

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 1

Model-Based GN&C Simulation and Flight Software
Development for Orion Missions beyond LEO

Ryan Odegard
Draper Laboratory

17629 El Camino Real
Houston, TX 77578

rodegard@draper.com

Zoran Milenkovic
Draper Laboratory

1555 Wilson Blvd, Suite 501
Arlington, VA 22209

zmilenkovic@draper.com

Joel Henry
NASA Johnson Space Center

2101 NASA Parkway
Houston, TX 77058

joel.r.henry@nasa.gov

Michael Buttacoli
NASA Johnson Space Center

2101 NASA Parkway
Houston, TX 77058

michael.buttacoli@nasa.gov

Abstract—For Orion missions beyond low Earth orbit (LEO),
the Guidance, Navigation, and Control (GN&C) system is
being developed using a model-based approach for simulation
and flight software. Lessons learned from the development of
GN&C algorithms and flight software for the Orion
Exploration Flight Test One (EFT-1) vehicle have been applied
to the development of further capabilities for Orion GN&C
beyond EFT-1. Continuing the use of a Model-Based
Development (MBD) approach with the Matlab®/Simulink®
tool suite, the process for GN&C development and analysis has
been largely improved. Furthermore, a model-based
simulation environment in Simulink, rather than an external
C-based simulation, greatly eases the process for development
of flight algorithms. The benefits seen by employing lessons
learned from EFT-1 are described, as well as the approach for
implementing additional MBD techniques. Also detailed are
the key enablers for improvements to the MBD process,
including enhanced configuration management techniques for
model-based software systems, automated code and artifact
generation, and automated testing and integration.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. SIMULINK ON-ORBIT SIMULATION 2
3. SIMULINK VARIANTS ... 3
4. FLIGHT SOFTWARE MODELING 4
5. COMPATIBILITY WITH EXTERNAL SIMS 5
6. CONFIGURATION MANAGEMENT 6
7. MODEL MERGING ... 7
8. SIMULATION VALIDATION, VERIFICATION,
AND DOCUMENTATION ... 8
9. AUTOMATED BUILD AND TEST SERVICES 9
10. AUTOCODE .. 9
11. METRICS ... 10
12. SUMMARY ... 11
ACKNOWLEDGMENTS ... 12
REFERENCES ... 12
BIOGRAPHY .. 13

1. INTRODUCTION

The Orion spacecraft is being developed by NASA to take
humans back to deep space. The first test mission, EFT-1,
will demonstrate many capabilities for extending the human
presence in space beyond LEO. For the Orion GN&C flight
software (FSW), which is responsible for navigating,
guiding, and controlling the vehicle, a model-based
development process has been implemented. Advantages of
MBD in human spaceflight algorithm development on
Orion have been previously described [1, 2]. Specifically,
distinct benefits from MBD have been realized to date on
Orion: removal of the steps of converting GN&C
algorithmic pseudo-code documentation to flight software,
increases in the amount of time spent exercising flight code,
improvements in the processes for producing algorithm
documentation and reviewing algorithm functionality,
implementation of automated checking of software
standards, and development of an automated testing
framework and report generation.

As part of that EFT-1 FSW development process, several
challenges and areas of improvement were identified. These
included configuration management difficulties, code
integration and graphical merging shortcomings,
development complexities related to the simulation
environment, slow simulation execution speed, efficiency of
generated code, and long model build times. To address the
challenges and lessons learned from EFT-1, a number of
improvements have been implemented. The first has been
to develop a medium fidelity, model-based, simulated 6-
degree-of-freedom (DOF) environment using Simulink [3]
in which to exercise flight algorithms. The past use of C-
based simulation environments required additional overhead
and complicated interfaces to the Simulink environment.
The Simulink simulation is also tailored to on-orbit flight
regimes, which allows faster execution speeds. Another
advantage has been the use of Simulink model variants,
which improves build time and allows quickly exercising
different functionality without modifying the models. A
collection of process improvements has been implemented
to address the challenges of configuration management and

https://ntrs.nasa.gov/search.jsp?R=20140003581 2019-08-29T14:23:09+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42732447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c
h
d
N
v
v
r
w
s
a
s
a
im
a
O
r
g
P
h
S
im
m

T
d
th

C
F
in
C
d
C
C
c
C
o
C
f
C
t
c

code developm
have served
development a
NASA reposito
various team m
version control
revision contro
work-flow and
scripts used f
automation cap
software develo
an automated b
mprovements

and continuous
Other improve
request integr
generation, bui
Previous challe
have been alle
Simulink mod
mprovements

members.

The following
during EFT-1
his paper.

Challenge: Pr
FSW can be
nterfaces betw

Challenge: En
dispersed teams
Challenge: Spe
Challenge: Im
capability for S
Challenge: Eas
of development
Challenge: Sp
for individual d
Challenge: Ma
estable versi

concurrently w

ment processes
as enablers

approach for
ory has proven
members. The
l tool has dem
ol system tool

removed depe
for EFT-1 d
pabilities have
opment proces

build and test s
over EFT-1 i

sly test the m
ed automation

ration, regress
ild artifact gen
enges in perfor
eviated by the
del merging

for communi

is a summa
software deve

rovide an env
developed q

ween C and Sim
hance collabor
s operating on
eed up model d
mplement a

Simulink mode
se the burden o
t at once, leadi
eed up and au

developers.
aintain and man
ion of the
ith model deve

s. The proces
for the S

GN&C. Cen
n beneficial an
e use of the g

monstrated grea
l. It has also
endencies on a
evelopment.
been utilized

ss. Central to
erver, which h
in the ability
odels and the
n processes
sion and uni
eration, and m
rming three-wa
e use of recen

tools, as w
icating conflic

ry of challen
elopment that

vironment whe
quickly and

mulink.
ration between
different secur

development.
usable grap

ls.
of integrating m
ing to long inte
utomate testing

nage a workin
auto-generate

elopment.

F

ss improvemen
Simulink mod
ntralization to
nd accessible
it [4] distribut

at flexibility as
o simplified t
a host of custo

A number
to speed up t

this is the use
has enabled ma

to automatica
generated cod
include chan

it testing, co
metrics collectio
ay model merg
nt capabilities
well as proce
cts among tea

nges encounter
are addressed

ere model-bas
without TCP/

n geographical
re networks.

phical mergi

multiple branch
egration cycles
g and integrati

ng, compiled, a
ed FSW co

Figure 1. Top

2

nts
del
 a
by
ted
s a
the
om
of

the
of

any
ally
de.

nge
ode
on.
ges

in
ess
am

red
in

sed
/IP

ly-

ing

hes
.
ion

and
ode

The pri
process
build
environ
approac
fidelity
prelimi
simulat
adequa
running
multipl
connec
simulat
on both
minutes
both th
require
program
wherea
require
better u
share
opportu
commo
the rev
validati
not nee
simulat
Overall
the co
streaml
and exe

The Sim
(FLight
collecti
(Rapid
Simula
that co
flight s
logging
simulat

-level simulati

2. SIMULIN

imary improve
s for the Orion

a medium
nment using Si
ch for the EFT

y, C-based simu
inary design
tion allows fa

ate accuracy fo
g the C-based
le processes
ctions, which ad
tion execution
h the simulatio
s to execute p

he C-based sim
es developers
mming langua
as a Simulink
ement to a larg
understand eac

developer re
unities for reu
on look and fee
view and cod
ion process. A
ed significant
tion tools prio
l, having the s

omplexity of
lining and sim
ecution process

mulink-based
t Algorithm
ion of flight

Algorithm
ation). Figure
ontains the FL
software mod
g block for re
tion run.

ion model.

