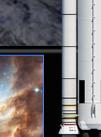
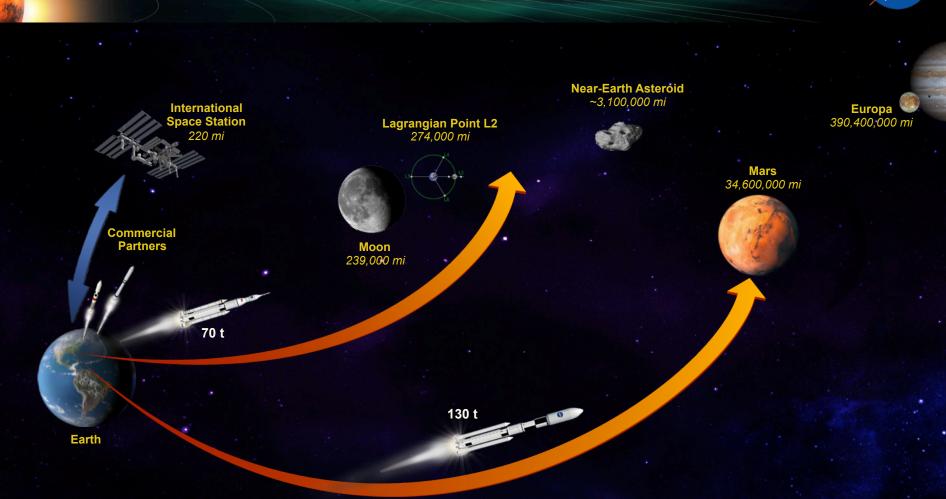
National Aeronautics and Space Administration



NASA Space Launch System (SLS) Development: Challenges and Solutions

Garry M. Lyles SLS Chief Engineer NASA Marshall Space Flight Center July 15, 2013


aunch Syster

- Opening Remarks
- RS-25 Engine
- Core Stage
- Booster
- Interim Cryogenic Propulsion System

The Future of Exploration

The Space Launch System [will] be the **backbone** of its manned spaceflight program for decades. It [will] be the most **powerful** rocket in NASA's history...and puts NASA on a more **sustainable** path to continue our tradition of **innovative** space exploration.

President Obama's Accomplishments for NASA May 22, 2012

SLS Driving Objectives

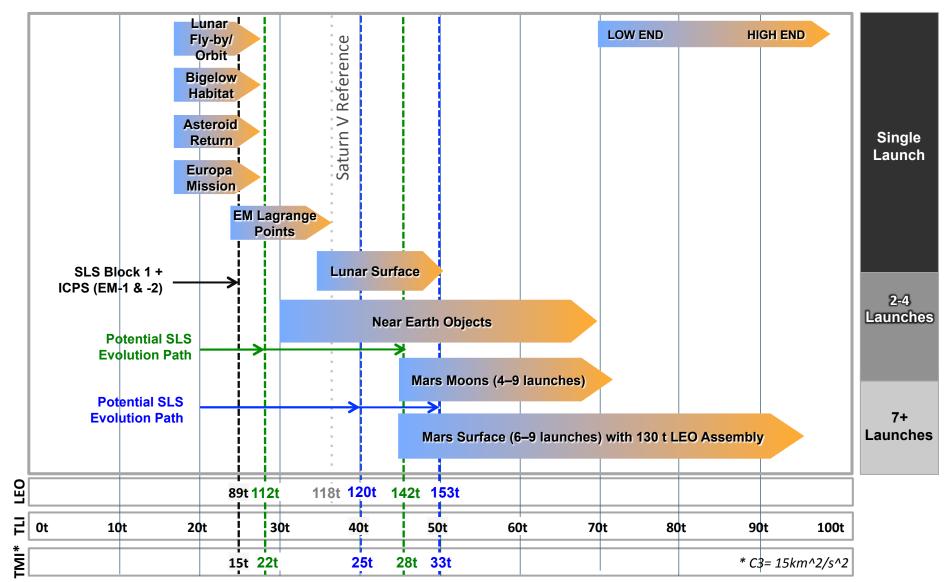
Safe

- Human-rated to provide safe and reliable systems
- Protecting the public, NASA workforce, high-value equipment and property, and the environment from potential harm

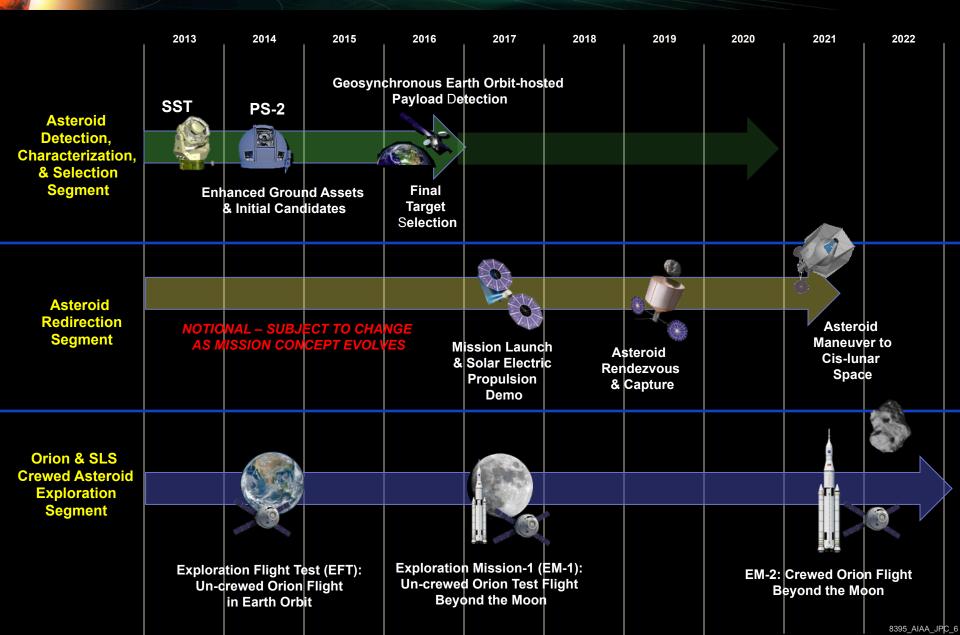
Affordable

- Maximum use of common elements and existing assets, infrastructure, and workforce
- Constrained budget environment
- Competitive opportunities for affordability on-ramps

