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Abstract

State-based conflict detection and resolution (CD&R) algorithms detect conflicts
and resolve them on the basis on current state information without the use of ad-
ditional intent information from aircraft flight plans. Therefore, the prediction of
the trajectory of aircraft is based solely upon the position and velocity vectors of
the traffic aircraft. Most CD&R algorithms project the traffic state using only the
current state vectors. However, the past state vectors can be used to make a better
prediction of the future trajectory of the traffic aircraft. This paper explores the
idea of using past state vectors to detect traffic turns and resolve conflicts caused
by these turns using a non-linear projection of the traffic state. A new algorithm
based on this idea is presented and validated using a fast-time simulator developed
for this study.
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1 Introduction

Conflict detection and resolution (CD&R) algorithms for air traffic separation as-
surance can be divided into intent-based and state-based categories. Intent-based
algorithms operate on information about an aircraft’s future intended trajectory, i.e.,
upcoming turns and altitude changes within a certain time horizon. CD&R systems
that rely on intent information typically perform strategic functions, recommending
longer-term route changes to avoid traffic as well as maintaining an optimal flight
plan to the destination. However, due to the nature of the heuristic optimization
approach taken by many of these systems, it can be extremely difficult to establish
that a strategic, intent-based system will always produce a solution to any conflict.

In response, state-based systems are often proposed as a backup to strategic
solvers. This approach is motivated by the philosophy that a simplified, highly-
reliable, formally-verified CD&R layer operating only on the state vector information
can provide separation assurance during short-term encounters in which an intent-
based system cannot resolve a particular conflict.

CD&R algorithms based upon the current state perform extremely well where
the velocity vectors of aircraft are constant or nearly so. However, in the presence
of a turning aircraft or an aircraft that is leveling-out after an altitude change, the
performance of these algorithms can be very poor. This presents a conundrum: if a
state-based system is to be the backup for an intent-based system, it must perform
flawlessly in the presence of maneuvering traffic, even though in the absence of
intent information it is impossible to know the intruder’s future trajectory with any
certainty.

This paper is motivated by the results of a human-in-the-loop simulation ex-
periment conducted to address this issue and presents a new state-based conflict
resolution algorithm designed to provide much improved performance in response
to conflict encounters with maneuvering traffic.

2 Background

Throughout this paper, ownship will refer to the focus aircraft running a given
instance of the CD&R algorithm, and traffic or intruder will refer to an aircraft of
interest in the vicinity of the ownship.

To investigate the issue of state-based algorithm performance in the presence of
maneuvering traffic, the Separation Allocations in Shared Airspace (SALSA) exper-
iment was conducted at the NASA Langley Air Traffic Operations Laboratory [6].
In this experiment, airline pilot crews were presented with a battery of conflict
encounters to evaluate the performance of a research prototype airborne separa-
tion assurance system. This prototype, which features both strategic, intent-based
functions as well as a state-based safety layer, is incorporated into a desktop flight
simulator flown by pilots in the study.

In particular, the simulation focused on events known as pop-up conflicts. In
a pop-up conflict, an aircraft that is not broadcasting intent information begins a
turn or altitude change that is unknown to the ownship beforehand. The trajectory
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change creates a conflict with little warning; it “pops-up” on the pilot’s display with
a varying amount of time until loss of separation (LoS). The experiment focused on
the pilot’s ability to detect and resolve these conflicts while maintaining separation
using the provided CD&R tools.

An example pop-up is illustrated in Figure 1. In this example, the ownship and

Figure 1: Pop-up Conflict Created by Turning Intruder

intruder are initially 12 nm apart, each traveling at a ground speed of 550 kn, and
are not in conflict. The intruder begins a right turn (with a bank angle of 25◦ in
accordance with the model described in section 6.1) without warning the ownship.
Nine seconds later, the aircraft have closed to 10 nm and the ownship first detects
the conflict. At this point the ownship initiates a horizontal resolution maneuver
(with same bank angle) but there is insufficient time to complete it before LoS
occurs. This LoS is illustrated in Figure 2.

Note that in this case, the ownship initiated the resolution maneuver as soon as
it detected the conflict. However, in a practical scenario, some amount of pilot delay
can be expected. Figure 3 shows how quickly the time to LoS decreases if the pilot
hesitates in the execution of the turn resolution maneuver. In a dynamic situation
like this, the actual time to loss of separation can be much shorter than an initial
state-based estimate.

