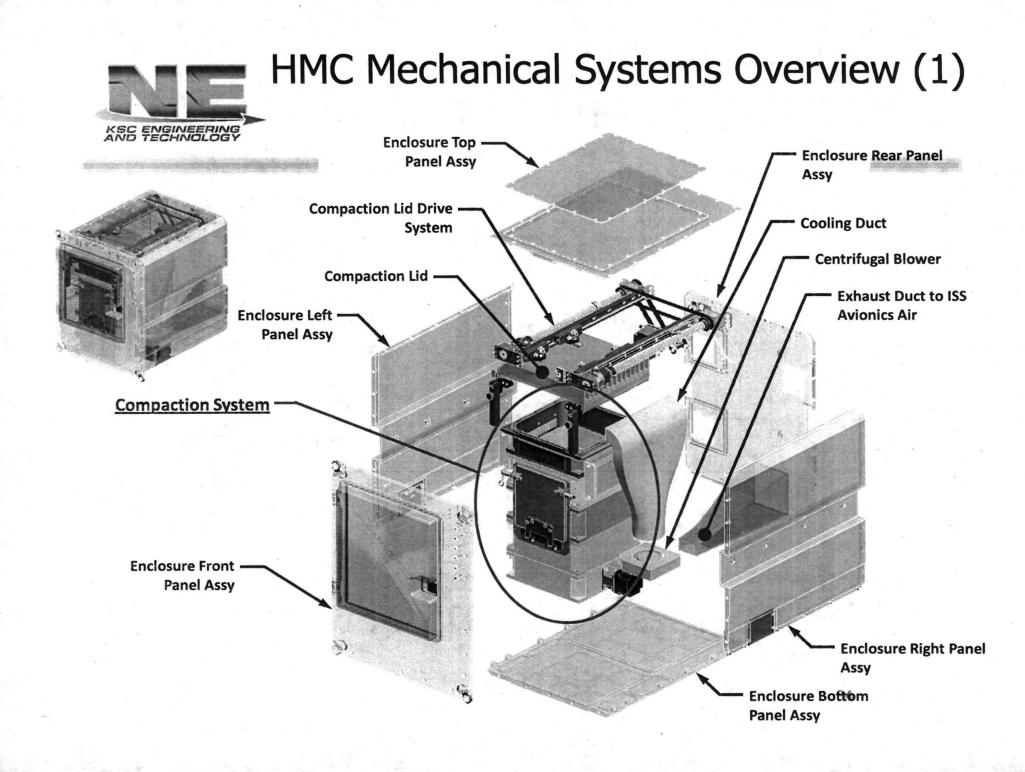
recovery

system

Gas

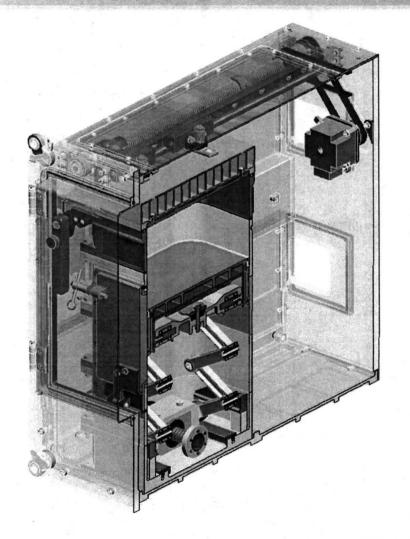
direction

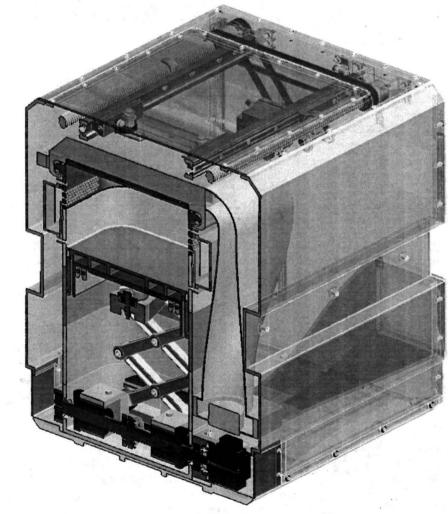
Compaction Ram Actuator Drive Motor Absorbent Column Vacuum Pump Gas Contaminant Control System