NK ON-ORBIT

ement in the m
n GN&C FSW

fidelity, m
imulink. This
T-1 GN&C dev
ulations. For
review (PDR

faster developm
or the maturity
d simulation
communicatin

dds complexity
process. The

on side and the
prior to each s
mulation and th
s to be p
ages for devel
k only envir

ge degree. Thi
ch other’s work
esources if
use across the
el to the subsy

de audit steps
Also, engineer

training on i
or to starting
simulation mod

interfacing w
mplifying the
ses.

simulation has
Simulation E

software mod
m Matlab/S

1 shows the to
LASHE simula
els. Each ha

ecording outpu

T SIMULATIO

model-based de
development h

model-based
differs from th
velopment that
development p

R), the mediu
ment while m
y required. Fu
with Simulin

ng via TCP/
y and I/O overh

ere are initializ
e Simulink sid
simulation run.
he Simulink m
proficient in
lopment and d
ronment allev
is allows for d
k, provides the
needed, fost

e team, and p
ystem design th

in the verific
rs new to the
initialization s
algorithm dev

dels in Simulin
with the FSW

simulation in

s been dubbed
Environment),
dels is called
Simulink E
op level Simu
ation and the
as a correspon
ut variables to

ON

evelopment
has been to
simulation

he previous
t used high
prior to the

um fidelity
maintaining
urthermore,
nk requires
/IP socket
head to the

zation steps
de that take
. Running

models also
multiple

debugging,
viates that
designers to
e ability to
ters more
provides a
hat benefits
cation and
project do

scripts and
velopment.
nk reduces

W models,
nitialization

d FLASHE
 and the
RAMSES

Engineering
link model
RAMSES

nding data
o file for a

F
O
m
v
a
e
a
in
o
B
a
p
m
to
s

T
O
M
R
A
d
v
v

T
S
a
(
m
d
lo
a
C
m
w

F
ta
w

A
r
s
m
c
r

D

L
G
c
f
S
a
a
s
N
o

FLASHE inclu
Orion vehicle a
models to rep
vehicle forces a
atmospheric an
effects for quie
a variety of o
ntegration, in

ode45, etc., wi
Because the RA
as a fixed ra
processor, a c
method is impl
o be sufficien

speed.

There are also
Orion vehicle u
Measurement
Receivers (GP
Altimeters (BA
done on EFT-
vehicle, which
vehicle state.

The effector mo
System (RCS)
and a main e
(TVC). The Si
models reuse th
different mode
ocations, direc

also reused be
Crew Module
models represe
when Orion exe

Finally, FLASH
arget vehicle

with another sp

All of the mo
reference para
structure organ
model hierarch
can be chan
recompilation o

Data Logging

Logging of dat
GN&C develop
capabilities in
for EFT-1. Thi
Simulink mod
advantages are
algorithmic mo
signals are logg
Native Simulin
options. For lo

udes a number
and its environ
present the ef
and torques fro
nd aerodynam
escent flight ou
options for pe
cluding such
ith both fixed-
AMSES FSW
ate, as they w
custom, 4th o
lemented in th
nt in terms of

o models that
used for naviga
Units (IMUs)
SRs), Star Tr

AROs). Mostl
1, these mode
the navigation

odels in FLAS
thruster mode

engine model
imulink implem
he same mode
l reference par
ctions, and ma
tween the Ori
(CM) models

ent the expect
ecutes large ma

HE has also b
model to simu

pacecraft.

odel reference
ameters that a
nized hierarchi
hy. The param
nged betwee
of the models.

ta in Simulink
pment. The lac
Simulink led t
is model can be
del output da
e that it does
odels themselv
ged, and it wri
nk capabilities
ong simulation

r of models th
nment. These i
ffects of grav
om thruster an

mic effects, an
utside LEO. S
erforming diffe

solvers as o
step and varia
models are req
would on the

order Runge-K
he vehicle dyn
f accuracy an

represent the
ation purposes
), Global Pos
rackers (STs),
ly inherited fro
els emulate the
n software use

SHE include a R
el, Auxiliary (

with Thrust
mentation of th
l reference blo
rameters that s
agnitudes. Th
ion Service M
. The main e
ted behavior a
agnitude burns

been configure
ulate rendezvo

es in FLASH
are collected
ically that cor
eters as passed

en runs wit

has been a cha
ck of data conf
to a custom fi
e reconfigured

ata to file.
s not require
ves in order to
ites data to disk
do not suppor

n runs with ma

hat represent t
include dynam
vitational forc
nd engine firing
d solar pressu
imulink provid
erential equati
ode15s, ode23
able-step option
quired to execu
e vehicle targ

Kutta integrati
amics and fou

nd computation

e sensors on t
s, such as Inert
sitioning Syste

and Baromet
om developme
e sensors on t

es to estimate t

Reaction Contr
(Aux) jet mod

Vector Contr
he RCS and A
ock by passing
specify the thru
he RCS model

Module (SM) a
engine and TV
and performan
s.

ed with a simp
ous and docki

E utilize mod
in a workspa
rresponds to t
d into the mod
thout requiri

allenge for Ori
figurable loggi
le-writing mod

d to allow loggi
The two ma
changes to t

o alter what da
k during the ru
rt either of the
any models, it

3

the
ics
es,
gs,
ure
des
ion
tb,
ns.
ute
get
ion
und
nal

the
tial
em
tric
ent
the
the

rol
del,
rol

Aux
 in
ust
 is

and
VC
nce

ple
ing

del
ace
the
els
ing

ion
ing
del
ing
ain
the
ata
un.
ese
t is

critical
because
large a
more r
alternat
time re
With re
decided
and de
utilizin
on rege
logging
FLASH
the des
record
within
custom
rebuild
can be
support

Figure
o

One ke
model
of mod
2009A,
reconfi
the Ori
switch
interfac
implem
model
effect),
By se
conditio
variant

to be able t
e there is a s

amounts of dat
recent FLASH
te approach is
equired to upd
ecent support f
d to focus less
evelop a fast, r
ng native Simu
eneration of a
g specification
HE and RAMS
sired rates are
files, and the
seconds. This

m recording m
d. The data rec
 either leaf-le
t arrays of bus

e 2. Automati
on configurab

3. SI

ey feature of
development f

del reference va
, model varian
iguring a mode
ion GN&C pro

between mo
ces. For exam

ments a point-m
that accounts

, and a third im
etting variable
onal setting of
gets executed

to configure
significant imp
ta are logged
HE and RAM
s taken primar
date the custo
for 64-bit MAT

on writing da
reconfigurable

ulink capabiliti
Simulink mod

ns are set pro
SES outputs.
e set in one o
e logging mo
s is an improv

model, which t
cord files cont

evel elements
signals, as of M

ically generate
ble signals and

IMULINK VA

Simulink that
for FLASHE a
ariants. Introd
nts provide a
el with a differ
oject, model va
odels without
mple, one var
mass, a secon

s for the obla
mplements high
es in the M
f the Simulink
.