To minimize the impact of a turning intruder and provide additional reaction
time to the ownship, the concept of an avoidance buffer can be used. In this ap-
proach, the ownship algorithm uses a larger separation standard for the traffic air-
craft; e.g. detecting and resolving conflicts to a lateral distance of 8 nm rather than
the standard separation standard of 5 nm. Entrance into this zone is not a separa-
tion violation, although the ownship’s pilot will attempt to stay out of the zone if
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Figure 2: Failed Conflict Resolution and Loss of Separation Resulting from Conflict
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Figure 3: Time to Loss of Separation in the Presence of a Turn

possible.
Much of our previous work on state-based CD&R algorithms has been concerned

with the problem of implicit coordination using a concept known as the criteria
approach [2, 4, 5]. A mathematical proof has established that any algorithm that
satisfies the implicit cordination criteria will inherit two key safety properties: that
separation will be maintained when i) only one aircraft maneuvers, and ii) when
both aircraft maneuver at the same time. An important consequence is that there
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is no requirement that both aircraft execute the same resolution algorithm, just
that both algorithms satisfy the same criteria. Therefore, the criteria approach
allows different avionics vendors to implement different algorithms, each optimized
according to their own proprietary concerns. This approach, however, can break
down in the presence of non-compliant intruders.

The state-based algorithm used in the SALSA experiment was the
resolutionKinematic method of Chorus [1]. This algorithm was designed to sup-
port the Autonomous Flight Rules (AFR) concept of operation [7] using implicit
coordination. However, in this experiment, the traffic aircraft were flying under
standard Instrument Flight Rules (IFR), and not conforming to the mathematical
implicit coordination criteria. The fact that an IFR aircraft could turn in any di-
rection and not be restricted to following the criteria violated a central assumption
of the Chorus algorithm. Losses of separation were observed that could be partially
attributed to this contradiction.

Kuchar and Yang [3] provided a well-cited taxonomy for classifying a vast assort-
ment of state-based and other CD&R algorithms in literature. However, experience
in the SALSA experiment highlighted several critical characteristics of state-based
CD&R systems not captured by this taxonomy, including:

• Continuity of the solutions over time: through experience with human pilot
test subjects, we have learned that it is highly desirable that the resolution
maneuvers provided by any CD&R system evolve smoothly during turns and
altitude changes, rather than jumping discontinuously between alternate so-
lutions.

• Transition to/from strategic solvers: state-based algorithms must work in con-
cert with other CD&R layers, especially those providing strategic, intent-based
functions. Providing smooth transitions between these algorithm layers when
each is producing potentially incompatible solutions based on different infor-
mation and assumptions is a nontrivial problem.

• Initiation of the algorithm as a consequence of a changing velocity vector:
Development of state-based CD&R algorithms has traditionally focused on
aircraft whose state vectors are not substantially changing over the detection
and resolution cycle. However, in practical operations we have found the need
to quickly respond to conflicts arising with an intruder aircraft that is in the
middle of a turn.

In this paper we develop a new algorithm, named resolutionTurnProj, that
is designed to better respond to an intruder aircraft turning into the ownship in
encounters with a short time remaining until loss of separation. We have also devel-
oped a fast-time simulator to test this algorithm over its entire input range with a
fairly small grid size that produced 100,000s of test cases. In this fast time simulator,
we have not sought to imitate the exact trajectory generated by a particular air-
craft’s Flight Management System (FMS). Instead we have used a standard model
that produces circular turns. The advantage of this approach is that we can stress
test the algorithm and the results are not limited to a particular aircraft type.
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3 Notation

This paper uses pseudocode to document the resolutionTurnProj algorithm rather
than its Java or C++ implementation. This pseudocode is a hybrid language incor-
porating features of both functional and object-oriented languages. The purpose of
the pseudocode is to capture the major logic of the algorithms without the distract-
ing details of a normal programming language.

The implementation employs standard mathematical vectors: Vect2 for a 2-
dimensional vector and Vect3 for a 3-dimensional vector. In addition, basic vector
arithmetic operations are assumed. For example: for Vect3 u, v, w and double a,
the vector assignment v = u+w*a is defined by:

v.x = u.x + w.x * a
v.y = u.y + w.y * a
v.z = u.z + w.z * a

The pseudocode assumes the existence of an n-ary tuple data type, denoted by
(x1,..,xn), which allow piecewise assignment,

(x1,...,xn) = (y1,...,yn)

thus assigning x1 the value y1, etc. In the Java and C++ source code, these opera-
tions are often implemented as separate instance variables using appropriate accessor
functions, and sometimes may be set as side effects as opposed to being returned
explicitly in a function.