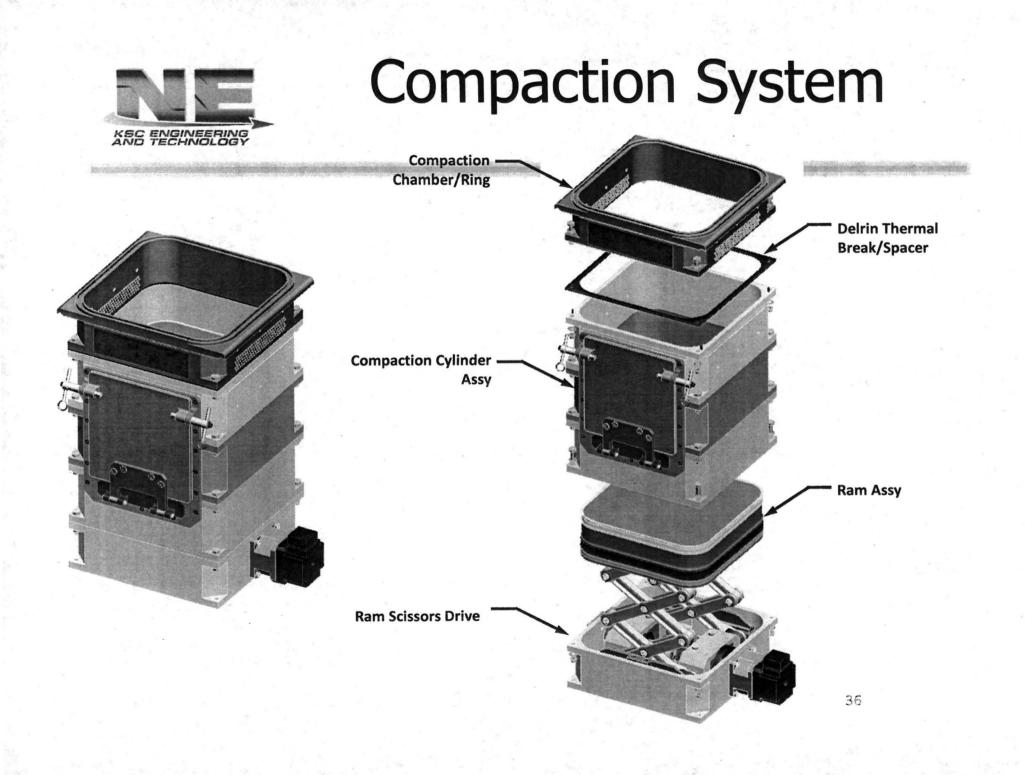

Avionics Air Inlet

Humidity Control

0X

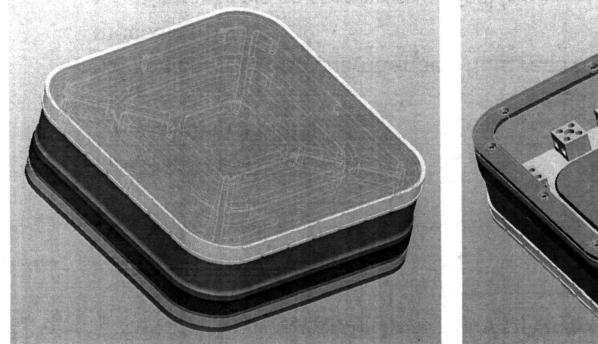

Sweep Gas Pre-heater


for Humidity Control

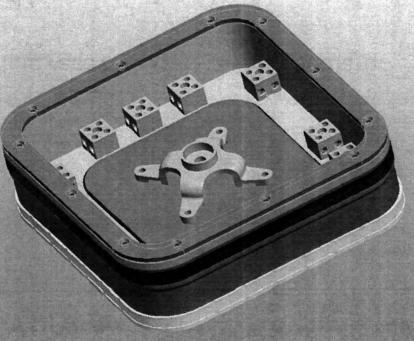


HMC Mechanical Systems Overview (2)