which data a
pact on run sp
during the run

MSES develop
rily due to the
om data loggi
TLAB installati

ata to disk durin
e data logging
es. This appr

del in which th
ogrammatically
The variables
or more text-b

odel can be r
vement over th
takes several m
taining the sig
or bus signal
MATLAB 2013

ed logging mo
d recording ra

ARIANTS

t has been lev
and RAMSES

duced in MATL

data-driven m
rent implement
ariants are use
t modifying
riant of a grav
nd implements
ateness of the
her-order grav
MATLAB wor
k block determ

are logged,
peed when
n. For the
pment, an
e length of
ing model.
ons, it was
ng the run,
 capability
oach relies
e Simulink
y for both
to log and
based data
regenerated
he previous
minutes to

gnals to log
s, and can
a.

odel based
ates.

veraged in
 is the use

LAB version
method for
tation. For
ed to easily
blocks or

vity model
s a gravity

Earth (J2
vity effects.
rkspace, a
ines which

T
to
m
b
u
m
b
d
s
W
im
“
b
d

A
a
in
im
th
A
a
o
f
M

O
in
p
o
it
S
p
p
m
o
a
m
m
f
la
m
b
m
m
b

T
f
lo
g
d

The primary w
o create empt

models. This
being compiled
use of this conc
models. Instea
behaves accor
dynamics, the
state of the veh
When the deta
mportant for

“perfect navig
building (and r
development.

Another varian
alternatives f
nformation.
mplementation
he simulation,

A second varia
any run-time
offers flexibili
fidelity models
MATLAB works

On the RAMS
nclude model

phases of fligh
of all the cod
terations of d

Simulink archit
phases ranging
proved challen
management an
on-orbit simula
algorithms des
model variants
moon do not r
for ascent abor
anding algori

maintained an
between those
model variants
maintenance p
benefit.

4. FL

The GN&C fli
functional “dom
ogic and code.

given functiona
domains shown

ay in which m
ty “stub” refer
allows the ex

d and run for a
cept in FLASH
ad of represen
ding to the e
stub models m
hicle, as calcu

ails of the perf
a certain set

gation” setup
ebuilding) the

nt implementat
for modeling
 The first

n of the SPICE
for establishin

ant uses a tabl
dependence o
ity in running
s with just the
space.

SES side, mod
code in the p

ht, but not requ
de for simula
development p
tecture for inte
 from ascent to
nging from t
nd build and ex
ations carried
signed for hig
s, simulations
equire the incl
rt logic and co
ithms. Yet

nd managed e
models are un

s. From a fl
perspective, thi

LIGHT SOFTW

ight software
mains” that co
. The algorithm
al domain, so e
n in Table 1.

odel variants h
rence blocks

xclusion of a s
a certain simul

HE is the creati
nting how the
environmental
merely pass th
ulated in the dy
formance of th
of GN&C an
saves the de
complex senso

tion in FLASH
g the plane

variant use
E system [5], c
ng planetary bo
le lookup routi
n the SPICE
g lower over
e change of a

del variants ha
project reposito
uire compilatio
ation runs. D
prior to mod
egrating GN&C
o on-orbit to e
the perspectiv
xecution speed

the overhead
ghly dynamic

involving fli
lusion of mod
ontrol, nor ent

the overall
easily because
naltered with t
light software
is has proven

WARE MODE

is broken up
mpartmentaliz
ms for GN&C
each is groupe

have been used
for some of t
set of code fro
lation. The ma
on of stub sens
sensor hardwa
conditions a

hrough the “tru
ynamics mode
he sensors is n
nalysis, then th
veloper time
or models duri

HE has been tw
tary epheme
es a MATLA

computed duri
ody ephemerid
ine that remov
libraries. Th

rhead or high
a variable in t

ave been used
ory for all Ori
on and executi
During previo

del variants, t
C code for flig

entry and landi
ves of interfa
. Even quiesce

d of atmosphe
periods. W

ghts around t
dels that are bu
try, descent, a

architecture
e the interfac
the use of “stu

integration a
n to be of gre

ELING

into a series
ze portions of t
C are specific to
ed into one of t

4

d is
the
om
ain
sor
are
and
ue”
els.
not
his
in

ing

wo
eris
AB
ing
es.

ves
his
her
the

to
ion
ion
ous
the
ght
ing
ace
ent

eric
With

the
uilt
and

is
ces
ub”
and
eat

of
the
o a
the

Ta

Flig
Doma

* NVR
planned

The fl
develop
CNP do
of the
for the
As sho
RAMS

Figure

As me
variants
Simulin
specific
on-goin
explora
primari
of the
algorith
“orbit”
domain
variant,
run in t

Figur

able 1. List of

ght Software
in Abbreviati

CNC
CNL
CNE
CNP
CNS
GDA
GDE
GDO
GMP
NVA
NVE

NVR*
is not implem

d for near term O

light algorithm
ped in Simulin
omains, which
domains are in
development

own in Figure
ES consists of

e 3. RAMSES

entioned in the
s in the mode
nk has allowe
c simulation p
ng work for
ation of the
ily on-orbit GN

development
hms related to

model varian
ns shown in F
, there are 73
the simulation.

re 4. RAMSE
the o

GN&C Flight

ion
Crew M
Launch A
Engine C
Propulsi
Service M
Ascent G
Entry Gu
Orbit Gu
GN&C M
Absolute
Ephemer
Relative

mented as rendez
Orion missions.

ms for each
nk with the ex
h are written d
ntegrated into
and testing of
3, the “integr

f all of these do

S "Integrated"
the GN&C FS

e previous sec
eling of the G
ed greater fine
erformance. S
r Orion is
Moon and b

N&C function
and analysis

o atmospheric
nt is establish
Figure 4. By
fewer models

ES "Orbit" va
on-orbit GN&

t Software Do

Description

odule Controls
Abort System
Controls
ion System Con
Module Contro
Guidance
uidance
uidance
Mass Propertie
e Navigation
ris Navigation
 Navigation
zvous and dock

of these do
xception of the
directly in C++

the RAMSES
f those flight a
rated” model
omains.

" variant inclu
SW.

ction, the use
GN&C flight s
e-tuning of fli
Specifically, m
geared towar

beyond, which
nality. As a re
s is independe
c flight. The
hed, which in
y using the or
that need to b

ariant inclusiv
&C FSW.

omains

n

s
Controls

ntrols
ols

es

king are not

omains are
e CNE and
+. The rest
S modeling
algorithms.
variant for

usive of all

e of model
software in
ight-phase-

much of the
rd further
h includes
esult, much
ent of the
erefore, an
ncludes the
rbit model
e built and

e of only

I
F
p
d
m
n
6
s
“
o
n
p
n
d
a

T
th
th
F
p
p
S
p
tr
n
in
c
s
s
F
1
s

P

P
N

R

S

F
S
R

In addition to
FSW, there is
perfect navigat
describing the F
models, perfect
navigation fligh
60% of the tota
sent to the gu
“truth” state, ra
on-board from
navigation sen
provide time
navigation, but
development
algorithms.

There are actua
hat can be exe
he perfect nav

FSW, but to ru
parallel. Th
performance bu
Secondly, a st
provides a me
rue state to re

navigation fligh
ncrementally

controls analys
sensors or fligh
summarizes
FLASHE/RAM
168 fewer mo
simulation.