The definitions of the operators (+, -, *, /, ==, !=, etc.) are the definitions from
Java or C++ without relying on exotic behavior such as overflow. We use AND and
OR for the boolean connectives rather than && and || used in Java and C++. The
operator ~= is defined to mean “almost equals,” which means that the values are
compared and if they are within a fixed floating point precision of each other, then
they are considered to be equal.

The for loop statement syntax is taken from Java and C++:

for (initialization; test; increment) { ... }

Our notation for function definitions departs from Java/C++ syntax in that the
return type of the function follows the parameters. For example, a function that
computes the sine function would be declared as follows:

sin(x): double { ... }

Note that the types of the function parameters are not listed. We also allow an
n-tuple return type:

func(x,y,z): (a,b) { ... }

Here the function func has three parameters and returns two values with types a
and b.
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4 Common Variables and Functions

The following variables are commonly used in the Chorus algorithms:

so initial ownship position (so)
vo initial ownship velocity (vo)
si initial intruder position (si)
vi initial intruder velocity (vi)
s initial relative position (s)
v initial relative velocity (v)

We use a prime notation to represent updated values of variables, e.g. s’ is a newly
calculated value of s.

The algorithms use a vector library which provides the ability to algebraically
manipulate vectors. The following are common functions:

v.x x component of vector v
v.y y component of vector v
v.z z component of vector v
vo.trk() returns track angle component of velocity vo

vo.gs() returns ground speed component (2-D vector magni-
tude) of velocity vo

vo.vs() returns vertical speed component of velocity vo

vo.mkTrk(trk) creates a 3-dimensional velocity vector from vo, where
the track component is changed to trk

vo.mkGs(gs) creates a 3-dimensional velocity vector from vo, where
the ground speed component is changed to gs

vo.mkVs(vs) creates a 3-dimensional velocity vector from vo, where
the vertical speed component is changed to vs

mkTrkGsVs(t,g,v) creates a 3-dimensional velocity vector from track,
ground speed and vertical speed components

v.vect2() returns a 2-dimensional vector from the first two com-
ponents of a three-dimensional vector

Additionally, the following function is used to define loss of separation between two
aircraft:

LoS(s,D,H) returns TRUE if the relative position s is in loss of sep-
aration with respect to a protection zone with hori-
zontal separation D and vertical separation H.
This is defined as:
s.x*s.x + s.y*s.y < D*D AND |s.z| < H

The following are parameters that are assumed to be globally accessible and
therefore these variables are not explicitly passed in the pseudocode:

D minimum horizontal separation
H minimum vertical separation
Tres lookahead time for resolution
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5 The Fast Time Dir2Sim Simulator

To study this problem and evaluate the performance of the resolutionTurnProj
software, we developed a fast-time simulator that generates hundreds of thousands
of pairwise encounters, each featuring an intruder who executes an unbroadcasted
turn into the ownship. The simulator places the ownship at the center of a Euclidean
frame and positions the intruder on a uniform grid of points relative to the ownship.

5.1 Simulation Approach and Parameters

In the Dir2Sim simulator, the buffer approach is implemented by constraining the
initial location of each intruder to be outside of circle of radius bufferSize around
the ownship as illustrated in Figure 4. The dimensions of the grid were -90 nm to 90

Figure 4: Initial conditions for a given ownship-intruder pair.

nm for the x dimension and -30 nm to 90 nm for the y-coordinate. The increment
in both dimensions was 5 nm. Cases where the aircraft were in conflict at time 0
were discarded. Also, cases where the turn was completed without a conflict ever
occuring were also discarded.

The initial velocity vector of the ownship and intruder are

vo = mkTrkGsVs(ownInitTrack,gso,0);
vi = mkTrkGsVs(trki0, gsi, 0);

where the variables ownInitTrack, gso , trki0 and gsi are varied over a range of
values described in Table 1. The time step for the simulation was 1 second.

In each simulation run, the intruder begins an immediate turn with a constant
bank angle (in all cases in this paper, 25◦) and constant ground speed. The bank an-
gle is deliberately large to stress the algorithm. The turn continues until a specified
track angle, up to 45◦ left or right of the initial track, is reached. The ownship takes
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variable units starting value ending value step size
ownInitTrack deg 0 0 0
gso kn 350 550 50
trki0 deg 0 360 5
gsi kn 350 550 50

Table 1: Dir2Sim Velocity Parameters

no action until it first detects the conflict, at which point it exectues a resolution ma-
neuver provided by the algorithm. Results using solutions provided by the original
resolutionKinematic algorithm and the newly-developed resolutionTurnProj
algorithm are presented in the subsequent sections.