HMC SYSTEM SECTION VIEWS



Ram Design - Requirements

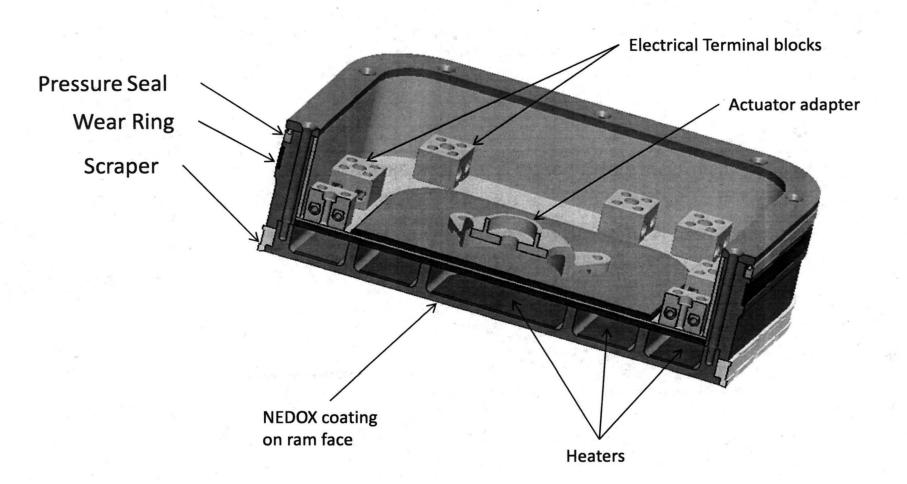

- Ram Requirements
 - Compacting trash
 - Max. Pressure: 182 psia (Based on blocked vapor pressure)
 - Heating trash
 - Max. Temperature: 375 F
 - Sealing compaction chamber and fluid recovery system from actuator mechanism.
 - Hydraulic piston-style pressure Seal (air and water effective)
 - Non-adhesion to trash products (food, molten plastic)
 - Scraper
 - Non-stick surface treatment

Ram Design Overall Geometry

Front (trash) Side

Back (actuator) Side

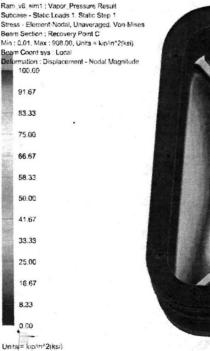
Ram Assembly weight: 20.71 lbs

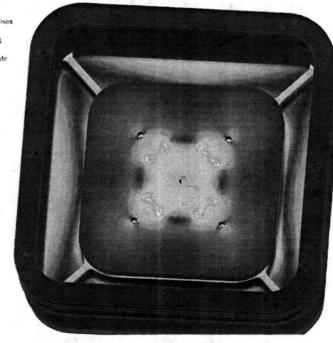


Ram Design – Materials

- Materials
- Ram Face-plate
 - 17-4 PH Stainless Steel good strength and corrosion resistance. (Alum and Titanium strength down at temp.)
- Ram Skirt/Seal Retainer Stainless Steel compatible with face-plate and appropriate stiffness for supporting seals.
- Bearing Plates
 - Titanium Weight reduction, compatible with actuator adapter.
- Seals (Custom machined by Parker Hannifin Corporation)
 - Scraper: PEEK
 - Wear-ring: PTFE
 - Pressure-seal: PTFE
- Heaters: Custom Silicone pad-heaters (OEM Heater)
- Sensors: RTDs supplied by OEM Heater

Ram Design – Operational Components

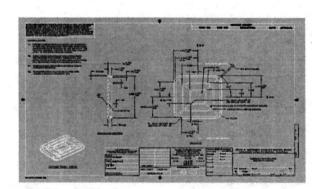


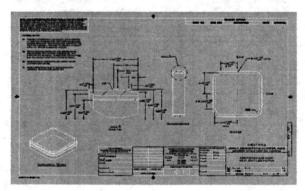


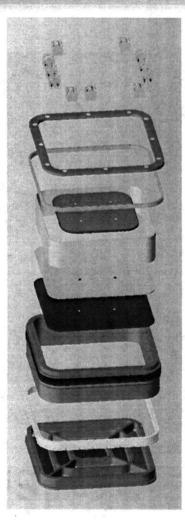
Ram Design - Analysis

Structural Analysis

- Stress plot shown of von Mises Stress given 182 psi pressure load applied to ram surface and restrained at bearing plate and chamber walls.
- Stainless steel modulus of elasticity used (28,012.6 ksi)
- Analysis indicates stresses are below allowable.

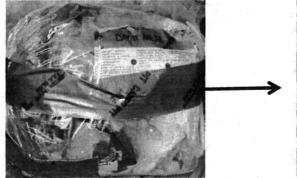


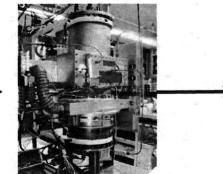

Material Properties Ph17-4 H1025 Plate (4 in thick or less)							
	Str @RM Temp (ksi)	Temp knock down @356F	Str @356F	FS	Allowable (ksi)	Allowable Evaluation	
Yield Str-LT	145	0.8875	128.6875	1.25	102.95	Von Mises	
Ultimate Str-LT	155	0.905	140.275	1.4	100.20	Max Principle	