Table 2. S

Nav Variant
Name

PerfectNav

PerfectNav_
NVAProcessing

RealNav

StochasticNav

Figure 5 show
Simulink for c
RAMSES.

the “integrate
also a big ad

tion. As men
FLASHE varia
t navigation ca
ht software, w
al GN&C code
idance and co
ather than the

m incorporatin
nsors. Not o
savings when

t perfect navig
and analysis

ally two additio
ercised in FLA
vigation state
un the sensors

his allows as
ut without effe
tochastic navig
eans of non-de
epresent the ty
ht software. Th
higher level
is, without the

ht software mo
the naviga

MSES. By usin
odels that need

Summary of n

Active Nav
Pathway
(to G&C)

P
(f

Perfect n/

Perfect N

NVA Pe

Stochastic Pe

ws the switch
configuring the

d” and “orbit”
dvantage in be

ntioned in the
ants for stubbin
an also be use

which comprise
e. In effect, the
ontrols domain

state that wou
ng measurem
only does pe
n compared t
ation capabilit

of guidanc

onal navigation
ASHE/RAMSE

in the guidan
s and navigatio
ssessment of
ct on the contr
gation variant
eterministically
ype of estimat
his implementa
of fidelity fo

e need to includ
dels in the sim
ation varian
ng perfect navi
d to be built

avigation mod

Passive
Nav

Pathway
for telem)

Sens
Mod
Used

/a Off

VA On

erfect On

erfect Off

hing logic im
e perfect navig

” variants of t
eing able to r
previous secti
ng out the sens
ed to exclude t
es approximate
e navigation sta
ns represents t
uld be estimat

ments from t
erfect navigati
to full absolu
ty is essential f
ce and contr

n-related varian
S. One is to u
nce and contro
on algorithms

the navigati
rol of the vehic

is setup, whi
y perturbing t
tion done by t
ation provides
or guidance a
de the navigati

mulation. Table
nts used
igation, there a
and run in t

del variants.

sor
dels
d?

Descriptio

Perfect Nav

NVA and
sensors
running for
telemetry
NVA runnin
and used by
G&C
Truth state
perturbed

mplementation
gation variant

5

the
run
ion
sor
the
ely
ate
the
ted
the
ion
ute
for
rol

nts
use
ols
in

ion
cle.
ich
the
the
an

and
ion
e 2
in

are
the

on

ng

in
in

The oth
softwar
the com
sequenc
Within
softwar
comma
triggeri
appropr
Becaus
has bee
base fo
there
implem
stressin

Anothe
model-
variants
known
(PSAM
hierarch
division
orbit, a
which
on-orbi
Within
within
burn se
the bur
a trim b
For eac
that con
the con
thresho
activity
sets of
Tool, a
mission
the mai
of a com

5.

While
numero
orbit al
for the

Figure 5. P

her benefit of
re models into
mmon GN&C
cing and exec

the GN&C
re domain live
and handler sof
ing and config
riate time, ba

se this software
en crucial to be
or the integrate

were sepa
mentations for
ng on the maint

er set of comm
based design
s is the tool s

as the Phase
M) Tool [6].

hical portions
ns of the miss
and entry. The
comprise vehi
it burn, or co

the GN&C su
a segment that

egment, the GN
rn attitude, per
burn if necessa
ch activity, the
ntrol which al
nfiguration pa

olds, limits, de
y. The GN&C
f data that are
and loaded in
n. For an inte
intenance of th
mmon code ba

COMPATIBI

the FLASHE
ous benefits in
lgorithms, mor
e Exploration

Perfect naviga

being able to
o the same RAM
C executive so
cution of all

C Command
es the executiv
ftware. This d

guring the appr
ased on data-c
e executes duri
e able to maint
ed set of FSW
arate reposi

different flig
tenance of the

mon code that
n approach u
set that is used
es, Segments,
 The acronym
of the missio

ion are the ph
e phases are su
icle-level goals
oasting in a
ubsystem ther
t are referred t
N&C activities
rforming a mai
ary, and assum

e GN&C doma
lgorithms are e
arameters for
adbands, etc.,

C activities, mo
configured wi

nto GCI for e
egrated set of
he PSAM Tool
ase as does the

ILITY WITH

E simulation e
n doing rapid
re formal analy

Mission-1 (E

ation switching

integrate all o
MSES architec

oftware that co
of the GN&C
Interface (G

ve sequencer a
domain is resp
ropriate algorit
configurable i
ing all phases
tain a common

W code. If, alt
itories or

ght phases, it
common GCI

has benefitted
using Simulin
d to data-confi
 Activities, a
m PSAM ref
on timeline.
ases, such as a
ubdivided into
s, such as perf
particular con

re are specific
to as activities
s include mane
in engine burn,
ming a post-bur
ains are in spec
executing. Fu
the algorithm
are specified f
odes, and para
ith the aid of
xecution throu
RAMSES FSW
 enjoys the sam
GCI domain.

EXTERNAL

environment h
d FSW develo
ysis and testing
EM-1) to the

g.

f the flight
cture is for
ontrols the

C domains.
GCI) flight
and GN&C
onsible for
thms at the
input files.
of flight, it

n GCI code
ternatively,

Simulink
would be
software.

d from the
nk model

figure GCI,
and Modes
fers to the
The major
ascent, on-

o segments,
forming an
nfiguration.

objectives
. Within a
euvering to
, executing
rn attitude.
cific modes
urthermore,

ms, such as
for a given
ameters are
the PSAM
ughout the
W models,
me benefits

SIMS

has shown
opment for
g after PDR
moon will

 6

require other higher fidelity C-based simulations. For this
reason, and because FLASHE is not intended to support
ascent or descent and landing phases of flight, an interface
to NASA’s Trick Simulation Environment [7] has been
updated to work with the 2013a version of MATLAB. Data
being passed between the Trick simulation and the FSW in
Simulink are exchanged via TCP/IP socket connections
using custom s-functions, as was done for EFT-1.

There are two main aspects of the interface between Trick
and RAMSES. The first is that the input/output data must
be maintained, and can then support multiple other Trick-
based simulations. There are likely two Trick-based
simulations that will require interfacing with the GN&C
FSW in RAMSES, so the development in Simulink and with
FLASHE will ensure the Trick interface is maintained. The
current FLASHE regression testing includes a check that
these interfaces do not break as development progresses.

The second main aspect of the RAMSES interface to the
Trick simulations is that the FSW functionality remains
consistent across simulation environments. The FLASHE
regression testing is also exercising a subset of the
functionality that is unique to the Trick simulation, in that it
is part of an ascent profile which is not the primary role of
FLASHE. Thus, the GN&C FSW, as developed in
RAMSES, is maintained for operation in both Simulink-
and Trick-based simulation environments.

6. CONFIGURATION MANAGEMENT

One of the biggest challenges in the Orion GN&C FSW
development, both before PDR and leading up to the EFT-1
flight test, was configuration management. While MBD
affords many benefits over the course of a project, having a
large, geographically dispersed team across many
organizations makes working with graphical models
particularly challenging. The first hurdle in working with
many organizations is dealing with separate information
technology (IT) and security requirements; finding a method
in which all team members can share information has never
been a trivial problem. Secondly, the set of tools for
managing the work of many team members must be both
robust and easy to use in order to facilitate deploying flight
software. While solutions were found for both of these
problems for EFT-1, they were not ideal and recent work
has largely improved these aspects of the GN&C
development process.

Members of the Mathworks team have described
configuration management techniques in the context of
Simulink model development [8]. The Orion GN&C team,
however, has learned two important lessons for successfully
carrying out Simulink model development with dispersed
organizations: establish easy access to a configuration
controlled repository and utilize tools that ease distributed
development.

