Growth speed and thermal gradient dependence of primary dendrite trunk diameter in directionally solidified Al-Si alloys

Surendra N. Tewari – Cleveland State University Richard N. Grugel – Marshall Space Flight Center David R. Poirier – The University of Arizona

Dendritic array morphology depends upon DS processing parameters: G₁, R, C₀, *Convection*

- Primary dendrite arm spacing (λ): Extensive literature (SCN/Metals)
- Secondary/tertiary arm spacing: Extensive-SCN/Metals
- Dendrite tip radius: SCN/ limited (Al-Cu, Pb-Au, Pb-Pd)
- 4. Primary dendrite trunk diameter (Φ): Limited (Esaka:Thesis-86, Grugel: 92/95)

Typical analysis of directionally solidified Al-7 wt% Si alloy samples (Terrestrial: G_I=41 Kcm⁻¹, R=85 μm s⁻¹, G_m=51K cm⁻¹)

Primary dendrite trunk diameter

Primary dendrite arm spacing???

Primary dendrite trunk diameter (ϕ)

D_IG_Ik/(m_IRC_o(k-1))]: More branched dendritic morphologies will be located towards the left, and lessbranched/cellular towards the right side of the X-axis.

Esaka Thesis (1986): Trunk diameter increases rapidly near the tip till ~ 10 side-branch formations. He measured this initial trunk diameter (ϕ_0). Eighty DS experiments (four SCN-Acetone alloys grown with various R and G₁)

(Initial trunk diameter (ϕ_0)/tip radius) = 6.59±1.3

Primary dendrite trunk diameter (ϕ) model

1. The trunk diameter (ϕ) increases rapidly near the tip till time, $t_o = 22*r_t/R$), when $\phi = \phi_o = 6.59 r_t$ (paraboloidal envelope near tip).

Primary dendrite trunk diameter (ϕ) model

2. After t_o the trunk diameter increases via remelting of 4-side arms (r) and deposition of melted arm material on "trunk surface "over length h" = ϕ .

Assumptions:

- 1. Kirkwood model (1985) of ripening applies.
- 2. Secondary arm melts back because of its curvature.
- 3. Mass of the melted arm deposits on trunk surface where there is negative curvature.

$$\pi \phi h \frac{d\phi}{2\,dt} = 4 * \pi r^2 \frac{dl}{dt} \qquad (2)$$

$$C_{l} = C_{o} + R G_{m} t/m_{l}$$
⁽³⁾

$$\phi^2 \frac{d\phi}{dt} = 32 \frac{D_l \Gamma}{m_l (1-k)(C_o + \frac{R Gm t}{m_l})} \quad (4)$$

Primary dendrite trunk diameter (*) model

$$\phi^{3} = 96 \frac{D_{l} \Gamma}{RGm \ (1-k)} \ln\{\frac{\left(1 + \frac{R \ Gm \ t}{m_{l} C_{o}}\right)}{\left(1 + \frac{R \ Gm \ t_{o}}{m_{l} C_{o}}\right)}\} + \Phi_{o}^{3}$$
(5)

Mushy zone freezing time ~ $m_{I}(C_{E}-C_{o})/RG_{m}$

Use tip radius (r_t) predicted from Trivedi (1980) or Hunt-Lu (1996) models to get the initial trunk diameter $\phi_o = 6.59 r_t$ in order to predict the processing parameter dependence of "Primary dendrite trunk diameter" from above relationship.

Equation 4 has a reasonable fit with experimentally observed solute content and growth speed dependence (whether we use r_t predictions from Trivedi or Hunt-Lu).

Equation 4 has a reasonably good fit with experimentally observed thermal gradient and growth speed dependence (whether we use r_t values from Trivedi or Hunt-Lu).

Trunk diameters measured in quenched mushy-zone

(Al-Si alloys: $G_1=150 \text{ K cm}^{-1}$, velocity = 43 $\mu \text{m s}^{-1}$) Lines are predictions from Eq: 5 using \mathbf{r}_t (Trivedi)

Coarsening time, s

Trunk diameters in the mushy-zone are greater than those expected from the Trunk diameter model, especially near the array tips.

Trunk diameter measured in quenched mushy-zone (Al- Si alloys: G_I=150 K cm⁻¹, velocity = 156 μm s⁻¹) Lines are predictions from Eq: 5 using **r**_t (Trivedi)

Trunk diameters in the mushy-zone are greater than those expected from the Trunk diameter model.

Trunk diameter measured in quenched mushy-zone

(Al-Si alloys: $G_l=150 \text{ K cm}^{-1}$, velocity = 43 µm s⁻¹) Lines: Vary \mathbf{r}_t to obtain least-squared fit of the data to Eq: 5.

These r_t values are larger than predicted from Trivedi/or Hunt-Lu models.

Trunk diameter measured in quenched mushy-zone

Al-Si alloys: Growth speed 156 μ m s⁻¹ Lines: Vary **r**_t to obtain least-squared fit of the data to Eq: 5.

These r_t values are larger than predicted from Trivedi/or Hunt-Lu models.

The tip radii obtained by forcing a least squared fit of the observed trunk diameter vs. time data to the trunk-diameter coarsening equation are larger than the tip radii calculated from the Hunt-Lu or Trivedi models.