HMC RAM 6.ASM 17 ASM_X_PLANE 17 ASM Y PLANE 17 ASM Z PLANE ** ASM_CSO ASM_X_AXIS ASM_Y_AXIS ASM_Z_AXIS + CI BNDSORBAM5.PRT [] ADTM1 + HMC_BAM_HTR_ZONE1.PRT + HMC_RAM_HTR_ZONE2.PRT + THMC RAM HTR ZONE2 PRT + THMC_RAM_HTR_ZONE2.PRT + HMC RAM HTR ZONE2 PRT + HMC_RAM_HTR_ZONE3.PRT + HMC_BAM_HTR_ZONE3.PBT + HMC RAM HTR ZONE3PRT + HMC_RAM_HTR_ZONE3.PRT + RAMSKIRT PRT + RAMSEAL PRT + WEARRING, PRT + SCRAPER2.PRT + SEALKEEP.PRT BAM_INSULATOR PRT + INSULATOR PRT + BEARING PLATE RAM PRT + SIDEWALL RAM INSULATOR PRT TERMINAL_BLK_2-DIN-46284-ST-HDS ASM TERMINAL_BLK_2-DIN-46284-ST-HDS ASM TERMINAL BLK 2-DIN-46284-ST-HDS ASM TERMINAL_BLK_2-DIN-46284-ST-HDS ASM TERMINAL_BLK_2.DIN-46284-ST-HDS.ASM TERMINAL_BLK_2-DIN-46284-ST-HDS.ASM TERMINAL BLK_2-DIN-46284-ST-HDS.ASM TERMINAL_BLK_2-DIN-46284-ST-HDS.ASM TERMINAL_BLK_2-DIN-46284-ST-HDS ASM + TERMINAL BLK 2-DIN-46284-ST-HDS ASM TERMINAL BLK 2-DIN-46284-ST-HDS ASM

Parts & Assembly




Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

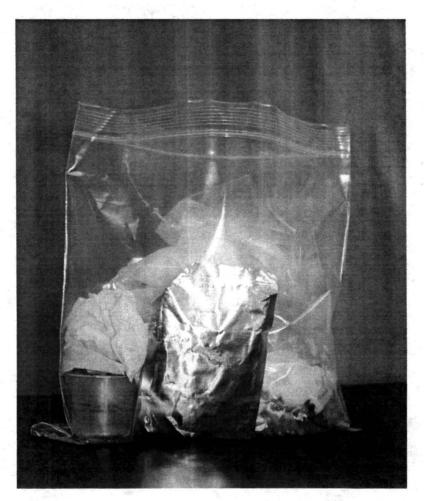
Mary P. Hummerick, Richard F. Strayer , Lashelle E. McCoy and Jeffrey T. Richards Engineering Services Contract, Team QNA, Kennedy Space Center Anna Maria Ruby and Ray Wheeler NASA, Kennedy Space Center, FL 32899 John Fisher NASA, Ames Research Center, CA

- One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste.
 - Reduces volume, removes water and renders a biologically stable and safe product.
 - The HMC compacts and reduces the trash volume as much as 90% greater then the current manual compaction used by the crew.

Generated Wastes

- Approximately 1633 gm per crew member per day, 30-45% of that total being water.
- Many of the solid waste components are readily biodegradable organic materials such as food and human solid waste supporting the growth of microorganisms including potential human pathogens.
- Microbial metabolic by-products can also be generated causing unpleasant odors and accumulation of volatile organic compounds (VOCs).

Objectives


The project has three primary objectives.

- 1. Microbiological analysis of HMC hardware surfaces before and after operation. Are there "cross-contamination issues".
- 2. Microbiological and physical characterization of heat melt tiles made from trash at different processing times and temperatures.
- 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

Objectives 2 and 3. Preparation of Inoculated Trash

- To perform studies on the survival of microorganisms in waste treated by HMC, waste was:
 - Prepared
 - Sterilized (ETO)
 - Inoculated with a know density of microorganisms that if survive, could be recovered and enumerated. Uninoculated controls were included.

Inoculum Development

- Three microorganisms were tested for use as an appropriate inoculm.
 - Bacillus amyloliquifaciens a spore forming bacteria that has been recovered from shuttle trash,
 - Rhodotorula mucilagenosa, a yeast also recovered from shuttle trash
 - Micrococcus luteus, a gram positive bacteria commonly found in the environment.
- Bags of "sterilized" trash were inoculated in duplicate with 15 ml of each culture density (10⁹, 10⁸, 10⁷) in 1 ml amounts into 15 different food items in the simulated/ersatz trash

Inoculum recovery

Colony counts (cfu/g of wet trash) from trash samples. Actual recovery is after 24 hr incubation at room temperature.