Simulation model and flight software development for EM-
1 has utilized servers at NASA’s Johnson Space Center
(JSC) to centralize code and model repositories. While
organizations often limit internal network access due to
security and intellectual property reasons, the roles of Orion
contractors with NASA already include the contractual
agreements required for a collaborative work environment
on JSC servers. As a result, there have been far fewer, and
more minor, issues related to GN&C developers having
access to the JSC repositories.

The configuration management tool that greatly aids the
Orion GN&C configuration control process has been git, an
open-source, distributed revision control system. Git has
been successfully used for large projects such as the Linux
kernel and has a large user base. Because git is a distributed
source code management system, there is no dependency
upon a server connection to manage file revisions.
Furthermore, because each developer has a complete history
of a repository locally, actions in git are faster than a
centralized system. In fact, compared to the EFT-1 code
management database, git is one to two orders of magnitude
faster on common operations such as creating a new
repository and checking the status of file modifications.

With other revision control tools used in the past, there was
a need to develop a set of custom scripts that managed a
“view” of the source code. These scripts provided two main
functions: enabling interfacing with different simulation
environments, and segregating the source code under
configuration management from the generated artifacts.
When working in a view, the custom scripts managed the
interactions between the simulation and the RAMSES
models in Simulink to simulate a mission run. Also, the
execution of Simulink models involves the generation of
executable artifacts (i.e. .mex* files). When present in a
configuration controlled area, these mex files are potentially
a hassle to separate from the maintenance of the source
code. The use of git makes this problem obsolete with the
ability to ignore certain files or types of files. Therefore the
dependence on custom scripts and “views” were completed
eliminated by using git.

In addition, git is particularly adept at non-linear
development, where branches and merges are common,
easy, and fast. This has made collaboration for FLASHE
and RAMSES development much easier than in the past.
Previously, exchanging source code between organizations
was done via one of two inconvenient methods: post source
file(s) to a secure website where it could be downloaded by
another developer, or wait for the periodic synchronization
of databases between organizations, which was as
infrequently as once per week. With access via simple ssh
connections to the common JSC servers and with git
merging capabilities, exchanging and sharing work is
significantly more efficient.

Another improvement in the FLASHE/RAMSES
development for EM-1 has been the code integration
process. The two process approaches used previously were

 7

1) monthly submissions of code changes to an integration
team, and 2) a small team responsible for all changes
directly incorporated into the primary FSW code database.
The first approach was used early on in the project when
there were more GN&C developers doing parallel
development without efficient means of recombining the
work. The monthly integration process was a large and
challenging effort for reasons including limited tools for
merging distributed changes, long integration periods, and
simultaneous code changes to graphical models that were
difficult to merge. It was not uncommon for the process of
integrating all of the code changes to take up to a month,
which left essentially no time for developers to include their
new updates into the latest baseline. This process was
inefficient for all involved. When the EFT-1 flight test
mission was established, the GN&C team moved into more
of a production mode with a limited team involved in
making direct changes to the GN&C models and code.
Members of the small team could see updates immediately,
but the larger community was required to wait for baselines,
which were generally months apart. For developers who
were not on the small team, their work was done on top of a
baseline release. That work was then sent to a team member
who could integrate it into the configuration management
tool, but those steps were accomplished via email or posting
to a common area, completely outside of the CM tool. If
any other changes had occurred in parallel, those had to be
manually merged or reapplied. None of these interactions
utilized features which configuration management tools are
intended to provide.

The process that has been implemented more recently with
FLASHE/RAMSES development has been an automated
continuous integration process. Scripts running in the JSC
lab monitor for requests for integration from GN&C
developers. This request comes via a web-based issue
submittal page where the developer specifies the location of
his or her repository as well as the git branch containing the
work. Then a series of regression tests are automatically
started. If the developer’s work merges properly and passes
the regression tests, then it is automatically merged into the
“central” repository for others to retrieve. If the merge with
the developer’s branch or the regression tests fail, logs are
created and made available on the issue page for review.

The automatic and continuous nature of the integration
process takes advantage of the best aspects of the previous
integration processes, while also adding automation that
saves a lot of time. Like the process used for the small
production team on EFT-1, the developer is responsible for
keeping up to date with progress and work being integrated
into the central repository. For example, if a developer has
not merged the latest work into his or her branch prior to
requesting integration, it is possible that the merge will
contain conflicts. Instead of the responsibility for cleaning
up the merge conflicts being the job of an integrator, it is the
responsibility of the developer to properly merge in the
latest from the central repository to ensure the automatic
integration process runs to completion. Because integration

takes place continuously, a developer can pull the latest as
often as multiple times per day, with low overhead, in order
to incorporate small changes more frequently to make tasks
that take a long time to complete easier to manage. Another
improvement over past processes is that the regression
testing is completely automated, as long as the data used to
verify the regression tests do not change. For the production
team on EFT-1, it was important that changes were not
introduced that inadvertently caused simulation runs and
tests to fail. At times this could be a burden because of the
amount of time it took to build and execute all the models
and tests. With an automated process, it is simpler and
faster for a developer to rely on an automated regression and
verification process to take the time to build and execute the
models, while the developer’s time and computer resources
can be freed up for other productive uses.

7. MODEL MERGING

Another common challenge with model-based development,
specifically with graphical models, is model merging. For
ASCII, text-based files, there is a long history, familiarity,
and simplicity with merging multiple changes to the same
file. Finding the differences in one or more lines of source
code is relatively straightforward, so merging can be
automatic when there are no conflicts between the changes,
or can be compared side-by-side when the changes conflict
with one another. Although the .mdl format for Simulink
models are text-based, it is not straight-forward to merge
these text files and still have a functioning graphical model
in Simulink. As a result, model differencing and merging
requires being able to view the Simulink models
themselves, not the text files.

In the past, the Orion GN&C team experimented with third-
party differencing and merging tools called SimDiff and
SimMerge by Ensoft [9]. Recent releases of MATLAB have
introduced tools for merging Simulink models. The
Simulink tools are capable of finding and merging small to
medium sized differences in models but cannot
automatically track large changes, which is true even of
text-based merging. For Orion, the GN&C flight software
team has not required specialized licenses for model
development; only MATLAB, Simulink, and Stateflow are
needed. The Simulink merging tool, however, is only
available with the Simulink Report Generator toolbox, so
license costs are a deterrent and hindrance for many GN&C
developers. As a result of this limitation, the GN&C team
has customized the interaction between git and Simulink
.mdl files, and also developed a process that facilitates
conflict communication between model developers.

When conflicts occur when merging text files in git, the
syntax convention of “<<<<<<” and “>>>>>>” is used to
indicate modifications made by the developer doing the
merge, the work being merged into, and the common
ancestor. For Simulink .mdl files, these modifications
inserted by git prevent an executable model from being

 8

opened in Simulink. A customization of the attributes of git
has been implemented to instead create three separate .mdl
file instances: “theirs,” “mine,” and “ancestor.” With this
specific handling of merge conflicts of .mdl files, the
Simulink model differences can be viewed either side by
side, or with other model merging tools.

