View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by NASA Technical Reports Server

Model-Based GN&C Simulation and Flight Software
Development for Orion Missions beyond LEO

Ryan Odegard
Draper Laboratory
17629 EI Camino Real
Houston, TX 77578
rodegard@draper.com

Joel Henry
NASA Johnson Space Center
2101 NASA Parkway
Houston, TX 77058
joel.r.henry@nasa.gov

Abstract—For Orion missions beyond low Earth orbit (LEO),
the Guidance, Navigation, and Control (GN&C) system is
being developed using a model-based approach for simulation
and flight software. Lessons learned from the development of
GN&C algorithms and flight software for the Orion
Exploration Flight Test One (EFT-1) vehicle have been applied
to the development of further capabilities for Orion GN&C
beyond EFT-1. Continuing the use of a Model-Based
Development (MBD) approach with the Matlab®/Simulink®
tool suite, the process for GN&C development and analysis has
been largely improved. Furthermore, a model-based
simulation environment in Simulink, rather than an external
C-based simulation, greatly eases the process for development
of flight algorithms. The benefits seen by employing lessons
learned from EFT-1 are described, as well as the approach for
implementing additional MBD techniques. Also detailed are
the key enablers for improvements to the MBD process,
including enhanced configuration management techniques for
model-based software systems, automated code and artifact
generation, and automated testing and integration.

TABLE OF CONTENTS

1. INTRODUCTION ..cctiiiiieeee ettt sisbrraee s 1
2. SIMULINK ON-ORBIT SIMULATIONcceeevrnnnnee. 2
3. SIMULINK VARIANTS ...tttiiiiieei e 3
4, FLIGHT SOFTWARE MODELINGccvvveeieeeeens 4
5. COMPATIBILITY WITH EXTERNAL SIMS.......... 5
6. CONFIGURATION MANAGEMENT ...vvvvveeeeriinnee, 6
7. MODEL MERGINGccvtiiieiieeiniiiiiiieee e snannnns 7
8. SIMULATION VALIDATION, VERIFICATION,

AND DOCUMENTATIONcooiiiiitiiiiieeieeeesssinirrneeea 8
9. AUTOMATED BUILD AND TEST SERVICES........ 9
10. AUTOCODE........ccoitiiiiieie ettt 9
11 METRICS e 10
12. SUMMARY .ooiiiiiiiiiiiiiiiiee et 11
ACKNOWLEDGMENTS....uuvuuerrrinnrnrasennsesnsennnnnnnnnes 12
REFERENCES.......iiiiiititiiie et ssnrrraees 12
BIOGRAPHY ..ovvviiiiiiiiiiiiiiiiirinirssisesssisasesassnsnsnnnanns 13

978-1-4799-1622-1/14/$31.00 ©2014 IEEE

Zoran Milenkovic
Draper Laboratory
1555 Wilson Blvd, Suite 501
Arlington, VA 22209
zmilenkovic@draper.com

Michael Buttacoli
NASA Johnson Space Center
2101 NASA Parkway
Houston, TX 77058
michael.buttacoli@nasa.gov

1. INTRODUCTION

The Orion spacecraft is being developed by NASA to take
humans back to deep space. The first test mission, EFT-1,
will demonstrate many capabilities for extending the human
presence in space beyond LEO. For the Orion GN&C flight
software (FSW), which is responsible for navigating,
guiding, and controlling the vehicle, a model-based
development process has been implemented. Advantages of
MBD in human spaceflight algorithm development on
Orion have been previously described [1, 2]. Specifically,
distinct benefits from MBD have been realized to date on
Orion: removal of the steps of converting GN&C
algorithmic pseudo-code documentation to flight software,
increases in the amount of time spent exercising flight code,
improvements in the processes for producing algorithm
documentation and reviewing algorithm functionality,
implementation of automated checking of software
standards, and development of an automated testing
framework and report generation.