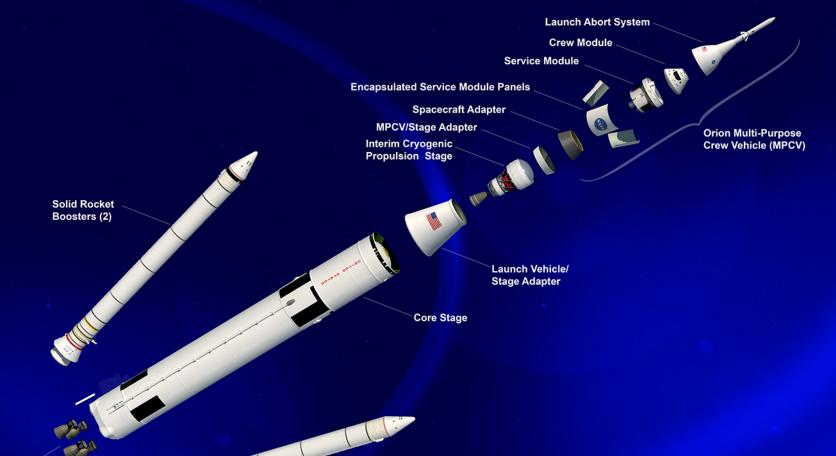
Sustainable


- Initial capability: 70 metric tons (t), 2017–2021
 - Serves as primary transportation for Orion and human exploration missions
- Evolved capability: 105 t and 130 t, post-2021
 - Offers large volume for science missions and payloads
 - Reduces trip times to get science results faster
 - Minimizes risk of radiation exposure and orbital debris impacts

Platform for Missions Beyond Earth's Orbit


Potential SLS Mission Capture and Evolution

Single Launch Equivalent Gross Capability


SLS Launch Schedule

70 Metric Ton Expanded View

RS-25 Engines (4)

Initial Capability Builds on Heritage Hardware

Heritage Hardware Considerations

Contractual

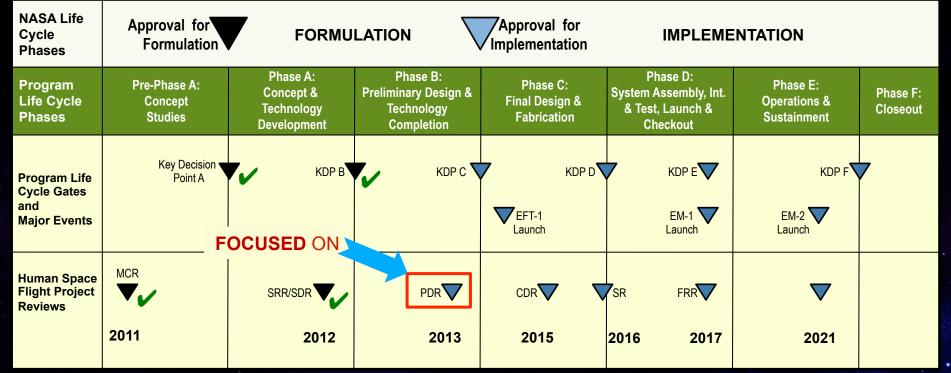
- Existing contracts may provide a fast start
- Contracts clearly define scope
- Hardware capabilities and people/processes are typically intertwined with contractual considerations

Hardware

- Heritage hardware comes with all of the heritage capabilities
- Heritage hardware also comes with all of the heritage limitations

People/Processes

- Capabilities of heritage hardware typically tightly coupled with heritage processes
- Heritage processes are often tightly coupled with the people operating the processes


Cost

- Appropriate usage of heritage hardware, existing assets and infrastructure, and existing contracts is an important part of the overall approach for affordability
- Heritage hardware typically comes with legacy costs

Technical integration focused on interfaces (structural, electrical, and organizational) between individually procured hardware elements

The Road to First Flight in 2017

[A] monumental effort ... has gone into this Program.... I don't think anyone would have thought in September [2011] that this Program might be this far so fast.

CDR: Critical Design Review	MCR: Mission Concept Review
EM: Exploration Mission	PDR: Preliminary Design Review
EFT: Exploration Flight Test	SIR: System Integration Review
FRR: Flight Readiness Review	SDR: System Definition Review
KDP: Key Decision Point	SRR: System Requirements Review

LeRoy Cain, Chair Standing Review Board June 29, 2012

SLS Partnerships Nationwide

12

BOEING

2012 Data

Engaging the U.S. Aerospace Industry
Strengthening Sectors such as Manufacturing
Advancing Technology and Innovation

ATKS

2

Pratt & Whitney

208 Subcontracts in 28 States

105

NASA's Space Launch System

On Course for First Flight in 2017

SAFE, AFFORDABLE, SUSTAINABLE

Powering the Future of Exploration

RS-25 Engine Development Challenges and Solutions

Katherine P. Van Hooser SLS Engines Chief Engineer NASA Marshall Space Flight Center Doug Bradley RS-25 Core Stage Engine Chief Engineer Aerojet Rocketdyne