5.2 Baseline Results: Using the Chorus resolutionKinematic Track
Algorithm

To provide a baseline for comparison, Dir2Sim was executed using the resolutions
from the original Chorus resolutionKinematic solver. These results are shown in
Table 2.

bufferSize [nm] # Conflict Cases # LoS cases # no Solution
6 61065 11369 (18.62%) 518 (0.85%)
7 57545 9923 (17.24%) 511 (0.89%)
8 53990 8467 (15.68%) 503 (0.93%)
9 50880 7205 (14.16%) 494 (0.97%)
10 48103 6143 (12.77%) 486 (1.01%)
11 44873 4892 (10.90%) 476 (1.06%)
12 41979 3809 (9.07%) 470 (1.12%)
13 39404 3014 (7.65%) 462 (1.17%)
14 37040 2307 (6.23%) 455 (1.23%)

Table 2: The Dir2Sim Results Using resolutionKinematic

As the buffer size increases, the number of conflict cases decreases. This is a
consequence of the fact that the Dir2Sim intruder position grid is of constant size,
and that as the buffer gets larger, there are fewer valid grid points for intruder
aircraft. However, the specific number of conflicts, LoS cases, etc., is less important
than the percentage trends (shown in parentheses).

As the buffer size increases, the percentage of conflict cases which result in LoS
decreases. This shows the beneficial effect of the buffer: since we restrict intruders
to be initially outside the buffer, then larger buffers provide extra reaction time and
“breathing room” for CD&R. Doubling the buffer from 6 nm to 12 nm cuts the LoS
percentage in half.
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A converse effect can be seen in the percentage of conflicts in which the algo-
rithm produces no solution. As the buffer gets larger and consumes more airspace, it
becomes slightly more difficult for the algorithm to return any solution at all. How-
ever, this effect is overcome by the drastic reduction in LoS percentage, resulting in
a net benefit for larger buffers in this context.

The percentage of LoS cases is very high in these results; even with a signifi-
cant buffer (e.g. 12 nm), the LoS rate is unacceptably high (9%). This performance
is most certainly due to the fact the Chorus resolutionKinematic solver is con-
strained to produce resolutions in only one direction, under the assumption that the
intruder is also following the same implicit coordination criteria. In these simula-
tions, this is not true.

These simulations, as well as practical experience with resolutionKinematic
in SALSA, motivate the development of an improved resolution algorithm.

6 An Intrusive-Turn Resilient Algorithm

In this section we present a new algorithm that uses recent state vector history from
the intruder to infer its rate of turn.

The algorithm predicts the future trajectory of the intruder assuming it continues
this turn. Without accurate intent information, the algorithm does not know when
the intruder will complete its turn. However, it can make an heuristic assumption
that a given intruder during cruise flight is not likely to make a turn greater than
π/4 rad or 45◦.

The algorithm iteratively explores the result of the ownship turning left or right
with a specified maximum bank angle. It continues the iterative search in both
directions until it finds a solution in which the ownship is conflict free for multiple
successive time steps into the future. In the case when both directions result in
conflict free velocities, the algorithm uses a simple heuristic to pick between the
two.

The algorithm is provided the following input values:

Vect3 so — initial position of the ownship
Vect3 vo — initial velocity of the ownship
Vect3 si — initial position of the intruder
Vect3 vi — initial velocity of the intruder

It is also assumed that a recent history of past velocity vectors of the intruder
have been stored to enable a calculation of the turn rate of the intruder, denoted
trackRate. The ownship aircraft is assumed to be able to turn at a turn rate of
omega when executing the resolution maneuver.

6.1 Kinematic Subfunctions

The algorithm finds solutions based on a simple kinematic turn model. Before we
present the algorithm, we will present some of the kinematic subfunctions used in
the algorithm.
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We begin we a simple linear projection in time:

linear(s, v, t): (Vect3, Vect3) = (s + t*v, v)

This function returns a pair which contains the new position and the velocity.
Next, we look at a kinematic turn with radius R.

R =
v2

g tanφ

where R is the turn radius of an aircraft turning with bank angle φ, and v is the
ground speed of the aircraft. Using the relationship v = R|ω|, where ω is the turn
rate of angular velocity of the aircraft, we obtain

ω =
g tanφ

v

We assume that the aircraft turns with this constant angular velocity ω (i.e. dθ
dt = ω).