As part of that EFT-1 FSW development process, several
challenges and areas of improvement were identified. These
included configuration management difficulties, code
integration and graphical merging shortcomings,
development complexities related to the simulation
environment, slow simulation execution speed, efficiency of
generated code, and long model build times. To address the
challenges and lessons learned from EFT-1, a number of
improvements have been implemented. The first has been
to develop a medium fidelity, model-based, simulated 6-
degree-of-freedom (DOF) environment using Simulink [3]
in which to exercise flight algorithms. The past use of C-
based simulation environments required additional overhead
and complicated interfaces to the Simulink environment.
The Simulink simulation is also tailored to on-orbit flight
regimes, which allows faster execution speeds. Another
advantage has been the use of Simulink model variants,
which improves build time and allows quickly exercising
different functionality without modifying the models. A
collection of process improvements has been implemented
to address the challenges of configuration management and

https://core.ac.uk/display/42732447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

code development processes. The process improvements
have served as enablers for the Simulink model
development approach for GN&C. Centralization to a
NASA repository has proven beneficial and accessible by
various team members. The use of the git [4] distributed
version control tool has demonstrated great flexibility as a
revision control system tool. It has also simplified the
work-flow and removed dependencies on a host of custom
scripts used for EFT-1 development. A number of
automation capabilities have been utilized to speed up the
software development process. Central to this is the use of
an automated build and test server, which has enabled many
improvements over EFT-1 in the ability to automatically
and continuously test the models and the generated code.
Other improved automation processes include change
request integration, regression and unit testing, code
generation, build artifact generation, and metrics collection.
Previous challenges in performing three-way model merges
have been alleviated by the use of recent capabilities in
Simulink model merging tools, as well as process
improvements for communicating conflicts among team
members.

The following is a summary of challenges encountered
during EFT-1 software development that are addressed in
this paper.

Challenge: Provide an environment where model-based
FSW can be developed quickly and without TCP/IP
interfaces between C and Simulink.

Challenge: Enhance collaboration between geographically-
dispersed teams operating on different secure networks.
Challenge: Speed up model development.
Challenge: Implement a usable graphical
capability for Simulink models.

Challenge: Ease the burden of integrating multiple branches
of development at once, leading to long integration cycles.
Challenge: Speed up and automate testing and integration
for individual developers.

Challenge: Maintain and manage a working, compiled, and
testable version of the auto-generated FSW code
concurrently with model development.

merging

2. SIMULINK ON-ORBIT SIMULATION

The primary improvement in the model-based development
process for the Orion GN&C FSW development has been to
build a medium fidelity, model-based simulation
environment using Simulink. This differs from the previous
approach for the EFT-1 GN&C development that used high
fidelity, C-based simulations. For development prior to the
preliminary design review (PDR), the medium fidelity
simulation allows faster development while maintaining
adequate accuracy for the maturity required. Furthermore,
running the C-based simulation with Simulink requires
multiple processes communicating via TCP/IP socket
connections, which adds complexity and 1/0 overhead to the
simulation execution process. There are initialization steps
on both the simulation side and the Simulink side that take
minutes to execute prior to each simulation run. Running
both the C-based simulation and the Simulink models also
requires developers to be proficient in multiple
programming languages for development and debugging,
whereas a Simulink only environment alleviates that
requirement to a large degree. This allows for designers to
better understand each other’s work, provides the ability to
share developer resources if needed, fosters more
opportunities for reuse across the team, and provides a
common look and feel to the subsystem design that benefits
the review and code audit steps in the verification and
validation process. Also, engineers new to the project do
not need significant training on initialization scripts and
simulation tools prior to starting algorithm development.
Overall, having the simulation models in Simulink reduces
the complexity of interfacing with the FSW models,
streamlining and simplifying the simulation initialization
and execution processes.

The Simulink-based simulation has been dubbed FLASHE
(FLight Algorithm Simulation Environment), and the
collection of flight software models is called RAMSES
(Rapid Algorithm Matlab/Simulink Engineering
Simulation). Figure 1 shows the top level Simulink model
that contains the FLLASHE simulation and the RAMSES
flight software models. Each has a corresponding data
logging block for recording output variables to file for a
simulation run.

LASHE
DO IS
sEmWithoutF s
datalogging_Flashe
smData #{Log_In [=Y 8 o @] /—16__-;.
L A IYilS It['.—_."
datal Flash
s cosama e ononSimulatedF sw dntaLoqqunq_Ra'n!s
=0 ut Log_In
smToFsw ﬁﬁl »amToFsw
datalogging_Ramses
wToSim
smW thoutFsw_mref orionSimulatedFsw_mref “

Figure 1. Top-level simulation model.

FLASHE includes a number of models that represent the
Orion vehicle and its environment. These include dynamics
models to represent the effects of gravitational forces,
vehicle forces and torques from thruster and engine firings,
atmospheric and aerodynamic effects, and solar pressure
effects for quiescent flight outside LEO. Simulink provides
a variety of options for performing differential equation
integration, including such solvers as odel5s, ode23tb,
ode45, etc., with both fixed-step and variable-step options.
Because the RAMSES FSW models are required to execute
as a fixed rate, as they would on the vehicle target
processor, a custom, 4" order Runge-Kutta integration
method is implemented in the vehicle dynamics and found
to be sufficient in terms of accuracy and computational
speed.