July 15, 2013

Agenda

RS-25 Engine

Core Stage

Booster

Interim Cryogenic
 Propulsion System

- Challenge: Long Term Storage
 Solutions: Transfer to Stennis Space Center; Identify/optimize storage options
- Challenge: Heritage engine Controller Unit incompatible with new vehicle
 Solutions: Design new controller; leverage J-2X design
- Challenge: Higher Liquid Oxygen (LOX) inlet pressure
 Solutions: Modify engine; Limit maximum pressure; Modify start sequence
- Challenge: Lower LOX temperatures
 Solutions: Add heat; Reduce pre-start bleed flows; Modify start sequence

NASA's Space Launch System RS-25 Development Challenges and Solutions

RS-25 Support to SLS

- Proven
- Flexible
- Affordable

Heritage engine integration into new vehicle

 Interfaces, environments – external and internal

Specific challenges and solutions

- Asset management
- Obsolescence controller
- Integration LOX inlet conditions

Accomplishments

RS-25/Space Shuttle Main Engine

Proven – Flexible - Affordable

- Proven safety and reliability
- Man-rated

Versatile high performance capability demonstrated

Significant hardware availability at end of program

- 16 flight engines
- 2 development engines

Selected for Space Launch System Core Stage

RS-25 Asset Management

SLS mission assessment

- Power level capability demonstrated in Space Shuttle Main Engine (SSME) program
- Life limits reassessed, updated to meet SLS mission requirements

Challenge: Long term storage

Protect from damage, deterioration

Solutions

- Transferred engines from Kennedy Space Center (KSC) to Stennis Space Center (SSC)
- Options for storage identified and optimized
 - Containers
 - Bags
 - Purges
 - Monitoring

Engines at KSC at End of Shuttle Program

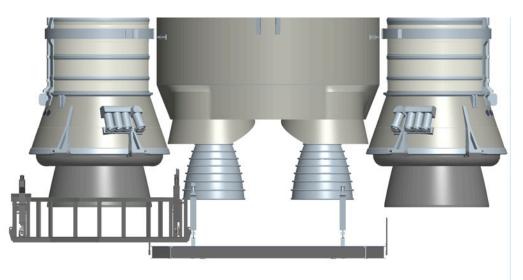
Engines at SSC

Engine Integration into Vehicle

Heritage engine designed for Shuttle must be integrated into SLS vehicle

Physical interfaces

• Mechanical interfaces: Defined and coordinated with Stages Element


Electrical interfaces: Engine controller in work

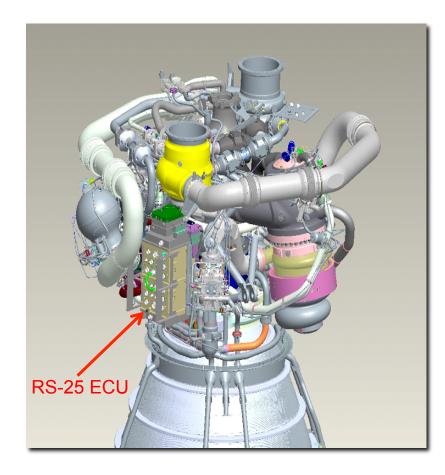
Exterior environments

- Aft compartment conditions
- Reduced distance between Booster plume and RS-25 nozzles

Internal environments

- Gases, hydraulics: Defined
- Propellant inlet conditions

Engine Controller Unit (ECU)

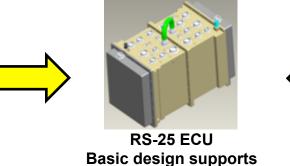


ECU function

- Controls thrust and mixture ratio
 - Open and closed loop
- Continuously monitors engine health
- Provides electric power to control elements, sensors, and effectors
- Accepts commands from and reports data to vehicle computers
- Challenge: Heritage controller incompatible with new vehicle

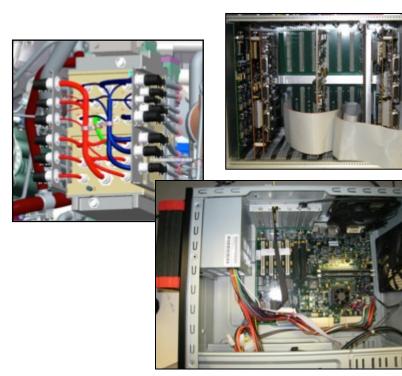
Solutions

- Design new controller rather than adapt old
- Leverage J-2X design for "universal controller"



Engine Controller Unit (ECU) (Continued)

SSME Engine Controller Unit



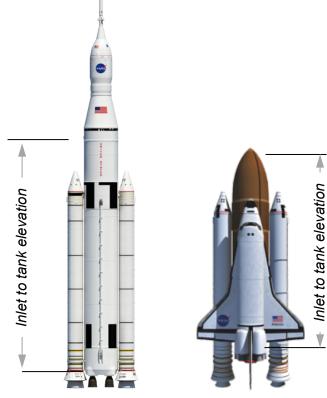
RS-25 and J-2X

J-2X Engine Controller Unit

- May 2013 √ Hardware Critical Design Review (CDR) June 2013 √ Software Preliminary Design Review (PDR) ECU Demo #2 / Operational Flight Program (OFP) functionality Dec 2013 Software CDR Dec 2013 Mar 2014
- First Engineering Controller (EM1)

Propellant Inlet Conditions

Challenge: Higher LOX inlet pressure


Elevation and configuration of vehicle

Solutions

- Modify engine to adapt to pressure
- Limit maximum pressure with mission profile changes
- Modify start sequence

