

Integration of mirror design with suspension system using NASA's new mirror modeling numunks = 10 numares - 813 software t = 3.949

William R. Arnold Sr., Sr. Principal Engineer, DAI, Huntsville, AL. Ryan M. Bevan, NASA Intern, NASA MSFC, Huntsville, Al. Dr. Phil Stahl, AMTD PI, NASA MSFC, Huntsville, Al.

INTRODUCTION

TOOLS FOR INTEGRATED DESIGN OF MIRRORS & SUSPENSION SYSTEMS

- WHY WE ARE INTERESTED IN THESE TOOLS
 - LARGER SPACE-BASED UV TELESCOPES BEING PLANNED.
 - LAUNCH CAPABILITIES REMAIN UNCERTAIN
 - COST & SCHEDULE TO BUILD COMPLEX FEM MODELS
 - THIS APPROACH WAS VERY SUCCESSFUL ON KEPLER
- SUBSTRATE MATERIALS & FABRICATION ADVANCES
 - ULE (FRIT OR LOW TEMPERATURE FUSION)
 - ZERODUR (POCKET MILLED & ACID)
 - BOROSILICATE (CAST)
- SUSPENSION SYSTEMS & LIGHTWEIGHT OPTICS
 - OPERATIONAL (KINEMATIC)
 - AUXILLARY LAUNCH (DISENGAGES ON ORBIT)
 - HOW MIRROR DESIGN INTERACTS WITH SUSPENSION(S)

STEPS IN A BASIC MIRROR DESIGN TRADE STUDY

- EVALUATE MATERIALS AND CONSTRUCTION
 - MASS, COST, RISK, SCHEDULE ... LOOK AT SEVERAL CHOICES
- MIRROR ONLY PERFORMANCE (MODES, WEIGHT)
 - GET FEEL FOR GEOMETRIC & THICKNESS INFLUENCES
- MIRROR & OPERATIONAL SUPPORT
 - MODE SHAPES, FREQUENCIES (ON ORBIT BEHAVIOR)
- MIRROR, OPERATIONAL & AUXILLARY SUPPORT
 - LAUNCH CONDITIONS, MIN FREQ, LOCAL STRESSES, ETC
- OPTIMIZE GEOMETRY, THICKNESS, ETC
 - CELL SIZE, EDGE ZONES, LOCAL REINFORCEMENT, CONSTRUCTION

MATERIAL CHOICE DICTATES CONSTRUCTION METHOD

FRIT BONDED ULE

POCKET MILLED ZERODUR

CAST BOROSILICATE

*LOW TEMPERATURE FUSION IS AN ALTERNATIVE ASSEMBLY, REQUIRES SLUMPING

QUICK INTRO TO MODELER

-	P. Amold Mirror Modeler(c) 2.3.5.0				
		Cell Width 0.4	Output Format	SAVE SETTINGS	CREATE GRID
	Num Rings 0	Inner Dia 0.3	ABAQUS	RESTORE ALL	MAKE SUPPORT
	Sgmt Gap 0.075	Inner Lip 0.032 ONASTRAN	MERGE POINTS	CREATE MODEL	
O	Sgmt Dia 4	Outer Dia 2	Supports	MERGE NODES	REFINE PADS
	Sgmt Lip 0.032	Mirror Lip 0.05	By Segment	TRISECT FRONT	WRITE MODEL
	Model Statistics 10668 num Nodes	Tangent Bars Static Grid Options Core	Dynamic BouleMap Optical Reals (1) Re	Graphics RefineMesh als (2) Hexapod Axia	Whittle Tree
	25693 num Elems	r, 1 0.0125 From	t Facesheet	Show Mirror Ma	terial
	12.69881 Area (m ²)	r, 2 0.0125 Beck r, 3 0.010 From	it IsoGrid Web	Show OULE Show Zeroo	tur
	151.4445 AD (kg/m^2)	r, 4 0.0125 Segr	ment Outer Seal 👿 S	Show DE6	C Differen
	1278.041 Faces (kg)	r, 5 0.0125 Inne	r Seal Ring 🛛 🕅	Show BK7	0.24008
	645.313 Core (kg)	r, 6 0.010 Core	web 🛛 🕅 S	Show Silico	n Carbide
	75.07938 Edges (m)	r, 7 0.010 Back	k IsoGrid Web 📃 S	Show	
	0.45941 Milled (m^3)	r, 8 0.0125 From	nt Outer Seg Lip 🔽 S	Shaw	
		r, 9 0.0125 Back	k Outer Seg Lip 🛛 🕅	Show	
	Archive Londed	r, 10 0.010 Isog	rid Fillet Front 🛛 📃 S	Show	
	None	r, 11 0.010 Isog	rid Fillet Back 🛛 🔲 S	Show	
	Status 12 bad aspect ratio along	r, 12 0.00 Mirro	or Outer Seal 📃 S	Show	
	12 odu aspect rabo elems	-			

ONE GRID PATTERN CAN CREATE MANY VARIATIONS

QUICK EXAMPLE OF TRADE STUDY USING THE MODELER

STEP 1 - EVALUATE MATERIAL CHOICES & CONSTRUCTION

TYPICAL INITIAL STEP TRY DIFFERENT CELL SIZES

SAME GRID CAN GENERATE MULTIPLE CONSTRUCTION STYLES

NO ISOGRID

FRONT ONLY ISOGRID

FRONT & REAR ISOGRID

MULTI-SEGMENT LTF CONSTRUCTION CAN BE MODELED

STEP 2 – EVALUATE MIRROR ONLY PARAMETERS

STEP 3 - EVALUATE MIRROR & OPERATIONAL SUSPENSION

EVALUATE CELL SIZE & SUSPENSION GEOMETRY

STEP 4 – ADD AUXILLARY SUPPORT SYSTEM

TRY MULTIPLE VERSIONS OF AUXILLARY SUPPORT SYSTEM

ADJUSTING GROUP DIAMETERS, NUMBER OF DIAMETERS AND STARTING ANGLES

STEP 5 – OPTIMIZE GEOMETRY, THICKNESS & REINFORCEMENTS

ADJUSTING SUSPENSION PARAMETERS

ADJUSTING PARAMETERS TO IMPROVE STIFFNESS

SUMMARY

- FEATURES AND CAPABILITIES OF MODELER TO MAKE THE PROCESS ECONOMICAL
 - REDUCED MODEL GENERATION TIME
 - ANY MATERIAL AND CONSTRUCTION METHOD SUPPORTED
 - CAN PRESET LOADS AND RESULT PROCESSING
 - ARCHIVE AND RESTORE ALL SETTINGS IN MODELER
- VALUE OF INTEGRATED DESIGN METHOD
 - CAN EVALUATE FEASIBILITY OF CONSTRUCTION METHOD
 - OPTIMIZE OPERATIONAL PERFORMANCE
 - LAUNCH SURVIVAL
- TIME PERMITTING, QUESTIONS & DEMONSTRATION