Trash to Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions

Paul E. Hintze Chemistry Branch, NASA, Kennedy Space Center AIAA Space 2013 Conference and Exposition

Agenda

- Logistics, Reduction and Repurposing (LRR) Project Overview
- TtG overview
- TtG Incineration System

LRR Overview

- LRR has four hardware oriented tasks and a systems engineering task
- Six NASA centers are participating
 - HMC: <u>ARC</u>/JSC/MSFC/KSC/GRC
 - TtG: KSC/GRC/ARC/JSC
 - ACS: JSC/WSTF
 - LTL: <u>JSC</u>/JPL/ARC

Logistics Reduction and Repurposing (LRR) Project Manager: James Broyan, JSC Deputy PM: Andrew Chu, JSC

> Heat Melt Compactor (HMC) Lead: John Fisher, ARC

> > Trash to Gas (TtG) Lead: Paul Hintze, KSC

Advanced Clothing System (ACS) Lead: Evelyne Orndoff, JSC

Logistics to Living (L2L) Lead: Shelley Baccus, JSC LRR Waste Reuse Systems Engineering Analysis (WRSEA) Lead: Michael Ewert, JSC

Human Spaceflight Produces Trash!

Human spacefight trash includes:

- Food packaging (adhered/uneaten)
- · Clothing
- Human waste products
- Paper products
- · Etc.

Presently the trash is brought back home to earth or burned during Earth atmospheric re-entry

Long term effects include: Pollution

- Wasteful spending
- Planetary protection
- Bad press

To maximize our resources, reduce trash volume, and minimize polluting in space habitats and long duration missions we need to re-evaluate the trash produced and do something innovative and sustainable with it

TtG Benefits

- Stabilizes all waste materials including human wastes
 - Reduces waste mass by 87% Residual solids include metals and noncombustible materials
 - Produce 270 kg of water and 930 kg methane (hydrogen limiting case) or 1490 kg methane and 2300 kg of oxygen (carbon limiting case)
- Sufficient gasses produced for multiple mission options
 - Propulsion options in increasing Isp order: non-propulsive venting, cold gas, resistojet, methane
 - Provides yearly station keeping for L2type mission
 - Refuel one lunar to L2 sample return lander with ~260kg payload
 - Mars mission mid-course corrections

KSC-01PP-0726: Workers in the Space Station Processing Facility are removing contents from the Multi-Purpose Logistics Module (MPLM) Leonardo to begin removing the contents after STS-102. The MPLM brought back nearly a ton of trash and excess equipment from the Space Station.

- Evaluated multiple processes
 - Pyrolysis
 - Decomposition of waste materials with heat in the absence of oxygen
 - Gasification
 - Decomposition of waste materials with heat in the presence of oxygen and/or steam
 - Incineration
 - Decomposition of waste materials with combustion
 - Steam Reforming
 - Decomposition of waste materials with heat in the presence of steam
 - Catalytic Decomposition- Low Temperature Decomposition of waste materials in the presence of a catalyst
 - Wet air oxidation
 - Photocatalytic oxidation
 - Ozone Oxidation
 - Decomposition of waste materials with heat in the presence of ozone
- 2013 Select one technology for further development
- 2014 Design trash handling system and micro gravity compatible components
- 2015 and beyond Spaceflight demo (looking for opportunities)

Similar processes on Earth

- Challenges
 - Miniaturization
 - Operation with minimal human interaction
 - Do not produce hazards/Gas cleaning and purification
 - Most existing processes use only one feedstock

- Waste produced in spaceflight
 - Crew of 4 for 360 days produces about 2500 kg of waste processed by TtG
 - Waste types: Human Waste, Packaging,, Uneaten Food, MAGS, Gray Tape, Paper, Clothing, Towels, Clothing
- Waste simulant used to standardize results with different technologies
 - 40.3% water content
 - 5.9% ash content
 - Ash consisted of aluminum and noncombustible materials
 - 33.8% carbon content (estimated)

Shuttle mission waste

Food waste 'football'

 $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O$

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

- Two air inlets
 - 1. Top of the reactor
 - 2. Just below the trash
- Two heaters
 - Enables dual temperature zones
- Catalyst bed
 - Current results do not incorporate the catalyst

Condition	Top Inlet Flow (SLM)	Bottom Inlet Flow (SLM)	Temperature (°C)
А	$1 \rightarrow 4$	4 → 1	500
В	$1 \rightarrow 4$	4	500
С	5	5	500
D	$1 \rightarrow 4$	4 → 1	600
E	5	5	600

- 100 g of waste simulant in each run
- Mass of water collected by condenser measured after each run
- Fourier Transform Infrared (FTIR) spectrometer used to quantify production of carbon dioxide, carbon monoxide and methane
- Gas Chromatography/Mass Spectrometry (GC/MS) for qualitative analysis of oxygen and other hydrocarbons

- CO₂ production was maximized at 600 °C
- CO₂ production did not depend on flow rate
- CO production was about 1/10th the amount of CO₂ under all conditions
- 100% conversion of carbon in waste to CO₂ and CO at 600 °C

Condition	Top Inlet Flow (SLM)	Bottom Inlet Flow (SLM)	Temperature (°C)
A	$1 \rightarrow 4$	$4 \rightarrow 1$	500
В	$1 \rightarrow 4$	4	500
С	5	5	500
D	$1 \rightarrow 4$	$4 \rightarrow 1$	600
E	5	5	600

- Water recovered did not differ statistically under different conditions
- 40 g of free water in simulant is recovered
- Water produced in combustion reaction is not fully recovered – need improved condenser

Condition	Top Inlet Flow (SLM)	Bottom Inlet Flow (SLM)	Temperature (°C)
Α	$1 \rightarrow 4$	$4 \rightarrow 1$	500
В	$1 \rightarrow 4$	4	500
С	5	5	500
D	$1 \rightarrow 4$	$4 \rightarrow 1$	600
Е	5	5	600

- Reaction time was reduced when using higher flow rates
- Temperature did not have an affect on reaction time

Condition	Top Inlet Flow (SLM)	Bottom Inlet Flow (SLM)	Temperature (°C)
Α	$1 \rightarrow 4$	$4 \rightarrow 1$	500
В	$1 \rightarrow 4$	4	500
С	5	5	500
D	$1 \rightarrow 4$	$4 \rightarrow 1$	600
E	5	5	600
			12

Acknowledgements

- NASA Advanced Exploration Systems (AES) Program
 - Logistics Reduction and Repurposing Project
- Anne J. Caraccio
- Stephen M. Anthony
- Alexandra N. Tsoras
- Mononita Nur
- Robert Devor
- James G. Captain
- TtG collaborators at Johnson Space Center, Glenn Research Center and Ames Research Center