Status

- Leverage SSME experience to establish start sequence
- Verify start and mainstage characteristics during ground testing

Propellant Inlet Conditions (Continued)

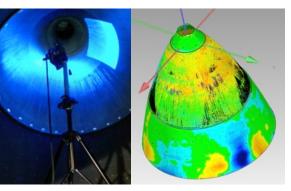
Challenge: Lower LOX temperatures

- Configuration of vehicle
- Potential for damage induced by temperature spikes during start

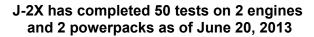
Solutions

- Add heat
- Reduce pre-start bleed flows
- Modify start sequence

🔶 Status


- Leverage SSME experience to establish bleed flows and start sequence
- Engine and vehicle experts developing combined solution
- Verify start characteristics during ground testing

Top Accomplishments - Engines

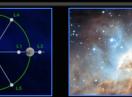


1st Gimballing Test for J-2X June 14, 2013

Structured light used in various applications to reduce development time

RS-25 Ready to Support Vehicle Preliminary Design Review June, 2014 National Aeronautics and Space Administration

Launch System


0


 \mathbf{p}

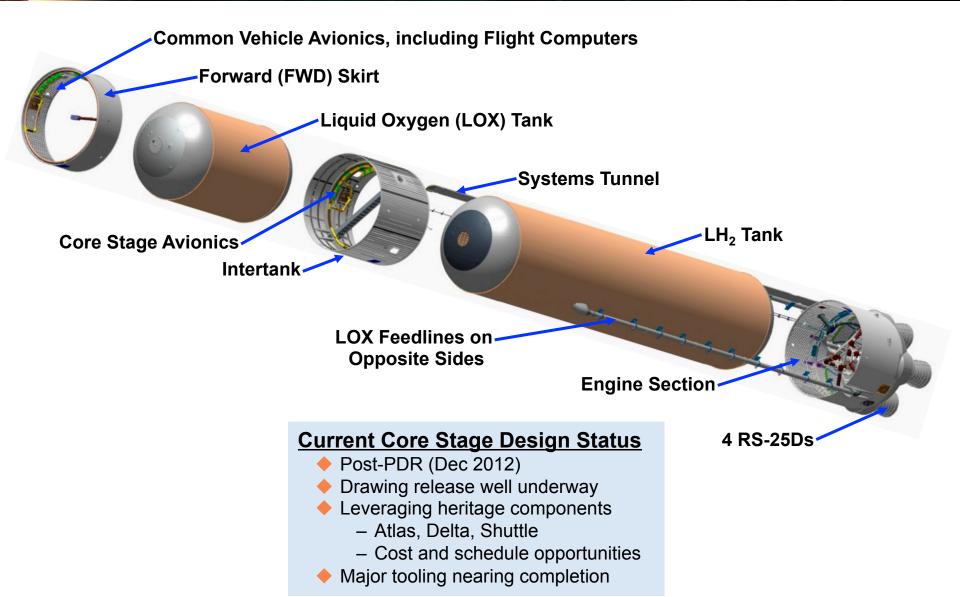
Core Stage Challenges and Solutions

Mike Wood SLS Chief Engineer Boeing July 15, 2013

Agenda

Opening Remarks

RS-25 Engine



Interim Cryogenic
 Propulsion System

- Challenge: Vibroacoustic environment
 Solutions: Direct part re-use; Design re-use
- Challenge: Shock and random vibration loads
 Solutions: Direct part re-use; Design re-use
- Challenge: Engine interface Control Document GO₂ interface temperature; maximum interface pressure Solutions: Design re-use

SLS Core Stage Development On Track for Mid-2014 Critical Design Review

Component Re-Use Reduces Technical Risk Provides Cost & Schedule Benefits

Core stage propulsion design based heavily on heritage programs

- LOX/LH₂ Subsystems - Atlas, Delta, Shuttle Heritage
- Gaseous Oxygen (GO₂)/Gaseous Hydrogen (GH₂) Pressurization Systems
 - Delta Heritage
- Pneumatic Systems
 - Delta, Shuttle Heritage
- Leveraging analytical and heritage design strengths to develop subsystem design
- New rocket design and environments create additional challenges

MPS Shuttle Pneumatic Regulator

Delta IV Pressurization Solenoid Valve

Shuttle Thrust Vector **Control Actuator**

Component Reuse Reduces Technical Risk LOX Prevalve Opportunity Testing Underway

Reuse Opportunity

- Shuttle LOX Prevalve
 - Direct part reuse
 - Design reuse

Challenge: Vibroacoustic environment

Solutions

- Direct part reuse
 - Development test to validate direct part reuse
- Design reuse
 - Structurally enhanced prevalve

Design Reuse

Direct Part Reuse (Testing In Work)

Prevalve with Test Plate

Prevalve Bench Testing on Common Cryo Test Stand

Component Reuse Reduces Technical Risk LH₂/LOX Fill and Drain Valve

Reuse Opportunity

- Shuttle LH₂/LOX Fill & Drain Valve
 - Direct part reuse
 - Design reuse
- Challenge: Shock and random vibration loads

Solutions

- Direct part reuse
 - Shock testing to higher SLS g-levels
 - Random vibration testing to SLS levels
 - Increase proof pressure testing
- Design reuse
 - More robust valve body for design reuse

LH₂/LOX Fill & Drain Valve

Fill & Drain Valve Test Setup

Component Reuse Reduces Technical Risk Tank Pressurization Valve (TPV)