C _o wt%	G _l K/cm	G _m K/cm	R µm/s	r _t _HL μm	r _t _Trivedi μm	r _t from best fit least squared analysis μm
6	150	106.4	43	4.28	5.48	7.22
8	150	125	43	3.41	4.35	5.19
10	150	150	43	3.06	3.9	4.73
6	150	106.4	156	2.21	2.75	4.49
8	150	125	156	1.76	2.21	3.5
10	150	150	156	1.58	1.99	2.29

Does natural convection during terrestrial directional solidification increase dendrite trunk diameter (dendrite tip radius?)

Comparison of microstructures: Al-7% Si directionally solidified on ground and on ISS (MICAST6)

MICAST6 SEED 41 K cm⁻¹, **22** μm s⁻¹

Terrestrial DS: 15 K cm⁻¹

Convection causes dendrite clustering (steepling) at low thermal gradient and growth speeds during terrestrial DS.

 $5 \ \mu m \ s^{-1}$ **50 μm s⁻¹ 50 μm s⁻¹** 15

MICAST6: 20 K cm⁻¹

5 μm s⁻¹

Comparison of microstructures: AI-7% Si directionally solidified on ground and on ISS (MICAST7)

MICAST7 SEED 41 K cm⁻¹, 22 μm s⁻¹

21 µm s⁻¹

MICAST7: 26 K cm $^{-1}$ 11 μm s $^{-1}$

Terrestrial DS: 24 K cm⁻¹ →

23 µm s⁻¹

10 µm s⁻¹ 16

Primary dendrite trunk diameter as compared to

ISS-DS: Good agreement with predictions from the trunk-diameter model.
 Terrestrial DS ("Not steepled"): Good agreement with predictions from model.
 Terrestrial DS ("steepled"): Convection <u>increases</u> trunk diameter.

ISS samples show better agreement with calculations from the models than terrestrial samples (primary dendrite arm spacing and trunk diameter)

	Trivedi					
	ISS-samples	Terrestrial (no steepling)	Terrestrial (steepling)			
Primary dendrite arm spacing/calculated from model	0.945± 0.0833	0.791± 0.0931	0.695± 0.223			
Primary dendrite trunk diameter/calculat ed from model	1.069± 0.0361	1.113±0.0890	1.513±0.560			

Natural convection decreases primary dendrite arm spacing and increases primary dendrite trunk diameter in Al-26.5 % Cu

(M.D. Dupouy, D. Camel and J.J. Favier, Acta. Metall. Mater. Vol. 37, No. 4, pp. 1143-1157, 1989)

Al-26.5 wt% Cu, 30 K cm⁻¹, **4.2** μm s⁻¹

Al-26.5 wt% Cu, 25 K cm⁻¹, **4.2** μm s⁻¹

Terrestrial: Solutally stable, thermally stable mode

Trunk diameter 🗲 120 ± 18 μm

 $\sqrt{A/(N-1)}$

122 ± 18 μm

Al-26.5 wt % Cu, 30 K cm⁻¹,

4.2 μm s⁻¹

Conclusions

- Primary dendrite trunk diameters in a range of Al-Si alloys directionally solidified under varying thermal gradients and growth speeds shows a reasonable fit with a simple analytical model (based on Kirkwood's approach) proposed here.
- Primary dendrite trunk diameters of Al-7 wt% Si alloy directionally solidified on the ISS show a very good fit with the analytical model.
- Natural convection which causes radial in-homogeneity (dendrite clustering) in these alloys appears to increase primary dendrite trunk diameter.
 - decreases primary dendrite arm spacing.

Acknowledgments

- NASA
- ESA
- Menn Glenn Chu (ALCOA)
- Robert E. Erdmann The of Arizona
- Ravi S. Rajamure MS: Cleveland State University

Microgravity Processing : Partially remelt and then DS from

terrestrially grown dendritic mono-crystal in µg.

ESA_MSL Low Gradient Furnace

NASA_MSSR-1 Flight Rack

Terrestrial processing

Graphite crucible (~9 mm ID, ~19 mm OD), 10⁻⁴ torr vacuum

Microgravity Processed Sample MICAST 7

Eutectic Melt Back

Alumina crucible

MICAST6: ESA-Low Gradient Furnace (1-hr heat-up, 5-hr hold, G_1 ~ 20 K cm⁻¹): 3.8 cm at 5 μ m s⁻¹, 11.3 cm at 50 μ m s⁻¹

MICAST6: ESA-Low Gradient Furnace (1-hr heat-up, 5-hr hold, G_1 ~ 20 K cm⁻¹): 3.8 cm at 5 μ m s⁻¹, 11.3 cm at 50 μ m s⁻¹

isotherm velocity vs. position along the Al-Si rod (note: both melting and solidification are shown)

MICAST7: ESA-SQF (1-hr heat-up, 1-hr hold ($G_{l} \sim 26$ K cm⁻¹): 8.4 cm at 20 μ m s⁻¹, 6.5 cm at 11 μ m s⁻¹

MICAST7: ESA-SQF (1-hr heat-up, 1-hr hold ($G_{l} \sim 26 \text{ K cm}^{-1}$): 8.4 cm at 20 μ m s⁻¹, 6.5 cm at 11 μ m s⁻¹

Growth conditions for MICAST6 and MICAST 7 transverse microstructures examined

Sample ID	G _I , K cm ⁻¹	G _m , K cm ⁻¹	R, μm s ⁻¹
MICAST6-1	19	18	52
MICAST6-11	20	18.5	47
MICAST6-9	21	19.3	34
MICAST6-7	22.8	20.4	5
MICAST7-3T	26	24	20
MICAST7-4T	26	24	11
MICAST7-5T	26	24	11