There are some very beneficial aspects of git being a
distributed revision control system whose utilities have been
described in previous sections. One challenge in Simulink
model development without a centralized repository on a
server that maintains “checkin/checkout” write privileges is
avoiding model conflicts altogether. There is nothing to
prevent developers using git to both modify the same .mdl
file simultaneously, which is more difficult to merge
(regardless of what merge tools are available) than a plain
text file. To address that issue, a script has been developed
that gives insight to all developers what .mdl files are
currently being modified. This script works by querying the
branches of GN&C developers’ repositories and finds .mdl
files that have been modified. This list of modified model
files is updated multiple times per day and posted to a
webpage wiki for developers to review. Although there is
no guarantee that .mdl conflicts are eliminated, this
capability and the information derived are useful for
identifying potential or existing conflicts early. An
important aspect of the process regardless of the tools is
communication amongst developers. For example, if a
developer sees in the .mdl list another person working on
the model he or she wishes to modify, a phone call can
clarify if work schedule arrangements should be needed in
order to cleanly merge both sets of model work. The other
main procedural approach used on EFT-1 has been to assign
a single point of contact to each algorithm, to avoid
unnecessary model merging conflicts.

8. SIMULATION VALIDATION, VERIFICATION,
AND DOCUMENTATION

As with any software, ensuring that the behavior of the code
meets expectations is a tedious and detail-oriented task. The
Orion GN&C FSW for EFT-1 has undergone a very
thorough process that certifies that the software has been
built correctly and that it meets the specifications laid out in
the requirements. For the FLASHE simulation, the fidelity
of the software need not be as high as it is for a human-rated
spacecraft, but determining what fidelity to implement is an
important question and a task on its own. For example,
there are two models for determining the ephemerides of the
celestial bodies: the ephemeris interpolation tables, and the
SPICE libraries. The SPICE libraries are of the highest
fidelity, while the ephemeris tables—which interpolate
between SPICE data—have less fidelity. The analyst should
trade simulation execution speed and model fidelity in order
to determine which of the models to use.

Prior to determining whether a model is valid, a level of

expectation must be set forth for each model, as described in
Table 3. The cornerstone of FLASHE model validation is
the question of whether the model produces the correct
results. At a minimum, the unit tests should prove that the
fundamental algorithms in the model produce the correct
result. The unit test data can be compared against analytical
answers, results from other simulations with validated
models, hardware test data, flight test data, etc. In the
aforementioned example of the ephemeris tables, the results
can be compared to SPICE data. A template for building
unit tests was developed. This template provides a unified
interface for calling unit tests throughout the FLASHE code
base, allowing the entire validation test suite to be called
from a single top-level function.

Table 3. FLASHE model standards.

Validation Criteria Description
Model Reference Each model should be allow

independent, stand-alone
configuration, revision management

Structured
Parameters

Each model reference block should
utilize structured model reference
parameters for constants that are
used within the model

Uses standard
utilities

Each model should use utilities from
the standard library

Default initialization
data file

Each model should have a standard
parameter data initialization file
used to configure the model

Unit tests Each model should have a standard
unit test suite used for validation
purposes

Documentation Each model should have a standard
set of documentation

In addition to testing code, the unit test template contains
example documentation based on MATLAB’s native m-file-
to-HTML publishing capability. The MATLAB Report
Generator toolbox also has capabilities to generate HTML
files containing hyperlinked images of models in Simulink
and Stateflow. These reports are collected and linked
together for easy distribution and review. Furthermore, the
website wiki used for the project can directly tie in to the
repository of artifacts, making it possible to review current
documentation on any model merely by navigating to the
project webpage, thus removing the need to maintain
equivalent documentation in separate locations.

While having unit tests for each model provides proof for
the accuracy of the overall simulation, it is not practical for
each developer to run the gamut of validation tests. Rather,
for day-to-day simulation development and code updates, a
set of regression tests have been designed. The idea behind
the regression suite is two-fold. The first objective is to
exercise each simulation model at least once prior to
submitting changes for integration. The second objective is
to test an integrated simulation run, providing a way to

 9

check that interfaces have been properly built. Thus, the
regression tests provide an answer to the verification
question: “Does the simulation continue to perform as
expected?” A set of verified regression data is available for
comparison to the developer. The data also serve as gate-
keepers for integration of submitted changes.

9. AUTOMATED BUILD AND TEST SERVICES

As mentioned in Section 6, a continuous, automatic
integration process has been implemented. This approach
has provided substantial time savings and robustness for
development. It includes automated builds and testing, and
when each task of work correctly passes the regression
testing, the main repository is updated automatically.

The popular and open web based service Redmine is being
used as a centralized front end for communicating and
coordinating regular change traffic with the git repositories.
The Redmine interface provides a simple and intuitive
mechanism to create, assign and update software Change
Requests (CRs). Furthermore, email notification alerts are
sent as the state of a CR changes throughout its lifetime.
Any CR written into Redmine maintains a current state.
These CR attributes can be queried through an HTTP-based
protocol called the REST (REpresentational State Transfer)
API. This feature has been utilized by building several bash
shell scripts that check the state of all Redmine CRs using
curl to communicate through the REST API. When a CR is
changed to “ready for testing,” a merge between the CR and
the main-line repository occurs in a temporary candidate
area. After a successful git merge, the candidate software is
built and tested. If the merge, build, and test procedures go
smoothly, the script will push the candidate repository
changes back up to the main-line repository. Regardless of
the pass/fail outcome, the shell scripts will update the CR
status in Redmine and attach a log of the entire procedure
from start to finish using the REST API.

Continuous Services

The services of Redmine and the REST API described
provide a simple interface for single-shot builds. In order to
provide continuous and repeating services, a third open
source tool is being utilized called Jenkins. Jenkins offers a
clean and intuitive front end for scheduling command line
processes. The tool tracks the execution time of any job it
launches, and automatically sends emails out in the event of
a failed job. Jenkins detects pass or fail based on the return
status of the bash script.

Jenkins is configured to run the CR merge, build, and test
script every 15 minutes throughout the day. Thus, a
developer who has finished their CR work can merely go to
the Redmine interface and set their CR state to “ready for
testing.” Ideally within 15 minutes, the scheduled Jenkins
job picks up on the changed state and commences the
testing process. One important note is that within any

configured job, Jenkins will not launch a new process unless
the last job has already completed.

Nightly Builds

Jenkins jobs are also configured to perform nightly builds of
the project. These jobs use the same underlying engine as
the merge, build, and test described above, only they do not
query Redmine for new CRs, nor are any merges performed.
The test suite for nightly builds is larger than the CR
process. This is to exercise a gamut of unit tests and other
more extensive integrated testing without being a burden on
resources during work hours. Should any one of these jobs
fail, email notification goes out to the project leads with
information on the reason for failure. This allows
troubleshooting to take place before other CRs are
introduced on top of a broken build.

The results of these nightly builds are not merely discarded.
They represent a significant time and CPU investment, and
thus the build artifacts they produce during successful
executions are copied back to public areas. These build
artifacts can be used by other users through a process coined
“winking in” or “winkin” as a quick way to boot strap a
newly cloned source code repository.

Winking In

Building large MATLAB/Simulink projects such as
FLASHE/RAMSES requires MATLAB to do a significant
amount of processing to generate its .mex object files. Early
in the project it was realized that the MATLAB build artifacts
from one build area could be copied into a second area,
enabling code in the second location to run without any
further building by MATLAB. Copying files is significantly
faster than building them from scratch. As long as the
second area contains the same source code as the first area,
a user can entirely forego the build process by just copying
the artifacts from the first area and globally updating
embedded path information in some of the text files. This
procedure of copy and update has been coined “winkin”.
Winkin of the build artifacts (around 33,000 files) from a
pre-built area such as the nightly build area is an order of
magnitude faster than performing an entire rebuild. While it
can take up to two hours to build all the Simulink models
serially, and up to about 45 minutes using MATLAB’s
Parallel Computing Toolbox, winking in the build artifacts
takes only about five minutes.