This will result in time based velocity vector of v(t) = (vx(t), vy(t)), where

vx(t) = v sin(θ + ωt)
vy(t) = v cos(θ + ωt)

(1)

Integrating, we obtain position

sx(t) = sx(0) − εR[cos θ − cos(θ + ωt)]
sy(t) = sy(0) + εR[sin θ − sin(θ + ωt)]

(2)

This is directly coded into the function turnOmega which takes the following pa-
rameters:

Vect3 s0 starting position
Vect3 v0 initial velocity
t time of turn
omega rate of change of track, sign indicates direction

The turnOmega function is defined:

turnOmega(s0, v0, t, omega): (Vect3, Vect3) {
if (omega ~= 0) return linear(s0,v0,t)
v = v0.gs();
theta = v0.trk();
xT = s0.x + (v/omega)*(cos(theta) - cos(omega*t+theta));
yT = s0.y - (v/omega)*(sin(theta) - sin(omega*t+theta));
zT = s0.z + v0.z*t;
s’ = (xT,yT,zT);
v’ = v0.mkTrk(v0.track()+omega*t)
return (s’,v’);

}
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The function turnTime computes the time it takes to complete a turn given a ground
speed, the magnitude of the track change and the maximum bank angle:

turnTime(groundSpeed, deltaTrack, bankAngle): double {
omega = turnRate(groundSpeed, bankAngle);
if (omega == 0.0) return MAX_VALUE;
return |deltaTrack/omega|;

}

turnRate(speed, bank): double {
if (bank ~= 0.0) return 0.0;
return g*tan(bank)/speed;

}

Another useful turn function which turns for a specified time turnTime and then
goes straight:

turnUntilTime(so, vo, t, turnTime, omega): (Vect3, Vect3) {
if (t <= turnTime) {

return turnOmega(so, vo, t, omega);
} else {

(nso,nvo) = turnOmega(so, vo, turnTime, omega);
return linear(nso, nvo, t-turnTime);

}
}

6.2 Track Angle Search Component

The algorithm searches both directions iteratively using the search component. This
component is provided the following parameters

so Initial ownship position
vo Initial ownship velocity
si Initial intruder position
vi Initial intruder velocity
remainingTime The estimated time remaining before the intruder’s turn will

be complete
trkDir search direction (-1 = left, +1 = right)
trackRate The estimated turn rate of the intruder
numIterConfFree algorithm parameter that governs how many conflict free it-

erations are needed

It returns a triple of values:
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nDetKin -1 if no conflict was found, 1 if a conflict is found, 2 if there
was a loss of separation with a secondary aircraft, 3 if there
is a loss of separation with the most urgent aircraft

trkDelta the change in track angle that first elicits a conflict
nvTrk the final conflict-free track when nDetkin = -1. Otherwise,

it is the last track analyzed.

The following Java-like pseudo code describes the search component of the al-
gorithm:

confTrkSearch(so, vo, si, vi, remainingTime,
trkDir, trackRate, numIterConfFree): (int, double, double) {

omega = turnRate(vo.gs(),trkDir*maxBankAngle);
for (trkDelta = 0.0; trkDelta < PI; trkDelta = trkDelta + step) {

tm = trkDir*trkDelta/omega;
nvTrk = vo.track()+trkDir*trkDelta;
(soAtTm, vo’) = turnOmega(so, vo, tm, omega);
if (|trackRate| > trackRateThreshold) {

(siAtTm, vi’) = turnUntilTime(si, vi , tm, remainingTime, trackRate);
else

(siAtTm, vi’) = linear(si0,vi0,tm);
Vect3 s = soAtTm - siAtTm;
if (LoS(s,Dr,Hr)) {

nDetKin = 3; // Los with primary
} else if (CDSS.conflict(s, vo’, vi’, Dr, Hr, Tres)) {

nDetKin = 1;
confFreeIterations = 0;

} else {
nDetKin = -1; // conflict free

}
if (nDetKin >= 2) break;
if (nDetKin < 0) {

confFreeIterations++;
if (confFreeIterations >= numIterConfFree) break;

}
}

return (nDetKin,trkDelta,nvTrk);