There are also models that represent the sensors on the
Orion vehicle used for navigation purposes, such as Inertial
Measurement Units (IMUs), Global Positioning System
Receivers (GPSRs), Star Trackers (STs), and Barometric
Altimeters (BAROs). Mostly inherited from development
done on EFT-1, these models emulate the sensors on the
vehicle, which the navigation software uses to estimate the
vehicle state.

The effector models in FLASHE include a Reaction Control
System (RCS) thruster model, Auxiliary (Aux) jet model,
and a main engine model with Thrust Vector Control
(TVC). The Simulink implementation of the RCS and Aux
models reuse the same model reference block by passing in
different model reference parameters that specify the thrust
locations, directions, and magnitudes. The RCS model is
also reused between the Orion Service Module (SM) and
Crew Module (CM) models. The main engine and TVC
models represent the expected behavior and performance
when Orion executes large magnitude burns.

Finally, FLASHE has also been configured with a simple
target vehicle model to simulate rendezvous and docking
with another spacecraft.

All of the model references in FLASHE utilize model
reference parameters that are collected in a workspace
structure organized hierarchically that corresponds to the
model hierarchy. The parameters as passed into the models
can be changed between runs without requiring
recompilation of the models.

Data Logging

Logging of data in Simulink has been a challenge for Orion
GN&C development. The lack of data configurable logging
capabilities in Simulink led to a custom file-writing model
for EFT-1. This model can be reconfigured to allow logging
Simulink model output data to file. The two main
advantages are that it does not require changes to the
algorithmic models themselves in order to alter what data
signals are logged, and it writes data to disk during the run.
Native Simulink capabilities do not support either of these
options. For long simulation runs with many models, it is

critical to be able to configure which data are logged,
because there is a significant impact on run speed when
large amounts of data are logged during the run. For the
more recent FLASHE and RAMSES development, an
alternate approach is taken primarily due to the length of
time required to update the custom data logging model.
With recent support for 64-bit MATLAB installations, it was
decided to focus less on writing data to disk during the run,
and develop a fast, reconfigurable data logging capability
utilizing native Simulink capabilities. This approach relies
on regeneration of a Simulink model in which the Simulink
logging specifications are set programmatically for both
FLASHE and RAMSES outputs. The variables to log and
the desired rates are set in one or more text-based data
record files, and the logging model can be regenerated
within seconds. This is an improvement over the previous
custom recording model, which takes several minutes to
rebuild. The data record files containing the signals to log
can be either leaf-level elements or bus signals, and can
support arrays of bus signals, as of MATLAB 2013a.

L]

$DW_RCS_0B>
IBORTZ_ATT_ERR>
SRATE_ERR>
srcs_on_times>
srcs_pdu_cmd_times>

$TimeTag>
sR_CG_WRT_EarthO_ICRF>
#V_CG_WRT_EarthO_ICRF_ICRF>
¥W_OB_WRT_ICRF_OB>

Y VY YY Y Y

y

FAR_CG_MSL>

5>

busSeletYdr

MMmmmmmmmmmmmm

Y Y9

This model autogenerated by setupRecordMd.m

Figure 2. Automatically generated logging model based
on configurable signals and recording rates.

3. SIMULINK VARIANTS

One key feature of Simulink that has been leveraged in
model development for FLASHE and RAMSES is the use
of model reference variants. Introduced in MATLAB version
2009A, model variants provide a data-driven method for
reconfiguring a model with a different implementation. For
the Orion GN&C project, model variants are used to easily
switch between models without modifying blocks or
interfaces. For example, one variant of a gravity model
implements a point-mass, a second implements a gravity
model that accounts for the oblateness of the Earth (J2
effect), and a third implements higher-order gravity effects.
By setting variables in the MATLAB workspace, a
conditional setting of the Simulink block determines which
variant gets executed.

The primary way in which model variants have been used is
to create empty “stub” reference blocks for some of the
models. This allows the exclusion of a set of code from
being compiled and run for a certain simulation. The main
use of this concept in FLASHE is the creation of stub sensor
models. Instead of representing how the sensor hardware
behaves according to the environmental conditions and
dynamics, the stub models merely pass through the “true”
state of the vehicle, as calculated in the dynamics models.
When the details of the performance of the sensors is not
important for a certain set of GN&C analysis, then this
“perfect navigation” setup saves the developer time in
building (and rebuilding) the complex sensor models during
development.