Reuse Opportunity

- Delta IV Tank Pressurization Valve (TPV)
 - Design reuse

Challenges

- Engine Interface Control Document (ICD) GO₂ interface temperature
- Maximum interface pressure

Solutions

- Design reuse
 - Seal material thermal and pressure testing
 - Non-metallic to metallic materials
 - Fixed orifice

Delta IV Pressurization Solenoid Valve

SLS Core Stage On Track for 2017 Launch On-Cost, Ahead of Schedule, On-Target

Michoud Assembly Facility

Gore and Dome Weld Tools

Segmented Ring Tool

Milestone Reviews

Early Completion of SRR/SDR and PDR

Avionics

Flight Computers

Lithium Ion Battery

Structures

Barrel Panels

Propulsion

SLS Thrust Vector Control

aunch System

1

Booster Development Challenges and Solutions

Ellis M. (Mat) Bevill Boosters Deputy Chief Engineer NASA Marshall Space Flight Center Dale B. Nielsen SLS Deputy Chief Engineer ATK Space Systems July 15, 2013

Agenda

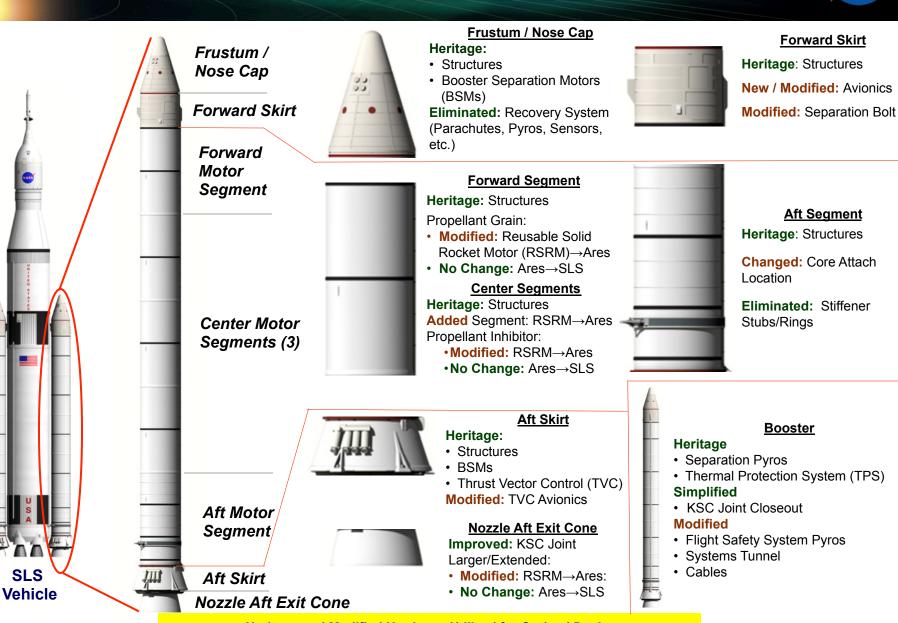
Opening Remarks

- RS-25 Engine
- Core Stage

Booster

Interim Cryogenic Propulsion System

- Challenge: SLS loads at Forward Separation Bolt exceed heritage loads
 Solution: Separation bolt modified
- Challenge: SLS Core Stage required attach ring movement 240 inches aft
 Solutions: Tooling, processes, and non-structural hardware modifications
- Challenge: Threat of Booster Separation Motor (BSM) seal debris to Core Stage Engines
 Solutioner Utilize heritage cools from forward PSMs

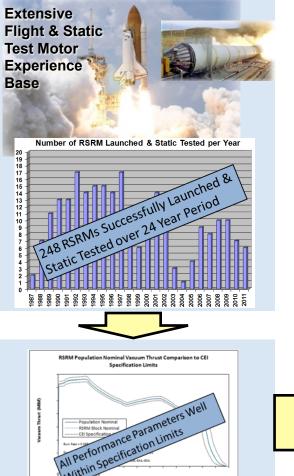

Solutions: Utilize heritage seals from forward BSMs

- Challenge: Nozzle After Exit Cone Joint closeout labor intensive, non-verifiable, and uses obsolete materials
 Solutions: Replace backfill thermal barrier with thermal barrier O-ring
- Challenge: SLS program cost reductions Solutions: Multiple value stream mapping initiatives

Future Challenges/Solutions:

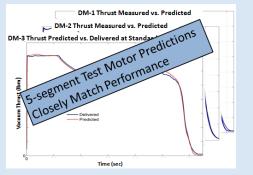
- Challenge: Ascent and liftoff loads reduce forward skirt safety factors
 Solutions: Evaluate skirt modification options and structural testing to failure
- Challenge: Acoustic load levels may exceed capability of avionics boxes
 Solutions: Box isolation, relocation, additional testing options
- Challenge: SLS thermal and structural ignition pressure loads exceed heritage thermal curtain capabilities
 Solutions: Test, analysis, and potential curtain modification