If the traffic aircraft’s rate of turn (i.e., trackRate) is greater than a specified
threshold (i.e., trackRateThreshold), then the traffic aircraft’s future trajectory
is calculated using a kinematic turn function. If the track rate does not exceed
the threshold a linear trajectory is used. Note that the algorithm projects the in-
truder turn for a maximum of π/4 rad (45◦). The search continues until there are
confFreeIteration successive, conflict-free iterations. This was necessary because
it is possible for the aircraft state to be conflict free for a while and then subsequently
revert back to conflict status in the presence of a turning aircraft. Furthermore, if
the ownship accepts and executes the resolution before the intruders turn is com-
plete, the resolution can be inadequate. This is illustrated in Figure 5. In this figure,
the intruder’s turn has not yet completed so the computed resolution of 266.5◦ is
not adequate. Even if the execution of the resolution maneuver begins immediately,
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Figure 5: Resolution Too Early

the conflict reappears a few seconds later as shown in Figure 6, and a loss of sep-

Figure 6: Resolution Too Early: Subsequent Conflict State

aration occurs soon thereafter as shown in Figure 7. The parameters Dr and Hr

Figure 7: Resolution Too Early: Subsequent LoS State

are the protection zone parameters (e.g. D and H) with a small buffer added for
resolution. Typical valyes are: Dr = 5.2 nm and Hr = 1100 ft. The CD3D.LoS and
CDSS.conflict algorithms are presented in the appendix A.
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The main body of the algorithm first makes an estimate of the turn time of
the intruder based on a computed trackRate. The trackRate is computed using a
running average of the three most recent velocity vectors. If this track rate is greater
than a specified threshold trackRateThreshold, then the intruder is assumed to be
turning.

remainingTime = 0.0;
if (|trackRate| > trackRateThreshold) {

maxTurnTime = | (PI/4)/trackRate |;
remainingTime = maxTurnTime;
if (useRemainingTime) {

remainingTime = estimateRemainingTime();
}

} else {
numIterConfFree = 3;

}

and then calls the search function twice:

int trkDir = -1;
(nDetKinLeft, ... ) = confTrkSearch(cdc, so, vo, si, vi,

remainingTime, trkDir, trackRate, numIterConfFree);
trkDir = 1;
(nDetKinRight, ... ) = confTrkSearch(cdc, so, vo, si, vi,

remainingTime, trkDir, trackRate, numIterConfFree);
nvTrk = 0;

The boolean variable useRemainingTime is a configuration parameter that controls
whether the algorithm should try to more accurately predict the end of the intruder’s
turn. This option is explored in section 6.4.

6.3 Choosing Between the Two Potential Solutions

After searching in both directions, the algorithm must choose the appropriate direc-
tion (left or right) to return for the resolution. When only one direction is conflict
free, the decision is simple. However, when the search finds that both directions are
conflict free, the choice becomes more subtle. While it may at first seem reasonable
to simply flip a coin and pick either direction with equal probability, experience
shows that the two directions can produce very different results. Several different
approaches were pursued to choose the solution when both search directions appear
to be conflict-free. We present two of the methods that have been studied: (1) use
the turn that is coordinated with the ownship’s criteria, or (2) use the turn that is
consistent with the intruder’s observed behavior, even if it is contrary to the implicit
criteria.

Using the ownship’s criteria the following results were obtained:
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bufferSize Conflict Cases LoS cases no Solution
6.0 61065 963 (1.58%) 101 (0.17%)
7.0 57545 681 (1.18%) 58 (0.10%)
8.0 53990 473 (0.88%) 31 (0.06%)
9.0 50880 351 (0.69%) 15 (0.03%)
10.0 48103 255 (0.53%) 5 (0.01%)
11.0 44873 207 (0.46%) 1 (0.00%)
12.0 41979 167 (0.40%) 0 (0.00%)
13.0 39404 141 (0.36%) 0 (0.00%)
14.0 37040 115 (0.31%) 0 (0.00%)

Results using the new algorithm are significantly improved over the previous
algorithm’s results presented in Table 2. For example, the LoS percentage for a 12
nm buffer was reduced from 9% to 0.4%. The cause of this significant improvement
is mostly due to the fact that the new algorithm searches both directions rather
than just the one given by the criteria.

Using the intruder’s turn behavior to make the left-right decision, we obtain:

bufferSize Conflict Cases LoS cases no Solution
6.0 61065 2093 (3.43%) 101 (0.17%)
7.0 57545 1775 (3.08%) 58 (0.10%)
8.0 53990 1511 (2.80%) 31 (0.06%)
9.0 50880 1305 (2.56%) 15 (0.03%)
10.0 48103 1099 (2.28%) 5 (0.01%)
11.0 44873 896 (2.00%) 1 (0.00%)
12.0 41979 712 (1.70%) 0 (0.00%)
13.0 39404 566 (1.44%) 0 (0.00%)
14.0 37040 419 (1.13%) 0 (0.00%)

Surprisingly, using the ownship’s mathematical criteria obtains slightly better results
than using the intruder criteria. It should be noted that for most scenarios, only one
search direction has a conflict-free solution, so this selection is infrequently made.