Another variant implementation in FLASHE has been two
alternatives for modeling the planetary ephemeris
information. The first variant uses a MATLAB
implementation of the SPICE system [5], computed during
the simulation, for establishing planetary body ephemerides.
A second variant uses a table lookup routine that removes
any run-time dependence on the SPICE libraries. This
offers flexibility in running lower overhead or higher
fidelity models with just the change of a variable in the
MATLAB workspace.

On the RAMSES side, model variants have been used to
include model code in the project repository for all Orion
phases of flight, but not require compilation and execution
of all the code for simulation runs. During previous
iterations of development prior to model variants, the
Simulink architecture for integrating GN&C code for flight
phases ranging from ascent to on-orbit to entry and landing
proved challenging from the perspectives of interface
management and build and execution speed. Even quiescent
on-orbit simulations carried the overhead of atmospheric
algorithms designed for highly dynamic periods. With
model variants, simulations involving flights around the
moon do not require the inclusion of models that are built
for ascent abort logic and control, nor entry, descent, and
landing algorithms. Yet the overall architecture is
maintained and managed easily because the interfaces
between those models are unaltered with the use of “stub”
model variants. From a flight software integration and
maintenance perspective, this has proven to be of great
benefit.

4. FLIGHT SOFTWARE MODELING

The GN&C flight software is broken up into a series of
functional “domains” that compartmentalize portions of the
logic and code. The algorithms for GN&C are specific to a
given functional domain, so each is grouped into one of the
domains shown in Table 1.

Table 1. List of GN&C Flight Software Domains

Flight Software
Domain Abbreviation

Description

CNC Crew Module Controls
CNL Launch Abort System Controls
CNE Engine Controls

CNP Propulsion System Controls
CNS Service Module Controls
GDA Ascent Guidance

GDE Entry Guidance

GDO Orbit Guidance

GMP GN&C Mass Properties
NVA Absolute Navigation

NVE Ephemeris Navigation
NVR* Relative Navigation

* NVR is not implemented as rendezvous and docking are not
planned for near term Orion missions.

The flight algorithms for each of these domains are
developed in Simulink with the exception of the CNE and
CNP domains, which are written directly in C++. The rest
of the domains are integrated into the RAMSES modeling
for the development and testing of those flight algorithms.
As shown in Figure 3, the “integrated” model variant for
RAMSES consists of all of these domains.

RAMSES Integrated

| NVA | | NVE | |{Z|l:.-'-. | |1:.[}{'}| I GDE | |iﬁul,ll'l I C NI I | NI [[CNS I

Figure 3. RAMSES "Integrated' variant inclusive of all
the GN&C FSW.

As mentioned in the previous section, the use of model
variants in the modeling of the GN&C flight software in
Simulink has allowed greater fine-tuning of flight-phase-
specific simulation performance. Specifically, much of the
on-going work for Orion is geared toward further
exploration of the Moon and beyond, which includes
primarily on-orbit GN&C functionality. As a result, much
of the development and analysis is independent of the
algorithms related to atmospheric flight. Therefore, an
“orbit” model variant is established, which includes the
domains shown in Figure 4. By using the orbit model
variant, there are 73 fewer models that need to be built and
run in the simulation.

RAMSES Orbit

] [

Figure 4. RAMSES "Orbit" variant inclusive of only
the on-orbit GN&C FSW.

In addition to the “integrated” and “orbit” variants of the
FSW, there is also a big advantage in being able to run
perfect navigation. As mentioned in the previous section
describing the FLASHE variants for stubbing out the sensor
models, perfect navigation can also be used to exclude the
navigation flight software, which comprises approximately
60% of the total GN&C code. In effect, the navigation state
sent to the guidance and controls domains represents the
“truth” state, rather than the state that would be estimated
on-board from incorporating measurements from the
navigation sensors. Not only does perfect navigation
provide time savings when compared to full absolute
navigation, but perfect navigation capability is essential for
development and analysis of guidance and control
algorithms.