SLS Booster Configuration (Block 1)


www.nasa.gov/sls

Heritage and Modified Hardware Utilized for Optimal Design

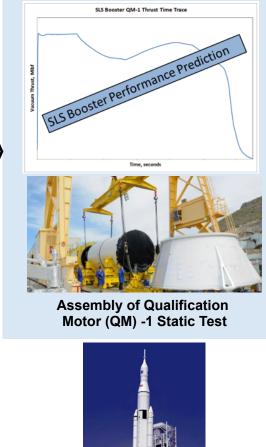
SLS Booster Performance Confidence


Space Shuttle SRB

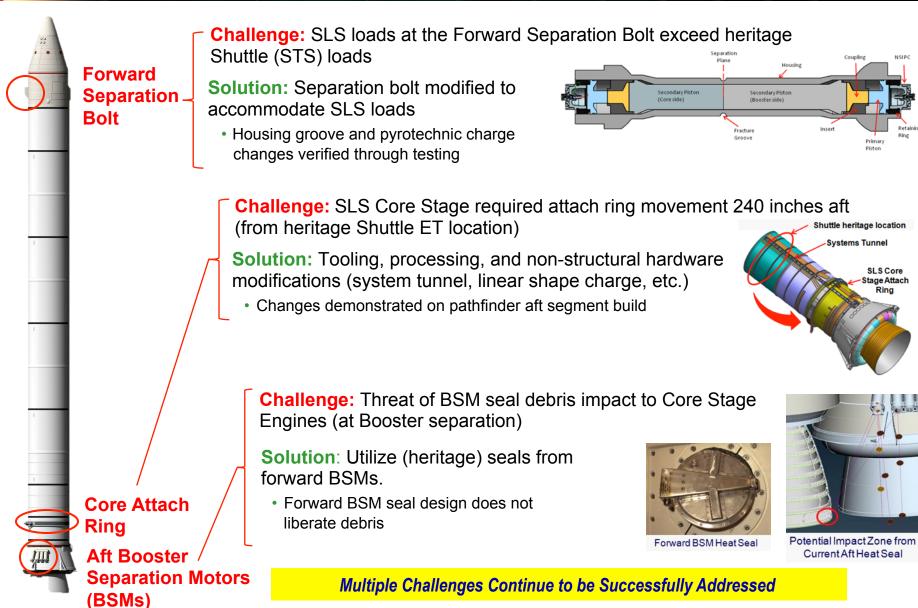
Within Specification Limits

Demonstrated Performance Consistency Over Life of Program

Ares 1st Stage

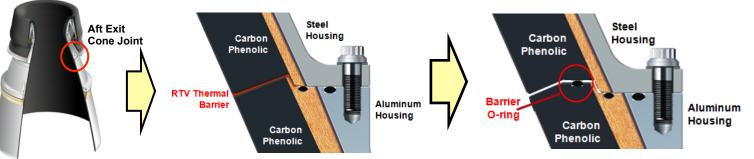

Excellent Prediction-to-Performance Correlation

Three Successful 5-Segment Development Motor (DM) Static Tests Conducted

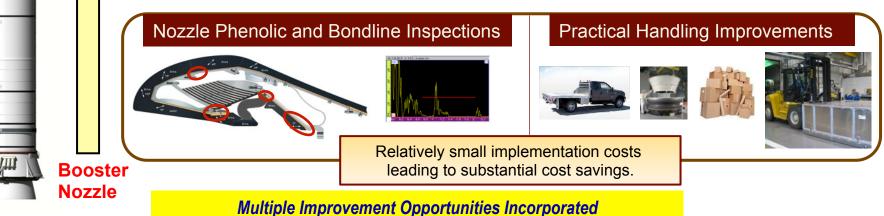

SLS Booster

QM-1 & QM-2 Static Tests & Experience Base Provide High Confidence SLS Boosters Meet All SLS Vehicle Needs

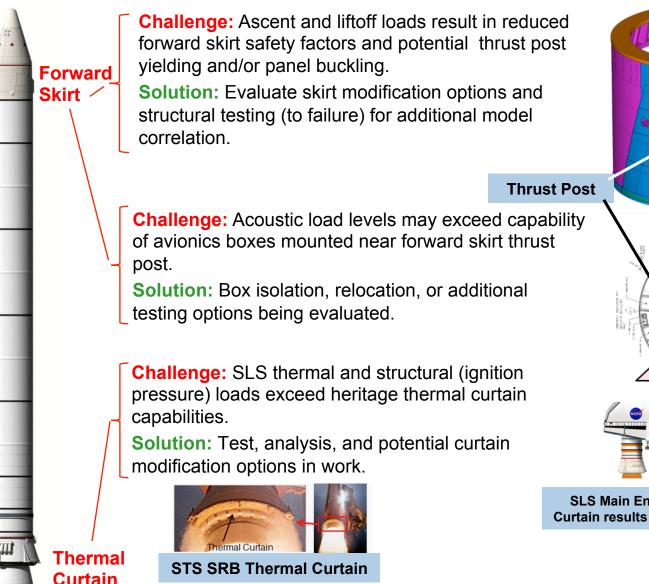
Design Challenges/Solutions: Loads & Configuration Driven


Design Challenges/Solutions: Improvement Opportunities

Challenge: Nozzle Aft Exit Cone Joint (mated at Kennedy Space Center (KSC)) closeout labor intensive, non-verifiable, and utilizes obsolete materials

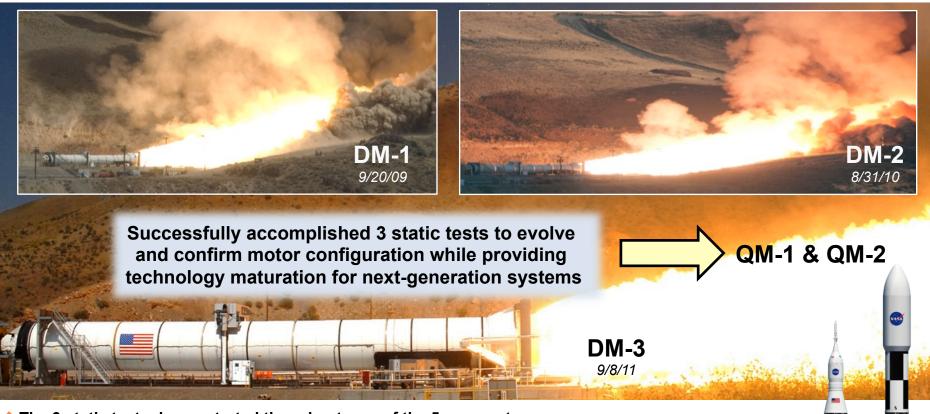

Solution: Replace backfill thermal barrier with thermal barrier O-ring

Joint design reliability increase with significant simplification of KSC closeout