1. S. C. C.	Estimated rec	overy with n	o growth.	Actual recovery		
Inoculum	B. amyloliquefaciens	M.luteus	R.mucilaginosa.	B. amyloliquefaciens	M.luteus	R.mucilaginosa.
1.00E+09	2.20E+06	4.00E+05	3.00E+05	5.30E+06	3.22E+05	9.65E+05
1.00E+08	3.60E+05	6.60E+05	1.20E+05	1.91E+06	<1.61E+04	1.21E+05
1.00E+07	7.80E+04	3.00E+05	2.00E+05	3.00E+05	<1.69E+04	5.57E+04

- M. luteus was below detection from simulated trash samples inoculated with the two lower cell concentrations. B. amyloliquefaciens is known to produce bacteriocins and M. luteus is sensitive to these antimicrobial compounds.⁴ For this reason we eliminated M. luteus from the inoculum mixture.
- The calculated recovery estimate assumes no growth during the 24 hr incubation period. Actual counts show an increase in bacterial and yeast numbers after 24 hours incubation at room temperature. Growth of bacteria and yeast during shipping can, thus, be expected.

Objective 1. Hardware Surface Samples Results

- Varying degrees of microbial growth were found depending on the surface sampled.
 - Generally, the piston surfaces exhibited much lower microbial counts then the groove surface.
- Most of the bacterial species isolated are spore forming Bacillus species resistant to heat.
- Two of the organisms recovered from the surfaces of the compactor, *Bacillus amyloliquefaciens* and *Rhodotorula mucilaginosa* are the organisms used to inoculate the trash for the long term storage studies.

Tile #	Surface	Bacteria	Fungi	
10 DL	Comp.Piston Rear Piston Groove	Bacillus amyloliquefaciens ^a Bacillus subtilis subtilis ATCC=6051 B. amyloliquefaciens B. subtilis subtilis ATCC=6051	R. mucilagenosa ^a Phyllosticta maydis	
11 DL	Rear Piston Groove	S. capitis capitis ATCC=27840 S. epidermidis S. lugdunensis B. subtilis subtilis ATCC=6051 Strep. Salivarius B. subtilis subtilis ATCC=6051 Bacillus atropheus ^b	Cladosporium cladosporoides	
12 DL	Wall Rear Piston	 B. amyloliquefaciens^a B. amyloliquefaciens^a B. subtilis subtilis ATCC=6051 	None .	
13 DL	None	None	None	
7M	Comp. Piston	B. amyloliquefaciens ^a Bacillus pumilus	None	
	Wall	B. amyloliquefaciens ^a B. pumilus		
	Rear Piston	B. atropheus ^b Curtobacterium flaccumfaciens		
	Groove	B. subtilis subtilis ATCC=6051 Strep. cristatus		
8M	Strep. cristatusComp. PistonB. amyloliquefaciensaWallB. amyloliquefaciensa		None	

^aOrganism used for inoculation. ^bBI test strip organism



Figure 1. HMC tile showing excised spore strips (arrows).

Objectives 2 and 3. Tile Processing and Sampling

 BI test strips (NAMSA, Northwood, Ohio) were incorporated into the trash before compaction to test the efficacy of the HMC process in the reduction or elimination of microorganisms

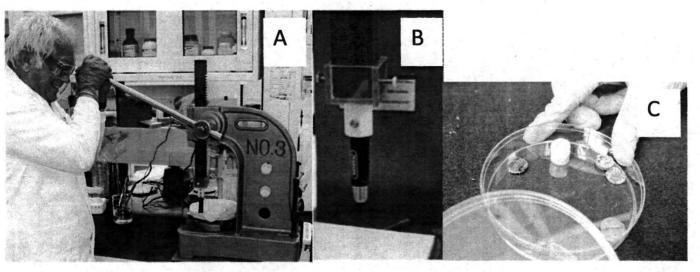


Figure 2. Picture A shows sample procedure using hand press with ½ inch hole punch (B) resulting in a core sample (C).

Objective 2. Process Parameters

- Simulated, trash was used as the HMC feed to produce the tiles for this study.
- Process parameters (time and temperature) used in these experiments were 130°C for 2 hours, 140°C for 2 and 3 hours and 180°C for 2 hours as determined and processed by ARC investigators.

Process Time and Temperature Studies

HMC tile number HMC process temperature HMC process duration	10 130°C 2 hrs	11 140°C 2hrs	12 140°C 3hrs	13 130°C 2hrs	7m 140°C 2hrs	8m 140°C 2hrs
Weight loss (%)	24	25	19	16	14	19
Core sample growth	4/10	1/10	6/10	3/10	3/10	5/10
G. stearothermophilus +	3/3	0/2	0	0	NA	NA
B. atrophaeus +	4/4	3/4	0	0	NA	NA
Sterilization time (hrs)	.49	.54	1.5	.54	.52	.52

- Weight loss possibly indicating a loss of water, was inconsistent with temperature treatments.
- Both sets of BI test strips from tile 10 grew after treatment and core samples showed the most diverse growth with the isolation and identification of 9 different species. This tile was subjected to the lowest temperature and shortest sterilization time.