There are actually two additional navigation-related variants
that can be exercised in FLASHE/RAMSES. One is to use
the perfect navigation state in the guidance and controls
FSW, but to run the sensors and navigation algorithms in
parallel. This allows assessment of the navigation
performance but without effect on the control of the vehicle.
Secondly, a stochastic navigation variant is setup, which
provides a means of non-deterministically perturbing the
true state to represent the type of estimation done by the
navigation flight software. This implementation provides an
incrementally higher level of fidelity for guidance and
controls analysis, without the need to include the navigation
sensors or flight software models in the simulation. Table 2
summarizes the navigation variants used in
FLASHE/RAMSES. By using perfect navigation, there are
168 fewer models that need to be built and run in the
simulation.

Table 2. Summary of navigation model variants.

Passive

Nav Variant Active Nav Nav Sensor .
Name Pathway Pathway Models Description
(to G&C) Used?
(for telem)
PerfectNav Perfect n/a Off Perfect Nav
PerfectNav_ Perfect NVA On NVA and
NVAProcessing Sensors
running for
telemetry
RealNav NVA Perfect On NVA running
and used by
G&C
StochasticNav ~ Stochastic Perfect Off Truth state
perturbed

Figure 5 shows the switching logic implementation in
Simulink for configuring the perfect navigation variant in
RAMSES.

| .
<NVAout_40Hz_Actve>
- -

fsw40HzData

I <NVAOUL_40Hz_Passive>

Figure 5. Perfect navigation switching.

The other benefit of being able to integrate all of the flight
software models into the same RAMSES architecture is for
the common GN&C executive software that controls the
sequencing and execution of all of the GN&C domains.
Within the GN&C Command Interface (GCI) flight
software domain lives the executive sequencer and GN&C
command handler software. This domain is responsible for
triggering and configuring the appropriate algorithms at the
appropriate time, based on data-configurable input files.
Because this software executes during all phases of flight, it
has been crucial to be able to maintain a common GCI code
base for the integrated set of FSW code. If, alternatively,
there were separate repositories or Simulink
implementations for different flight phases, it would be
stressing on the maintenance of the common GCI software.

Another set of common code that has benefitted from the
model-based design approach wusing Simulink model
variants is the tool set that is used to data-configure GClI,
known as the Phases, Segments, Activities, and Modes
(PSAM) Tool [6]. The acronym PSAM refers to the
hierarchical portions of the mission timeline. The major
divisions of the mission are the phases, such as ascent, on-
orbit, and entry. The phases are subdivided into segments,
which comprise vehicle-level goals, such as performing an
on-orbit burn, or coasting in a particular configuration.
Within the GN&C subsystem there are specific objectives
within a segment that are referred to as activities. Within a
burn segment, the GN&C activities include maneuvering to
the burn attitude, performing a main engine burn, executing
a trim burn if necessary, and assuming a post-burn attitude.
For each activity, the GN&C domains are in specific modes
that control which algorithms are executing. Furthermore,
the configuration parameters for the algorithms, such as
thresholds, limits, deadbands, etc., are specified for a given
activity. The GN&C activities, modes, and parameters are
sets of data that are configured with the aid of the PSAM
Tool, and loaded into GCI for execution throughout the
mission. For an integrated set of RAMSES FSW models,
the maintenance of the PSAM Tool enjoys the same benefits
of a common code base as does the GCI domain.

5. COMPATIBILITY WITH EXTERNAL SIMS

While the FLASHE simulation environment has shown
numerous benefits in doing rapid FSW development for
orbit algorithms, more formal analysis and testing after PDR
for the Exploration Mission-1 (EM-1) to the moon will

require other higher fidelity C-based simulations. For this
reason, and because FLASHE is not intended to support
ascent or descent and landing phases of flight, an interface
to NASA’s Trick Simulation Environment [7] has been
updated to work with the 2013a version of MATLAB. Data
being passed between the Trick simulation and the FSW in
Simulink are exchanged via TCP/IP socket connections
using custom s-functions, as was done for EFT-1.

There are two main aspects of the interface between Trick
and RAMSES. The first is that the input/output data must
be maintained, and can then support multiple other Trick-
based simulations. There are likely two Trick-based
simulations that will require interfacing with the GN&C
FSW in RAMSES, so the development in Simulink and with
FLASHE will ensure the Trick interface is maintained. The
current FLASHE regression testing includes a check that
these interfaces do not break as development progresses.

The second main aspect of the RAMSES interface to the
Trick simulations is that the FSW functionality remains
consistent across simulation environments. The FLASHE
regression testing is also exercising a subset of the
functionality that is unique to the Trick simulation, in that it
is part of an ascent profile which is not the primary role of
FLASHE. Thus, the GN&C FSW, as developed in
RAMSES, is maintained for operation in both Simulink-
and Trick-based simulation environments.