10. AUTOCODE

One of the biggest benefits of the MBD process is the
ability to automatically generate production code directly
from the source models very early in the software design
cycle. This gives the project the ability to put many “miles”
on the software and find potential software issues starting as
early as pre-PDR. Commonly referred to as “autocoding,”
the GN&C flight software process uses the Simulink
Coder™ product to generate C++ flight code from the
Simulink models in RAMSES.

F
p
p
lo
g
b
r
th
s
I
c
e
s
a
th
d
m
m
G
(
t
u
G
c

F

Focusing too m
project can slow
put on the low
ong time and s

generation and
been automate
requiring devel
he compiled au

steps automatic
In The Loop (S
code is generat
executed close
same CR regre
and the pass/fai
he simulation

difference that
modes. After P
more integrated
GN&C FSW te
(PIL) runs for
est server. Wh

used for the Si
GreenHills Int
computer targe

Figure 6. The

much on the sof
w down develo
level code. G

slow developm
d verification o
d via the buil
lopers to run a
utocode, the bu
cally in the nig
SIL) mode in
ted, compiled,

ed-loop with th
ession suite is r
il criteria are u
n. Figure 6

would be see
PDR, the softw
d part of the FS
eam is planning
as well, levera
hile SIL mode
imulink model
egrity target t
t.

e GN&C RAM
SIL, and P

ftware perform
opment if exces
Generating cod
ment if tested e
of the autocod
ld and test ser
all of the regres
uild and test se
ghtly runs. Us
Simulink, the
wrapped in an

he FLASHE s
run with the sa

used to determi
6 illustrates t
en for the diff
ware verificatio
SW developme
g to add Proces
aging the auto
 uses the same
ls, PIL mode u
that matches

MSES FSW mo
PIL modes.

mance early in t
ssive emphasis

de can also take
excessively. T
de, however, h
rver. Instead
ssion runs on t
erver handles t
sing the Softwa

production C+
n s-function, a
simulation. T
ame logged da
ine the success
the only visu
ferent simulati
on will become
ent process. T
ssor In The Lo

omated build a
e compiler that
uses an emulat
the Orion flig

odel in Norma

10

the
s is
e a

The
has

of
the
the
are
++

and
The
ata,
 of
ual
ion
e a

The
oop
and
t is
ted
ght

al,

An imp
tracking
testing
FLASH
develop
develop
to avoi
standar
A lot o
project
exampl
fully te
all flig
proving
(MCDC
unachie
comply
from th
rework
end of t

Collect
provide
become
either p
stack).
develop
provide
is an ill
to ident

The au
weekly
and sto
public
Durabil
standar
large d
four un
GN&C

When
power,
Orion s
750FX
Side B
each s
allocati
than 80
partitio
mission
change
perform
the m
optimiz
optimiz
eases
Further

portant part o
g. A major
is the ability

HE and RAMS
pment. A
pment is that b
id issues and re
rds compliance
of time and eff

by managin
le, code with
est. To comply
ght code must
g 100% Mod
C). If the code
evable and th
y. Tracking an
he pre-PDR st

k and the need t
the developme

ting software
e trends that
es simpler to
positive or neg

 As the m
pment, there
e useful trends
lustration of an
tify a large cod

utomated build
y metrics. The
ored in a SQL
domain, is AC
lity)-compliant
rd. This perm
data sets with l
nique metrics

C FSW.

targeting a re
the software m

spacecraft use
clocked at 40

Bus). The GN
econd to exe
ion of less tha
0% of that fo

on will have
ns. Tracking t
es made to the
mance. Visibil
most CPU p
zation efforts
zation in the ea
CPU allocat

rmore, because

11. METRIC

f any large so
r advantage i
to continuousl

SES models thr
lesson learn

better metrics t
ework during
e, and integrati
ffort can be sav
ng software m
a high comple
y with the Cla
be fully cove

dified Conditi
e is too comple

he code may n
nd managing th
tage will grea
to change prov
ent cycle.

metrics early
can help iden
pin-point softw

gative impact to
metrics colle
is a limited
. Error! Refe
n example of h
de impact.

d and test se
ese metrics ar
Lite [10] data

CID (Atomicity
t and implem

mits optimum q
little chance o
are currently

al-time operat
must be optim

es a relatively
00 Mhz with

N&C partition
ecute all capa
an 500K. The

for the EFT-1
more softwa

the relative pe
code that hav

lity into which
processing wi
s. Being a
arly stages of t
tion issues l
e keeping sim

CS

oftware projec
n automated
ly collect metr
rough the entir
ned from th
tracking may h
the unit testing
ion phases of t
ved at the bac
metrics early
exity is very d

ass-A software
ered and have
ion Decision
ex, 100% MCD
need to be m

he complexity o
atly reduce thi
ven algorithms

in the project
ntify problems
ware changes
o design param

ection tools
amount of da

erence source
how trends cou

erver is used
re continuously
abase. SQLite
y, Consistency

ments most of
querying for ex
f data corrupti
being collect

ting system w
mized appropria

low powered
a 100 Mhz FS
is only allocat

ability, and ha
e CPU allocat

flight, and t
are capability
erformance wil
ve negative effe
h algorithms ar
ill aid in p
able to cond
the software de
later in the

mulation speed

t is metric
regression

rics on the
re period of
he EFT-1

have helped
g, software
the project.
ck end of a

on. For
difficult to

e standards,
e unit tests

Coverage
DC may be

modified to
of the code
is potential
toward the

t will help
 early. It
that make

meters (like
are under
ata that to
not found.
uld be used

to collect
y collected
e is in the
y, Isolation,
f the SQL
xtraction of
ion. Fifty-
ted for the

with limited
ately. The
Power PC

SB (Front-
ted 7.5 ms
as a stack
tion is less
the GN&C

in future
ll spotlight

fects on the
re utilizing
prioritizing
duct code
evelopment

program..
as high as

p
r
u
s
tr
d
o

T

C
C

U

S

P
P
R
S
r

B

R

M
C

possible is ver
record the buil
useful in dete
simulation buil
rue in the co

development. T
of metrics colle

Table 4. Exam

Metric

Code Cycloma
Complexity

Unit Test repo

SLOC

Profile Report
Per Regression
Run
Stack usage pe
regression run

Build time

Run speed

Model Advisor
Compliance

ry important f
ld and run tim
ermining chan
ld and executi
ontext of the
Table 4 shows
ected on the GN

mple metrics c

atic Code co
early on

orts Useful f
progress

SLOC i
metric f

ts
n

Useful
are utiliz

er
n

Stack i
manage
allocatio
Major c
recogniz
CRs
Simulat
possible

r The pas
modelin

for developme
mes for each re
nges that hav
ion times. Th

lessons learn
 examples of s
N&C flight sof

collected for th

Descript

omplexity sho
n to ease unit te

for monitoring
s of the entire p

is a useful proj
for resource pla

for showing t
zing the CPU t

is limited an
d to stay w
on
changes in bu
zed and isolat

ion speeds sho
e to ease develo

ss/fail data for
ng standards co

Figure 7. E

ent, metrics th
egression test a
e slowed dow

his is particular
ned from EFT
some of the typ
ftware.