Process Time and Temperature Studies – Microbiology Results

Bacteria and fungi isolated and identified from tile core samples cut from HMC product tiles treated at different time and temperature regimes (130° C or 140° C)

Tile 10	Tile 11	Tile 12	Tile 13	Tile 7m	Tile 8m
130°C	140°C	140°C	130°C	140°C	140°C
2 hrs	2hrs	3hrs	2hrs	2hrs	2hrs
Brevibacillus agri, B. subtilis subtilis Staphylococcus pasteuri Kocuria kristinae S. epidermidis Streptococcus salivarius Bipolaris micropus Chaetomium atrobrunneum	Penicillium rubrum	Neisseria flavescens Penicillium chrysogenum, Epicoccum nigrum	Brachybacterium rhamnosum Streptococcus oralis Streptococcus mitis Streptococcus salivarius	Bacillus oleronius Moraxella osloensis	Penicillium chrysogenum Sphingomonas sanguinis

Objective 3. Long Term Storage Studies

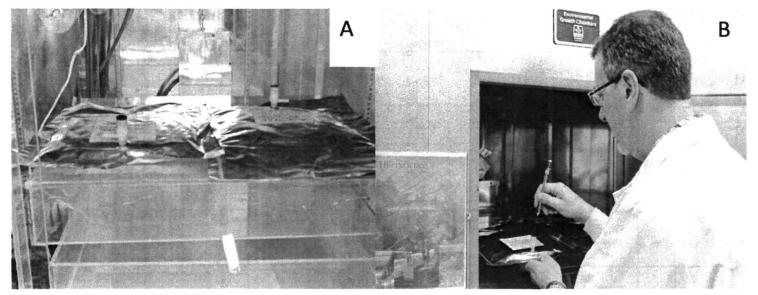
- HMC processing time and temperature used for the tiles prepared for this study was 180°C for 2 hours and 40 minutes.
- Four time points or storage durations, 0, 45,63 and 65 days at ISS like storage conditions (25°C, 50% RH and 3500 ppm CO₂,) were tested for the recovery of the bacterial/yeast inoculant, CO₂, and O₂.
- It was decided to include a study using a longer duration (3.5 hours) at 150° C

Long Term Storage

Storage duration (days) and tile number	Uninoc. Control, T=0 (1m)	Inoc. T=0 (3 m)	Inoc.T=45 (4 m)	Inoc. T=63 (5 m)	Inoc. T=65 (6 m)
Weight loss (%)	23	25	30	28	29
Core samples showing growth	7/10	10/10	3/10	4/10	5/10
R. mucilaginosa recovery	Not inoculated	NEG	NEG	POS	NEG
B. amyloliquifaciens recovery	Not inoculated	NEG	NEG	POS	NEG

- Data from tiles 3m-6m indicate incomplete sterilization and survival of bacteria and fungi up to 65 days.
- In processing these tiles, the actual sterilization time (time in which the interior of the tile reached sterilization temperatures) varied.

Long Term Storage Microbiology Results


Uninoc. Control, T=0 (1m)	Inoc. T=0 (3m)	Inoc.T=45 (4m)	Inoc. T=63 (5 m)	Inoc. T=65 (6m)
No IDs	Bacillus soli B.thuringiensis B. alkalitelluris P. agaridevorans B. megaterium B. niacini	B.thuringiensis Strep. mitis Cladosporium cladosporoides Penicillium chrysogenum	B. amyloliqufaciens ^a Strep. mitis Strep. salivarius Veillonella dispar Strep. Parasanguinis Neisseria flavescens R. mucilagenosa ^a P. chrysogenum	Strep. Salivarius Bacillus mojavensi

Tile 5, which was in storage for 63 days is the only tile in which we were able to recover the inoculants, *B. amyloliquifaciens* and *R. mucilaginosa*.

Results of microbial analy from		ysical parameters for the second s Second second s	or core samples cut
Treatment and disk number	13M	14M	15M
Weight loss (%)	12%	22%	13%
Core samples showing growth	0/0	0/0	0/0
B. atrophaeus spore strips (Top)	neg	neg	neg
G. stearothermophilis spore strips (Top)	neg	neg	neg
B. atrophaeus spore strips (Bottom)	neg	neg	neg
G. stearothermophilis spore strips (Bottom)	neg	neg	neg
B. atrophaeus spore strips (Middle)	neg	neg	neg
G. stearothermophilis spore strips (Middle)	neg	neg	neg
<i>R. mucilaginosa</i> recovery	neg	neg	neg
<i>B. amyloliquifaciens</i> recovery	neg	neg	neg

Gas Sampling and Analysis of HMC Tiles

Storage bags used to store HMC prepared tiles. Picture A shows the bags inside the chamber. B shows samples being taken for gas analysis.

No biological activity as indicated by an increase in CO_2 could be detected.