Challenge: SLS program to implement significant cost reductions over previous man-rated space flight programs

Solution: Multiple value stream mapping (VSM) initiatives result in ~46% reduction in SLS Booster production timeline

Future Challenges: Loads Driven


Panel Buckling Region

SLS Main Engine proximity to Booster Thermal Curtain results in increased loads (over SSME loads)

Technical Resolution Plans in Place to Address Challenges

Accomplishments: From Development to Qualification

The 3 static tests demonstrated the robustness of the 5-segment design over the full range of potential operating conditions and in potential design configuration options:

- Propellant Mean Bulk Temperature (PMBT) ranging from 42 °F (DM-2) to 92 °F (DM-3)
- Field joint performance including cold joints (DM-2), hot joints (DM-3), and intentional channels (DM-2 and DM-3)
- Increased technical understanding and calibration of models
 from expanded instrumentation

The current 5-segment motor provides opportunity for expansion and further optimization to provide up to 130 metric tons of payload capacity.

Accomplishments: From Development to Qualification (Continued)

Avionics system development and maturation support for SLS Vehicle simulation tests and full scale static tests (QM-1 & -2)

Subsystem level testing Completed Sep 2011

Flight Controls Test 1 Completed Mar 2012

Flight Controls Test 2 Completed Feb 2013

 SLS Booster Element successfully completed the Preliminary Design Review (PDR) Board 2 April 2013

Integrated Booster development on target for CDR maturity

SLS Booster Element is postured for a successful CDR and the booster design is on track to support a 2017 SLS first flight.

Interim Cryogenic Propulsion System (ICPS) Challenges and Solutions

René Ortega Spacecraft and Payload Integration Office (SPIO) Chief Engineer NASA Marshall Space Flight Center July 15, 2013

Agenda

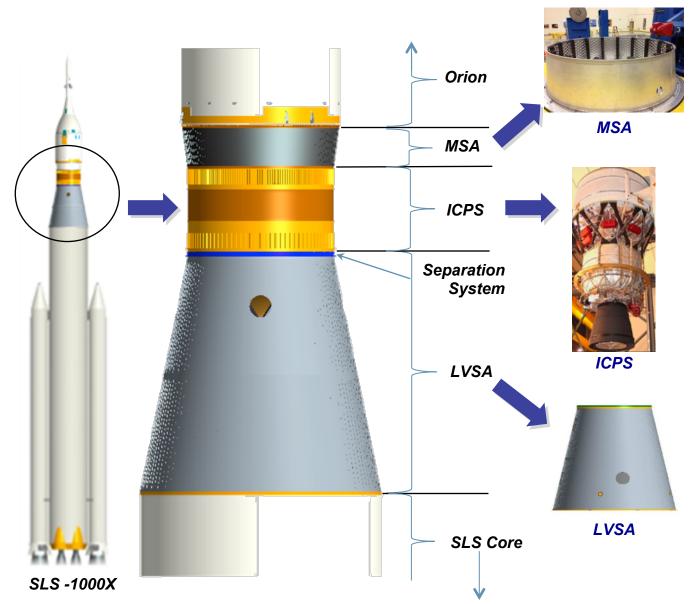
Opening Remarks

RS-25 Engine

Core Stage

Booster

Interim Cryogenic Propulsion System


Challenge: SLS vehicle design lateral loads imparted at liftoff and ascent mission
 phases

Mitigations

- For liftoff, incorporate T-zero stabilizer liftoff restraint and release, and additional system damping.
- For ascent, incorporate additional RL 10B-2 system damping and vehicle test derived aero-buffeting factors.
- Challenge: Implementation of NASA Technical Specifications and Standards could impact the configuration and construction of the ICPS departing from configuration/ construction which has successfully flown over 20 flight. Mitigations
 - The SLS program tasked a team of experts to assess the risk associated with the use of the existing ULA design and construction methods for ICPS.
 - The team of experts will make recommendations to the SLS/Program on what deviations/waivers and/or mitigations are to be use.

SLS Integrated Spacecraft and Payload Element (ISPE) Configuration (EM1)

ISPE

- ISPE for SLS-1000X is comprised of the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), Interim Cryogenic Propulsion Stage (ICPS), Separation System, and the Launch Vehicle Stage Adapter (LVSA)
- Managed by the Spacecraft and Payload Integration Office (SPIO) at NASA/MSFC, AL