6. CONFIGURATION MANAGEMENT

One of the biggest challenges in the Orion GN&C FSW
development, both before PDR and leading up to the EFT-1
flight test, was configuration management. While MBD
affords many benefits over the course of a project, having a
large, geographically dispersed team across many
organizations makes working with graphical models
particularly challenging. The first hurdle in working with
many organizations is dealing with separate information
technology (IT) and security requirements; finding a method
in which all team members can share information has never
been a trivial problem. Secondly, the set of tools for
managing the work of many team members must be both
robust and easy to use in order to facilitate deploying flight
software. While solutions were found for both of these
problems for EFT-1, they were not ideal and recent work
has largely improved these aspects of the GN&C
development process.

Members of the Mathworks team have described
configuration management techniques in the context of
Simulink model development [8]. The Orion GN&C team,
however, has learned two important lessons for successfully
carrying out Simulink model development with dispersed
organizations: establish easy access to a configuration
controlled repository and utilize tools that ease distributed
development.

Simulation model and flight software development for EM-
1 has utilized servers at NASA’s Johnson Space Center
(JSC) to centralize code and model repositories. While
organizations often limit internal network access due to
security and intellectual property reasons, the roles of Orion
contractors with NASA already include the contractual
agreements required for a collaborative work environment
on JSC servers. As a result, there have been far fewer, and
more minor, issues related to GN&C developers having
access to the JSC repositories.

The configuration management tool that greatly aids the
Orion GN&C configuration control process has been git, an
open-source, distributed revision control system. Git has
been successfully used for large projects such as the Linux
kernel and has a large user base. Because git is a distributed
source code management system, there is no dependency
upon a server connection to manage file revisions.
Furthermore, because each developer has a complete history
of a repository locally, actions in git are faster than a
centralized system. In fact, compared to the EFT-1 code
management database, git is one to two orders of magnitude
faster on common operations such as creating a new
repository and checking the status of file modifications.

With other revision control tools used in the past, there was
a need to develop a set of custom scripts that managed a
“view” of the source code. These scripts provided two main
functions: enabling interfacing with different simulation
environments, and segregating the source code under
configuration management from the generated artifacts.
When working in a view, the custom scripts managed the
interactions between the simulation and the RAMSES
models in Simulink to simulate a mission run. Also, the
execution of Simulink models involves the generation of
executable artifacts (i.e. .mex* files). When present in a
configuration controlled area, these mex files are potentially
a hassle to separate from the maintenance of the source
code. The use of git makes this problem obsolete with the
ability to ignore certain files or types of files. Therefore the
dependence on custom scripts and “views” were completed
eliminated by using git.

In addition, git is particularly adept at non-linear
development, where branches and merges are common,
easy, and fast. This has made collaboration for FLASHE
and RAMSES development much easier than in the past.
Previously, exchanging source code between organizations
was done via one of two inconvenient methods: post source
file(s) to a secure website where it could be downloaded by
another developer, or wait for the periodic synchronization
of databases between organizations, which was as
infrequently as once per week. With access via simple ssh
connections to the common JSC servers and with git
merging capabilities, exchanging and sharing work is
significantly more efficient.

Another improvement in the FLASHE/RAMSES
development for EM-1 has been the code integration
process. The two process approaches used previously were

1) monthly submissions of code changes to an integration
team, and 2) a small team responsible for all changes
directly incorporated into the primary FSW code database.
The first approach was used early on in the project when
there were more GN&C developers doing parallel
development without efficient means of recombining the
work. The monthly integration process was a large and
challenging effort for reasons including limited tools for
merging distributed changes, long integration periods, and
simultaneous code changes to graphical models that were
difficult to merge. It was not uncommon for the process of
integrating all of the code changes to take up to a month,
which left essentially no time for developers to include their
new updates into the latest baseline. This process was
inefficient for all involved. When the EFT-1 flight test
mission was established, the GN&C team moved into more
of a production mode with a limited team involved in
making direct changes to the GN&C models and code.
Members of the small team could see updates immediately,
but the larger community was required to wait for baselines,
which were generally months apart. For developers who
were not on the small team, their work was done on top of a
baseline release. That work was then sent to a team member
who could integrate it into the configuration management
tool, but those steps were accomplished via email or posting
to a common area, completely outside of the CM tool. If
any other changes had occurred in parallel, those had to be
manually merged or reapplied. None of these interactions
utilized features which configuration management tools are
intended to provide.