A number VOCs were detected even after 200 days of storage.

Conclusions

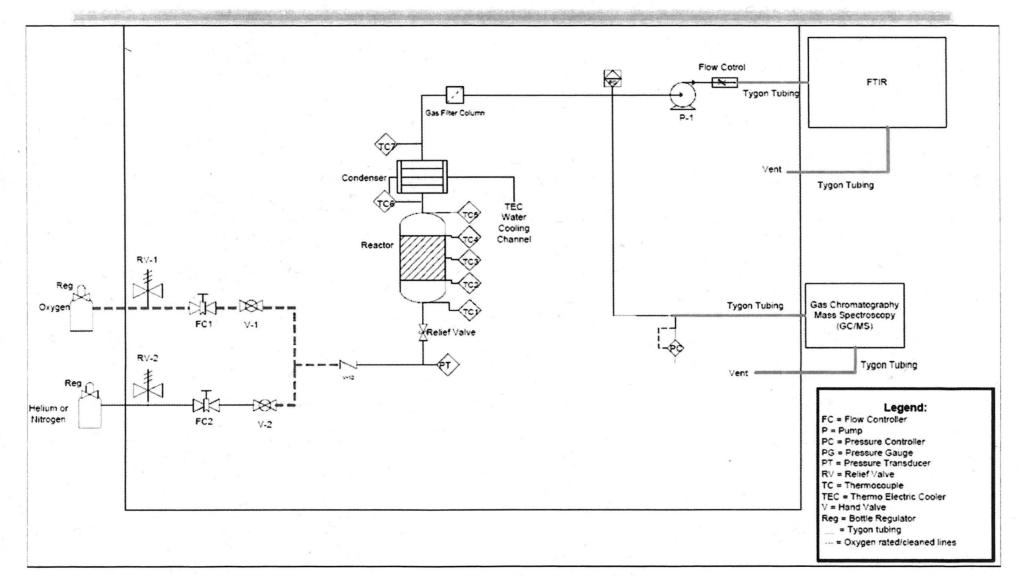
- The process of heat melt compaction of ersatz solid waste was tested for it's ability to sterilize the waste and render a biologically stable tile.
- Our analysis showed that organisms inoculated into the waste, B. amyloliquefaciens and R. mucilaginosa could not be detected in all but one tile after compaction at 180°C.
- Treatment at 150°C for 3.5 hours achieved sterility as determined by our testing.
- Finding viable organisms in the core samples of the HMC produced tiles seems contradictory to the negative growth results from the BI spore strips.
 - Heating and exposure to sterilization temperatures in the interior of the tile may be inconsistent so sterilization may not be achieved through the entire tile. Results from tile 5m suggest this possibility, since the organisms in the original inoculum were recovered.
 - Another possibility is post-HMC treatment contamination of the tiles and the ability of the tile components to support microbial life.

Acknowledgements

- NASA AES Program Office
- LRR Team from KSC , JSC, GRC, ARC

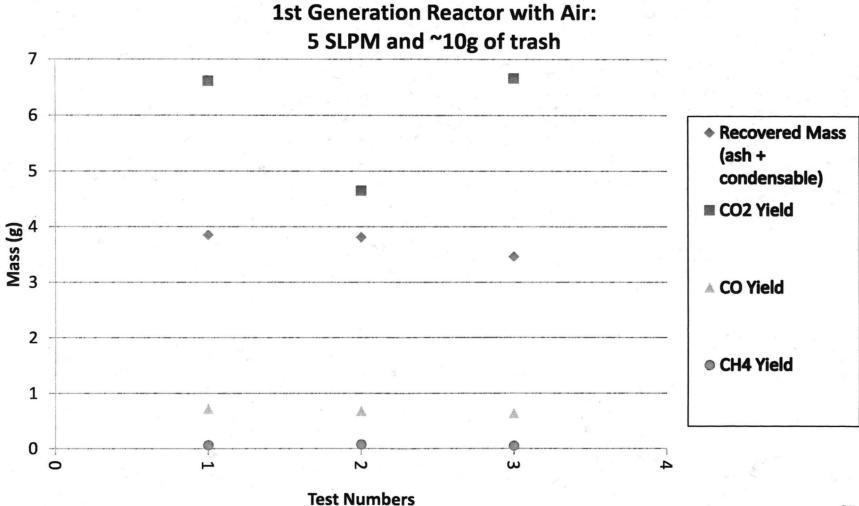
Mike Ewert , JSC Jim Broyan , JSC Paul Hintze, NE-L Steve Anthony, NE-F Tony Muscatello, NE-S Jim Captain, ESC Bobby Devor, ESC Doug Tomlin, NE-L Eddie Santiago, NE-S Ines Salcedo, NE-I John Bayliss, NE-L Gabor Tamasy, NE-M2 David Chesnutt, NE-M1 Kati Zajdel, GP-L Michele Birmele, ESC Brian Larson, ESC Janicce Caro, ESC Janelle Coutts, ESC Larry Koss, ESC Jan Surma, ESC

Thank you for attending!