he GN&C FSW

tion

ould be manag
esting effort

g the unit testi
project

ject manageme
anning

the methods th
the most

nd needs to
ithin a speci

uild time will
ted to individu

ould be as high
opment

r each model
ompliance

xample illustr

11

hat
are
wn
rly

T-1
pes

W.

ged

ing

ent

hat

be
ific

be
ual

 as

on

The Or
based d
flight c
extende
learned
process
softwar
is a su
softwar
in this p

Challen
FSW
interfac
Solutio
model-

Challen
dispers
Solutio

Challen
Solutio
develop
integrat

Challen
capabil
Solutio
underly
“ancest
compar

ration of softw

rion GN&C te
development o
code for the f
ed that experie
d to improve
ses for a larg
re required for
ummary of c
re developmen
paper.

nge: Provide
can be deve
ces between C
on: A new sim
based design p

nge: Enhance
sed teams opera
on: Utilize git d

nge: Speed up
on: Create a
pment on s
tion and elimin

nge: Implem
lity for Simulin
on: Design and
ying git capab
tor” instances
re these model

ware metrics tr

12. SUMMA

eam has used
of flight softw
first Orion tes
ence to build u
 the develop
ger set of G
r missions beyo
challenges enc
nt and resultin

an environm
eloped quickly

and Simulink.
mulation is built
principles.

collaboration
ating on differe
distributed ver

 model develop
a process th
eparate branc
nate reserved c

ment a usab
nk models.
d implement cu
bility to extrac
, and allow t
s.

rends.

ARY

its experience
ware to produc
st flight. The
upon a number
pment environ

GN&C functio
ond LEO. The
countered duri
ng solutions as

ment where m
y and withou

t natively in Si

between geog
ent secure netw
rsion control.

pment.
at allows fo
ches, with

checkouts.

ble graphical

ustom scripts th
ct “mine,” “th
the developer

in model-
e effective

e team has
r of lessons
nment and
nality and

e following
ing EFT-1
s discussed

model-based
ut TCP/IP

imulink via

graphically-
works.

or parallel
continuous

merging

hat tap into
heirs,” and

to 3-way

 12

Challenge: Standardize the simulation model design,
testing, validation, verification, and documentation.
Solution: Experiences from previous projects have been
applied in the areas of model development. A standard API
to unit test drivers has been created that facilitates creating,
running, and documenting unit tests and associated models.

Challenge: Ease the burden of integrating multiple branches
at once, leading to long integration cycles.
Solution: Responsibility of merging and correcting code is
placed on each individual developer, which allows code
changes to be integrated into the baseline and available for
distribution within a matter of hours.

Challenge: Speed up and automate testing and integration
for individual developers.
Solution: Utilize automated scripts and tools to merge and
test code. Automatically integrate if all of the regression
data are unchanged.

Challenge: Maintain and manage a working, compiled, and
testable version of the autocode concurrently with model
development.
Solution: Utilize automated nightly scripts on build and test
server to autocode and test.

A model-based simulation environment in Simulink
improves the process for development of on-orbit flight
algorithms. Furthermore, a series of process improvements
contribute greatly to the work flow of the team, including
enhanced configuration management techniques for model-
based software systems, automated code and artifact
generation, and automated testing and integration.

ACKNOWLEDGMENTS

To acknowledge all the contributors to the Orion GN&C
model and process development is not possible since it was
a product of a large, diverse team. However, the authors
wish to acknowledge Chris Rossi from Draper Laboratory
and Leon Gefert from the Glenn Research Center.

REFERENCES

[1] Tamblyn, Scott, Henry, Joel, and King, Ellis, A Model-
Based Design and Testing Approach for Orion GN&C
Flight Software Development. IEEE Aerospace
Conference. Big Sky, Montana, 2010.

[2] Henry, Joel R. and Jackson, Mark C., Orion GN&C
Model Based Development Experience and Lessons
Learned. AIAA GN&C Conference, 2012.

[3] The Mathworks online: http://www.mathworks.com/

[4] git online: http://git-scm.com/

[5] NASA’s Navigation and Ancillary Information Facility
online: http://naif.jpl.nasa.gov/naif/toolkit.html

[6] Odegard, Ryan G., et. Al., Configuring the Orion
Guidance, Navigation, and Control Flight Software for
Automated Sequencing. IEEE Aerospace Conference.
Big Sky, Montana, 2011.

[7] Lin, Alexander S., Penn, John M., Trick Simulation
Environment 07, NASA Tech Briefs, June 2012; 17-18.

[8] Walker, Gavin, Friedman, Jonathan, and Aberg Rob.,
Configuration Management of the Model-Based Design
Process. Proceedings of SAE World Congress &
Exhibition, 2007.

[9] Ensoftcorp online: http://www.ensoftcorp.com/simdiff/all-
simdiff-and-simmerge-editions/

[10] SQLite online: http://www.sqlite.org/

r
m
sy
M
R
T
D
U

g
o
th
2
p
M

U
P

R
o
M
P

reliability an
multidisciplinar
systems and a
Member of the
Ryan earned hi
Technology in
Draper Labora
University of A

guidance and
operations for
he Sierra Nev

2006 he joine
previously wor
Martin.

University of
Professional En

Rendezvous an
of the GN&C
Mike holds a B
Purdue Univers

BIOG

Ryan O
engineer
Laborato
NASA on
control a
as syste
design,

nalysis. H
ry system desi
architecture d
e Technical S
is S.M. from th
 Aeronautics

atory Fellowsh
rizona in Mech

Zoran M
Aerospa
State U
M.S. in A
the Univ
His wor
has bee

navigation for
the Space Shu

vada Dream
ed the Drape
rked at Muniz

Joel He
Function
NASA’s
Houston
backgro
engineer
Joel h

Texas at A
ngineer in the s

Michael
Enginee
Aeronau
Adminis
the NAS
developi
Control,

d Proximity op
Engineering t

B.S. degree in A
sity.

GRAPHY

Odegard is a
at the Charles

ory. He has
n guidance, na
architecture de
ems engineer

database
His backgrou
ign optimizatio
development.
Staff at Drape
he Massachuse

and Astronau
hip, and has a
hanical Engine

Milenkovic rec
ace Engineerin
University in
Aerospace Eng
versity of Hou
rk at the Drap
en focused on
r rendezvous
uttle, the Orio
Chaser among

er Laboratory
Engineering

enry is the GN
nal Manager

Johnson Spa
n, Texas.
ound in
ring and comp

has a BSME
Austin and is
state of Texas.

l Buttacoli is
er with th
utics and
stration. He h
SA community
ing software
, Trajectory D
perations. He
team for the O
Aerospace Eng

an aerospace
s Stark Draper

worked with
avigation, and
esign, as well
ring concept
design, and

und includes
on for complex
 Currently a

er Laboratory,
etts Institute of
utics under a
B.S. from the

eering.

ceived a B.S. in
ng from Iowa
2004 and an
gineering from
uston in 2010.
per Laboratory
n the area of
and proximity

on MPCV, and
gst others. In

team having
and Lockheed

N&C Software
for Orion at

ace Center in
He has a

mechanical
puter science.
E from the
s a Licensed

an Aerospace
he National
d Space
has worked in
y for 15 years

for Mission
esign, and ISS
 is now a part
Orion project.
gineering from

13

e
r
h
d
l
t
d
s
x
a

f
a
e

n
a
n
m

y
f
y
d
n
g
d

e
t
n
a
l

e
d

e
l
e
n
s
n
S
t

m

 14