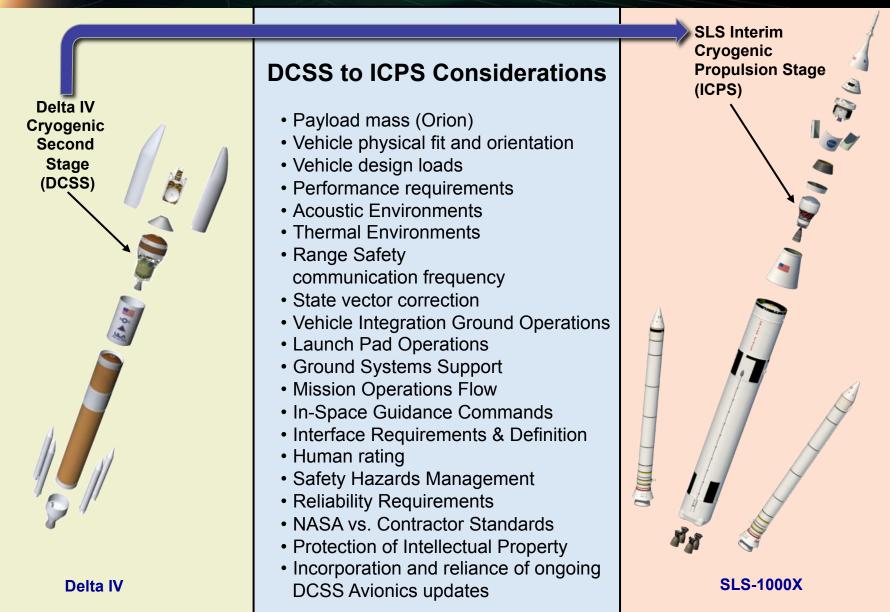
<u>MSA</u>

- Manufactured by NASA Engineering/ MSFC, AL
- Connects ICPS to Orion adapter

ICPS

- Designed by Boeing/United Launch Alliance (ULA); ULA manufactured in Decatur, AL
- Modified 2016 production version of Delta Cryogenic Second Stage (DCSS) with RL10B-2 Engine
- Provides Perigee Raise and Trans-Lunar Injection and Disposal for EM1 & EM2

Separation System


- Manufactured by Chemring Energetic Devices/ULA
- Releases Orion/ICPS from SLS

LVSA

- Manufacturer TBD
- Connects ICPS to SLS and houses the separation system
- Preliminary design completed by NASA Engineering/MSFC, AL

Challenges Associated with Adapting Existing Delta IV Stage (DCSS) to the SLS ICPS

SLS vehicle design loads that meet the ICPS RL10B-2 Electro-mechanical actuator (EMA) and engine qualification limits

• Design iterations usually include loads reduction and hardware capability iterations. For ICPS, being mostly heritage hardware, capability design iterations are limited.

Challenge: SLS vehicle design lateral loads imparted at liftoff and ascent mission phases are challenging

- Liftoff lateral loads primarily driven by North/South winds
- Ascent lateral loads primarily driven by aero-buffeting

Mitigations for Design Cycle Iteration

- For the liftoff event, the SLS vehicle incorporated a T-zero stabilizer (liftoff restraint and release), and additional Boeing/ULA ICPS recommended system damping into the vehicle loads model.
 - Additional liftoff wind limitations may be considered in further iteration
- For the ascent event, the SLS vehicle incorporated the additional RL 10B-2 system damping and vehicle test derived aero-buffeting factors into the vehicle loads model
 - An SLS aero-buffets team continues to study potential for vehicle loads reductions
 - Potential additional ICPS mitigation include exploring additional damping from active electro-mechanical actuators (EMAs) and other more complicated options

In a typical conservatively-derived design cycle, loads decrease and capability improves as the design matures. The challenge with using heritage hardware is that the capability is mostly fixed.

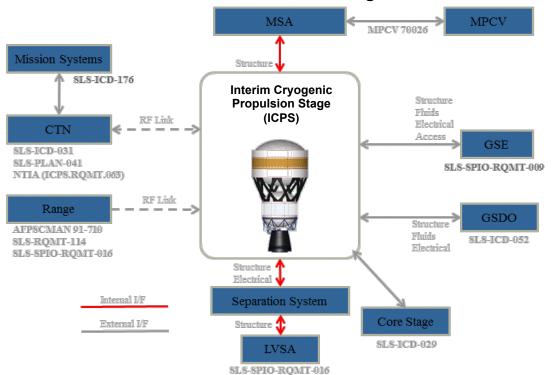
Major On-going DCSS to ICPS Challenges (Continued)

Implementation of NASA Technical Specifications and Standards for ICPS may result in costly redesigns for ICPS.

- The ICPS is a modification to the existing DCSS which was developed under United Launch Alliance (ULA) technical specifications and standards for commercial and military applications.
 - Intent was to implement modifications to a 2016 version of DCSS following contractor specifications.

Challenge: Implementation of NASA Technical Specifications and Standards could impact the configuration and construction of the ICPS departing from the basic DCSS configuration/construction which has successfully flown in Delta IV greater than 20 flights.

Mitigations


- The SLS program tasked a team of experts to review the related ULA and NASA Technical Specifications and Standards to assess the risk associated with the use of the existing ULA design and construction methods for ICPS.
- The team of experts will make recommendations to the SLS/Program on what deviations/ waivers and/or mitigations are to be used for the ICPS design and construction standards.

Implementing NASA specifications while buying off-the-shelve type manufactured hardware results in a challenging specifications process

Future DCSS to ICPS Challenge

ICPS Interface Context Diagram

New and Existing ICPS Interface requirements mapping to the various SLS vehicle interface controlling requirements will require close detailed scrutiny as the design matures

- Effort may be workforce intensive
- Involve various interface elements including SLS, Orion, Ground, SPIO, and Range
- Effort will require a detailed verification process

Large number of interfaces may result in a challenging validation and verification process.

Accomplishments

Recent ISPE accomplishments include:

- Conducted a feasibility study indicating that ICPS has the capability to conduct the SLS mission.
- ISPE Preliminary Design Review completed in June 2013.
- Currently manufacturing flight MPCV Stage Adapter for Delta IV flight of MPCV in late 2014.
- Incorporated into the ICPS design an extension of the hydrogen tank for added stage performance.

SPIO has an experienced committed team working to resolve all challenges.

America's Rocket

www.nasa.gov/sls

www.nasa.gov/sls

there are no