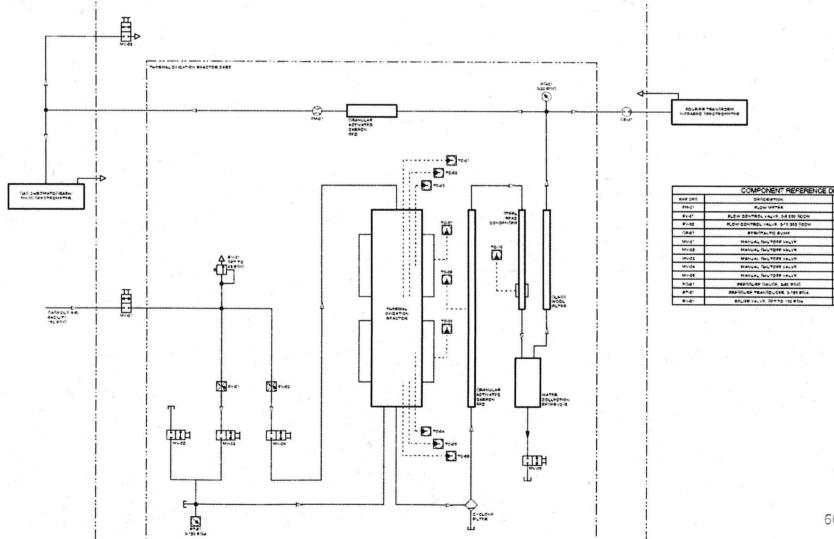

Do you have any questions for us?

Email:

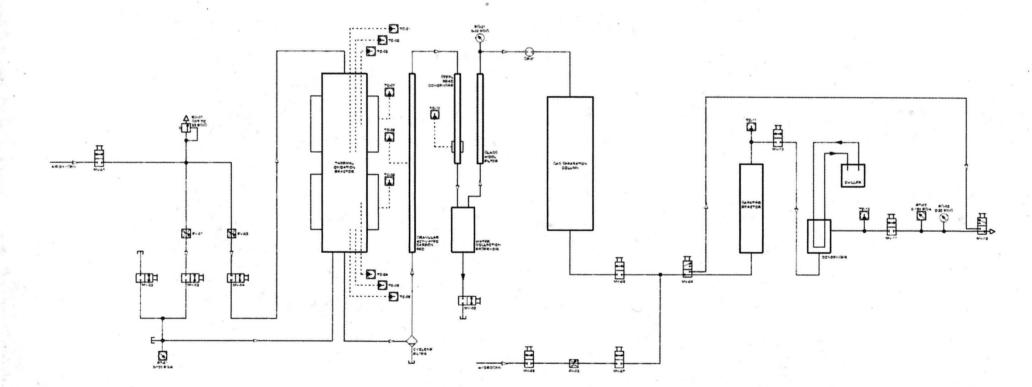
<u>Anne.Caraccio@nasa.gov</u> <u>Andrew.M.Layne@nasa.gov</u> Mary.E.Hummerick@nasa.gov



General Flow Diagram

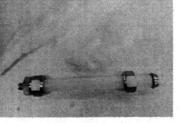


Backup


2nd Gen. Reactor Schematic

66

Fully Integrated Schematic



67

Minor Products Detected on GC/MS 1st Gen. Reactor

CLASS NAME	PROPERTY	REPRESENTATIVE COMPOUNDS	
GC-Undetectable	Very heavy tars		
ALKENE	Containing at least one carbon-to-carbon double bond	Acetylene, Allene, 1-Butene, 1-Butene-3- yne, Ethylene, Propene, 2-Methylpropene	
ALKANE	Consist only of hydrogen and carbon atoms and are bonded exclusively by single bonds	Ethane, Propane	
ALKYNE	Hydrocarbons that have a triple bond between two carbon atoms	Propyne, Ethyne	
ALDEHYDE	R-CHO, consists of a carbonyl center (a carbon double bonded to oxygen) bonded to hydrogen and an R group	Acetaldehyde, 2 propenal,	
CYCLOALKANE One or more rings of carbon atom		Methylenecyclopropane	
CYCLIC ETHER	An oxygen atom connected to two alkyl or aryl groups — of general formula R–O–R'	Ethylene Oxide	
DIENE Contains two carbon double bonds		1,3-Butadiene	
KETONE	A carbonyl group (C=O) bonded to two other carbon atoms	Acetone	

