Additional Developments in Atmosphere Revitalization Modeling and Simulation

Dr. Rob Coker ES22/MSFC/NASA Jim Knox, Ramona Cummings, Thomas Brooks, Greg Schunk, Carlos Gomez 43rd International Conference on Environmental Systems, 14-18 July 2013, Vail, Colorado

Introduction

- The Advanced Exploration Systems (AES) Program:
 - pioneering approaches for rapidly developing prototype systems
 - demonstrating key capabilities
 - validating concepts for human missions beyond Earth orbit
- The Atmosphere Resource Recovery and Environmental Monitoring Project (ARREM):
 - mature integrated AR and environmental monitoring (EM) subsystems
 - derived directly from the ISS AR subsystem architecture
 - reduce developmental and mission risk
 - improve reliability,
 - Iower lifecycle costs
 - demonstrate design and system concepts for human missions beyond Earth orbit

ARREM System Trade Spaces

Objectives

- CO2 Removal
- H2O Bulk Drying
- H2O Residual Drying
- Improve the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents
- Continue evaluations of structured sorbents for durability and efficiency (Microlith, *NovelAire*, other novel formats)
- Continue evaluations of alternate bed configurations to improve system efficiency and reliability (Isothermal Bulk Desiccant)

Approach

- Characterize candidate sorbents and compare directly with stateof-the-art sorbents
 - Select promising sorbent candidates for life support process of interest
- Develop new or modify existing mathematical models and computer simulations for process of interest (COMSOL)
 - Via simulation, optimize cyclic test configuration (e.g., canister design and cycle parameters)
- Fabricate test article and execute test series
 - Evaluate sorbent efficacy for go/no go to next larger scale
 - Validate and refine simulation
- Repeat while increasing scale until full-scale for the process of interest is attained
- Incorporate the full-scale system into the integrated AR test configuration and evaluate via integrated testing
- Provide technology solution to spacecraft flight system developer

IBD (experiment)

- Grace grade 40 silica gel
- Aluminum housing
- Numerous valves
- Heat exchanger plates with holes
- Meshes and spring plates between the 4 cells
- Meets performance goals
- Very nearly isothermal

1/3 scale of system required for 4 person crew. Cooled (60°F) air flow at 190/160 slpm with 10 °C dew point.

IBD (model)

 Simplified 3D COMSOL model with HX plates as porous media

efficiency (percent)

- Tracks concentration, temperature, flow path, loading
- Spatially varying porosity and permeability
- Qualitative match but not yet sufficiently quantitatively predictive

Microlith (experiment)

13X zeolite
 coated on Al
 mesh,
 alternating with
 insulating
 sorbent layers

 10 sorbentonly meshes on outside of roll

566 slpm, 22
 °C air, -10 °C
 dew point

8

Microlith (model)

- Flow is from the top (meshes are upside down)
- Finely resolve mesh required
- Similar approach to IBD
- Constant porosity and permeability (fit to pressure drop)
- Thermal coefficients used
- Complex flow at bottom plate
- Breakthrough occurs non-uniformly
- Numerical issues (negative c and q)

Microlith (model)

- Initial breakthrough at ~10-15k sec
- Full bulk
 breakthrough after
 ~20 hrs
- Model temporal shape incorrect (not steep enough)
- Model too late and cold
- Variable effective porosity and permeability needed?

0 10000 20000 30000 40000 50000 60000 Time (s)

Integrated Average at cited Radials (solid lines with markers) and Test Data

FS H2O Microlith: Integrated Average at cited Axials and Radials

VSA POC (experiment)

- CO2 removal and humidity control
- Zeolite 13X
- 3" diameter cylinder
- Internal sorbent bed1" to 8" long
- Flow from left to right for adsorption
- Right end sealed and left end evacuated for desorption
- Tests to be done soon_{TM}

VSA POC (model)

- 1D model only so far
- 1" long sorbet bed
- Constant momentum (0.1 m/s superficial velocity)
- CO2, H2O, O2, and N2 included
- Competitive sorption Toth isotherms used
- 20 °C air with 60 °F dew point at 1 atm with 50 sec half-cycle
- Desorption half-cycle seals right end and applies P(t) to left end and turns on an Ergun based momentum solver
- Model in Thermal Desktop showed effective radiative thermal conductivity of ~0.02 W/m/K; significant at low pressures (not included so far)

Temperature [K], Time = O sec

VSA POC (model)

- Boundary pressure ramped down from 1 atm over 1 sec
- Minimum pressure used of 10 Pa
- Essentially no H2O desorption occurred
 - Isotherms suggest lower pressure required to get H2O desorption
- Minimal CO2 desorption
- H2O competition with CO2 evident
- H2O eventually pushes CO2 from the bed

Conclusions

- Flat NASA budgets require innovative approaches to sorption system development
- For AES ARREM H2O and CO2 Removal, testing is being supplemented with multidimensional modeling and simulation to reduce costs and optimize designs
 - Empirical determination of mass transfer coefficients using accurate fixed bed models in 1D and 2D
 - Application of the fixed bed model in 3D to simulate cyclic sub-scale tests
 - Optimization of heat transfer for development of an Isothermal Bulk Desiccant
 - Studies of the Microlith used to troubleshoot performance problems and design subscale test
 - Developed the appropriate, simplified vacuum system equations for a VSA design
- Modeling and simulation efforts will continue to maximize the effectiveness of AES ARREM H2O and CO2 Removal system designs
- Down-select of H2O removal system: NRAD and MBAD (due to mass)