6.4 Improvement Using the Time When the Intruder Turn Began

The success of the bi-directional search algorithm depends upon a reasonable esti-
mate of the turn characteristics of the intruder. Unfortunately, the duration of the
intruder’s turn is not known. However, it is reasonable to assume that the turn will
not be greater than some maximum value, typically 45◦. The time required to reach
this maximum value, maxTurnTime, is easily computed. At the time of the conflict,
the magnitude of the intruder’s turn that has already taken place can be subtracted
from the maximum turn to obtain a better prediction of the intruder’s trajectory.
This is accomplished by the subfunction estimateRemainingTime:

estimateRemainingTime(maxTurnTime): double {
tmTurnStarted = lastStraightTime();
turnTimeSoFar = (timeLast() - tmTurnStarted);
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remainingTime = maxTurnTime - turnTimeSoFar;
if (remainingTime < 0) remainingTime = 0;
return remainingTime;

}

The function lastStraightTime() returns that last time when intruder aircraft
was not turning and the function timeLast() returns the intruder aircraft’s latest
timestamp (i.e. the current time). Using this strategy, the results were improved
for all values of the initial separation buffer, bufferSize (see figure 4):

bufferSize Conflict Cases LoS cases no Solution
6.0 61065 233 (0.38%) 48 (0.08%)
7.0 57545 58 (0.10%) 13 (0.02%)
8.0 53990 20 (0.04%) 6 (0.01%)
9.0 50880 9 (0.02%) 2 (0.00%)
10.0 48103 1 (0.00%) 1 (0.00%)
11.0 44873 0 (0.00%) 0 (0.00%)
12.0 41979 0 (0.00%) 0 (0.00%)
13.0 39404 0 (0.00%) 0 (0.00%)
14.0 37040 0 (0.00%) 0 (0.00%)

Note that for a bufferSize of 8 nm, the LoS cases were reduced from 0.88% to 0.04%
(using ownship criteria).

7 Exploring The Use of turnDetector

State-based conflict detection typically has relied upon linear projection of the in-
truder trajectories. It is also possible to use turn projection for conflict detection,
as well as for resolution.

7.1 The turnDetector algorithm

The turnDetector algorithm retrieves position and velocity vectors from a list of
intruder information named aircraftList. It is provided a parameter deltaTime
that specifies how far into the future the conflict detection should be made in the
presence of the projected turn. This should be a relatively small time, e.g. 6 seconds,
to prevent an unacceptably-high false alarm rate. The parameter T is the lookahead
time for the conflict probe, typically 300 seconds. The turnDetector algorithm is
defined as follows:

turnDetector(deltaTime, T, trackRateThreshold): int {
int acIxEarliestIn = -1;
double earliestTmIn = MAX_VALUE;
for (int j = 0; j < aircraftList.size(); j++) {

(so’, vo’) = linear(so,vo,deltaTime);
(si, vi) = predLinear(aircraftList[j])
if (CD3D.LoS(so-si), D, H)) tmIn = 0;
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double trackRate = avgTrackRate(NumPtsTrackrate);
if (|trackRate| > trackRateThreshold ) {

(si’, vi’) = turnOmega(si, vi, deltaTime, trackRate);
} else {

(si’, vi’) = linear(si,vi,deltaTime);
}
ns = so’ - si’;
conf = CDSS.conflict(ns, vo’, vi’, D, H, T-deltaTime);
if (conf) tmIn = CDSS.timeIntoLoS(ns, vo’, vi’, D, H);
else tmIn = -1;
if (tmIn >= 0 AND tmIn < earliestTmIn) {

earliestTmIn = tmIn;
acIxEarliestIn = j;

}
}
return acIxEarliestIn;

}

The function turnDetector returns the index of the aircraft with the smallest time
to loss of separation. The function predLinear(ac) estimates the position and ve-
locity vectors for the intruder ac that corresponds to the latest data of the ownship,
using a linear extrapolation from the aircraft’s last position and velocity. The func-
tion avgTrackRate computes an average rate of change of a intruder’s track angle
using the most recent data values. If this rate exceeds trackRateThreshold, then
the traffic aircraft is determined to be turning and its trajectory is continued in
accordance with this track rate. Otherwise, the traffic aircraft’s state is projected
using a linear function. The CDSS.conflict function performs the conflict detec-
tion and it is defined in Appendix A. If there is a conflict with any aircraft the
nDetector function returns TRUE, otherwise it returns FALSE. The time parameter,
T, indicates how far in the future conflicts should be checked.