The process that has been implemented more recently with
FLASHE/RAMSES development has been an automated
continuous integration process. Scripts running in the JSC
lab monitor for requests for integration from GN&C
developers. This request comes via a web-based issue
submittal page where the developer specifies the location of
his or her repository as well as the git branch containing the
work. Then a series of regression tests are automatically
started. If the developer’s work merges properly and passes
the regression tests, then it is automatically merged into the
“central” repository for others to retrieve. If the merge with
the developer’s branch or the regression tests fail, logs are
created and made available on the issue page for review.

The automatic and continuous nature of the integration
process takes advantage of the best aspects of the previous
integration processes, while also adding automation that
saves a lot of time. Like the process used for the small
production team on EFT-1, the developer is responsible for
keeping up to date with progress and work being integrated
into the central repository. For example, if a developer has
not merged the latest work into his or her branch prior to
requesting integration, it is possible that the merge will
contain conflicts. Instead of the responsibility for cleaning
up the merge conflicts being the job of an integrator, it is the
responsibility of the developer to properly merge in the
latest from the central repository to ensure the automatic
integration process runs to completion. Because integration

takes place continuously, a developer can pull the latest as
often as multiple times per day, with low overhead, in order
to incorporate small changes more frequently to make tasks
that take a long time to complete easier to manage. Another
improvement over past processes is that the regression
testing is completely automated, as long as the data used to
verify the regression tests do not change. For the production
team on EFT-1, it was important that changes were not
introduced that inadvertently caused simulation runs and
tests to fail. At times this could be a burden because of the
amount of time it took to build and execute all the models
and tests. With an automated process, it is simpler and
faster for a developer to rely on an automated regression and
verification process to take the time to build and execute the
models, while the developer’s time and computer resources
can be freed up for other productive uses.

7. MODEL MERGING

Another common challenge with model-based development,
specifically with graphical models, is model merging. For
ASCI|I, text-based files, there is a long history, familiarity,
and simplicity with merging multiple changes to the same
file. Finding the differences in one or more lines of source
code is relatively straightforward, so merging can be
automatic when there are no conflicts between the changes,
or can be compared side-by-side when the changes conflict
with one another. Although the .mdl format for Simulink
models are text-based, it is not straight-forward to merge
these text files and still have a functioning graphical model
in Simulink. As a result, model differencing and merging
requires being able to view the Simulink models
themselves, not the text files.

In the past, the Orion GN&C team experimented with third-
party differencing and merging tools called SimDiff and
SimMerge by Ensoft [9]. Recent releases of MATLAB have
introduced tools for merging Simulink models. The
Simulink tools are capable of finding and merging small to
medium sized differences in models but cannot
automatically track large changes, which is true even of
text-based merging. For Orion, the GN&C flight software
team has not required specialized licenses for model
development; only MATLAB, Simulink, and Stateflow are
needed. The Simulink merging tool, however, is only
available with the Simulink Report Generator toolbox, so
license costs are a deterrent and hindrance for many GN&C
developers. As a result of this limitation, the GN&C team
has customized the interaction between git and Simulink
.mdl files, and also developed a process that facilitates
conflict communication between model developers.

When conflicts occur when merging text files in git, the
syntax convention of “<<<<<<” and “>>>>>>" is used to
indicate modifications made by the developer doing the
merge, the work being merged into, and the common
ancestor. For Simulink .mdl files, these modifications
inserted by git prevent an executable model from being

opened in Simulink. A customization of the attributes of git
has been implemented to instead create three separate .mdl
file instances: “theirs,” “mine,” and “ancestor.” With this
specific handling of merge conflicts of .mdl files, the
Simulink model differences can be viewed either side by
side, or with other model merging tools.

There are some very beneficial aspects of git being a
distributed revision control system whose utilities have been
described in previous sections. One challenge in Simulink
model development without a centralized repository on a
server that maintains “checkin/checkout” write privileges is
avoiding model conflicts altogether. There is nothing to
prevent developers using git to both modify the same .mdl
file simultaneously, which is more difficult to merge
(regardless of what merge tools are available) than a plain
text file. To address that issue, a script has been developed
that gives insight to all developers what .mdl files are
currently being modified. This script works by querying the
branches of GN&C developers’ repositories and finds .mdl
files that have been modified. This list of modified model
files is updated multiple times per day and posted to a
webpage wiki for developers to review. Although there is
no guarantee that .mdl conflicts are eliminated, this
capability and the information derived are useful for
identifying potential or existing conflicts early. An
important aspect of the process regardless of the tools is
communication amongst developers. For example, if a
developer sees in the .mdl list another person working on
the model he or she wishes to modify, a phone call can
clarify if work schedule arrangements should be needed in
order to cleanly merge both sets of model work. The other
main procedural approach used on EFT-1 has been to assign
a single point of contact to each algorithm, to avoid
unnecessary model merging conflicts.

