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Introduction
The Advanced Exploration Systems (AES) Program:
= pioneering approaches for rapidly developing prototype systems
= demonstrating key capabilities
= validating concepts for human missions beyond Earth orbit

The Atmosphere Resource Recovery and Environmental
Monitoring Project (ARREM):

= mature integrated AR and environmental monitoring (EM)
subsystems

— derived directly from the ISS AR subsystem architecture
= reduce developmental and mission risk
= improve reliability,
= |ower lifecycle costs

= demonstrate design and system concepts for human missions
beyond Earth orbit 2
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Objectives

CO2 Removal
H20 Bulk Drying
H20 Residual Drying

Improve the current state-of-the-art systems utilizing fixed
beds of sorbent pellets by seeking more robust pelletized
sorbents

Continue evaluations of structured sorbents for durability
and efficiency (Microlith, NovelAire, other novel formats)

Continue evaluations of alternate bed configurations to
iImprove system efficiency and reliability (Isothermal Bulk
Desiccant)



Approach

Characterize candidate sorbents and compare directly with state-
of-the-art sorbents
= Select promising sorbent candidates for life support process of interest

Develop new or modify existing mathematical models and
computer simulations for process of interest (COMSOL)

= Via simulation, optimize cyclic test configuration (e.g., canister design and
cycle parameters)

Fabricate test article and execute test series
= Evaluate sorbent efficacy for go/no go to next larger scale
= Validate and refine simulation

Repeat while increasing scale until full-scale for the process of
Interest is attained

Incorporate the full-scale system into the integrated AR test
configuration and evaluate via integrated testing

Provide technology solution to spacecraft flight system developer
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Microlith (experiment)
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FS H20 Microlith: Integrated Average at cited Axials and Radials
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VSA POC (experiment)
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Conclusions

Flat NASA budgets require innovative approaches to sorption system development

For AES ARREM H20 and CO2 Removal, testing is being supplemented with
multidimensional modeling and simulation to reduce costs and optimize designs

= Empirical determination of mass transfer coefficients using accurate fixed bed
models in 1D and 2D

= Application of the fixed bed model in 3D to simulate cyclic sub-scale tests
= Optimization of heat transfer for development of an Isothermal Bulk Desiccant

= Studies of the Microlith used to troubleshoot performance problems and design
subscale test

= Developed the appropriate, simplified vacuum system equations for a VSA
design

Modeling and simulation efforts will continue to maximize the effectiveness of AES
ARREM H20 and CO2 Removal system designs

Down-select of H20 removal system: NRAD and MBAD (due to mass)
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