7.2 turnDetector Results

The turnDetector algorithm can be used to get an early indication of a conflict. In
the Dir2Sim simulator this detection function was used to obtain an earlier detection
of a turn. Surprisingly, this was not found to improve the overall performance of
the turn projection resolution algorithm.

Using a value of 6 for the deltaTime parameter of turnDetector, the following
results were obtained:
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bufferSize Conflict Cases LoS cases no Solution
6.0 66019 155 (0.23%) 76 (0.12%)
7.0 62558 72 (0.12%) 23 (0.04%)
8.0 59013 43 (0.07%) 11 (0.02%)
9.0 55907 29 (0.05%) 7 (0.01%)
10.0 53118 18 (0.03%) 3 (0.01%)
11.0 49837 7 (0.01%) 0 (0.00%)
12.0 46851 4 (0.01%) 0 (0.00%)
13.0 44208 2 (0.00%) 0 (0.00%)
14.0 41757 1 (0.00%) 0 (0.00%)

For a bufferSize value of 8 nm, the LoS percentage increased from 0.04% to 0.07%.
This suggests that this type of capability should be used primarily as a yellow alert,
to get pilots prepared for action. Future work will explore modifications to this
approach, to see if the LoS rate can be improved.

8 Conclusions

In this paper a new algorithm for resolving conflicts in the presence of a turning air-
craft is presented and experimentally analyzed. This work was motivated by recent
human-in-the-loop experiments where short-term pop-up conflicts found deficiencies
in the existing state-based algorithms. The new algorithm detects turning aircraft
and performs a non-linear projection of their future state. The future trajectory
is generated as a kinematic turn with the same turn rate that has been recently
observed. The new algorithm was designed with several internal parameters that
were varied in a fast time simulator to find appropriate values for them. The results
from these simulations are presented in detail.
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Appendix A

The CDSS Conflict Probe

The CDSS.conflict function takes the following parameters

s the relative position of the aircraft
vo the ownship’s velocity
vi the intruder’s velocity
D the minimum horizontal distance
H the minimum vertical distance
B the the lower bound of the lookahead time (B ¿= 0)
T the upper bound of the lookahead time (T ¡ 0 means infinite lookahead time)

It is defined as follows:

conflict(s, vo, vi, D, H, B, T): boolean {
if (T >= 0 AND B >= T) return false;
Vect2 vo2 = vo.vect2();
Vect2 vi2 = vi.vect2();
if (vo.z ~= vi.z) AND |s.z| < H) {

return CD2D.cd2d(s.vect2(),vo2,vi2,D,B,T);
}
vz = vo.z - vi.z;
m1 = max(-H - sign(vz)*s.z, B*|vz|);
m2 = T < 0 ? H-sign(vz)*s.z :

min(H-sign(vz)*s.z,T*|vz|);
if (!(vo.z ~= vi.z) AND m1 < m2) {
return CD2D.cd2d(|vz|s.vect2(), vo2, vi2, D*|vz|,m1,m2);

} else {
return false;

}
}

where cd2d is defined as follows

cd2d(s, vo, vi, D, B, T): boolean {
if (T < 0) {

v = vo - vi;
return almost_horizontal_los(s,D) OR Delta(s,v,D) > 0 AND s*v < 0;

}
if (B >= T) return false;
v = vo - vi;
return almost_horizontal_los(s+Bv,D) OR omega_vv(s,v,D,B,T) < 0;

and almost_horizontal_los(s,D) is defined as
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almost_horizontal_los(s,D): boolean {
return !(s*s ~= D*D) AND s*s < D*D;

}

and omega_vv(s,v,D,B,T) is defined as follows:

omega_vv(s,v,D,B,T): double {
if (s*s ~= D*D) AND B ~= 0) {

return s*v;
} else {

tau = min(max(B*v*v,-(s*v)),T*v*v);
}
return v*v*s*s + (2*tau)*(s*v) + tau*tau - D*D*v*v;

}

and Delta(s,v,D) and det(s,v) are defined as

Delta(s,v,D) = D*D*V*V - det(s,v)*det(s,v);

det(s,v) = s.x*v.y - s.y*v.x

Note. In the above formulas, the notation = is used for approximately equal. That
is equal within a specified floating point precision.
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