8. SIMULATION VALIDATION, VERIFICATION,
AND DOCUMENTATION

As with any software, ensuring that the behavior of the code
meets expectations is a tedious and detail-oriented task. The
Orion GN&C FSW for EFT-1 has undergone a very
thorough process that certifies that the software has been
built correctly and that it meets the specifications laid out in
the requirements. For the FLASHE simulation, the fidelity
of the software need not be as high as it is for a human-rated
spacecraft, but determining what fidelity to implement is an
important question and a task on its own. For example,
there are two models for determining the ephemerides of the
celestial bodies: the ephemeris interpolation tables, and the
SPICE libraries. The SPICE libraries are of the highest
fidelity, while the ephemeris tables—which interpolate
between SPICE data—have less fidelity. The analyst should
trade simulation execution speed and model fidelity in order
to determine which of the models to use.

Prior to determining whether a model is valid, a level of

expectation must be set forth for each model, as described in
Table 3. The cornerstone of FLASHE model validation is
the question of whether the model produces the correct
results. At a minimum, the unit tests should prove that the
fundamental algorithms in the model produce the correct
result. The unit test data can be compared against analytical
answers, results from other simulations with validated
models, hardware test data, flight test data, etc. In the
aforementioned example of the ephemeris tables, the results
can be compared to SPICE data. A template for building
unit tests was developed. This template provides a unified
interface for calling unit tests throughout the FLASHE code
base, allowing the entire validation test suite to be called
from a single top-level function.

Table 3. FLASHE model standards.

Validation Criteria Description

Each model should be allow
independent, stand-alone
configuration, revision management
Each model reference block should
utilize structured model reference
parameters for constants that are
used within the model

Each model should use utilities from

Model Reference

Structured
Parameters

Uses standard

utilities the standard library

Default initialization ~ Each model should have a standard

data file parameter data initialization file
used to configure the model

Unit tests Each model should have a standard

unit test suite used for validation
purposes

Each model should have a standard
set of documentation

Documentation

In addition to testing code, the unit test template contains
example documentation based on MATLAB’s native m-file-
to-HTML publishing capability. The MATLAB Report
Generator toolbox also has capabilities to generate HTML
files containing hyperlinked images of models in Simulink
and Stateflow. These reports are collected and linked
together for easy distribution and review. Furthermore, the
website wiki used for the project can directly tie in to the
repository of artifacts, making it possible to review current
documentation on any model merely by navigating to the
project webpage, thus removing the need to maintain
equivalent documentation in separate locations.

While having unit tests for each model provides proof for
the accuracy of the overall simulation, it is not practical for
each developer to run the gamut of validation tests. Rather,
for day-to-day simulation development and code updates, a
set of regression tests have been designed. The idea behind
the regression suite is two-fold. The first objective is to
exercise each simulation model at least once prior to
submitting changes for integration. The second objective is
to test an integrated simulation run, providing a way to

check that interfaces have been properly built. Thus, the
regression tests provide an answer to the verification
question: “Does the simulation continue to perform as
expected?” A set of verified regression data is available for
comparison to the developer. The data also serve as gate-
keepers for integration of submitted changes.

9. AUTOMATED BUILD AND TEST SERVICES

As mentioned in Section 6, a continuous, automatic
integration process has been implemented. This approach
has provided substantial time savings and robustness for
development. It includes automated builds and testing, and
when each task of work correctly passes the regression
testing, the main repository is updated automatically.

The popular and open web based service Redmine is being
used as a centralized front end for communicating and
coordinating regular change traffic with the git repositories.
The Redmine interface provides a simple and intuitive
mechanism to create, assign and update software Change
Requests (CRs). Furthermore, email notification alerts are
sent as the state of a CR changes throughout its lifetime.
Any CR written into Redmine maintains a current state.
These CR attributes can be queried through an HTTP-based
protocol called the REST (REpresentational State Transfer)
API. This feature has been utilized by building several bash
shell scripts that check the state of all Redmine CRs using
curl to communicate through the REST APl. When a CR is
changed to “ready for testing,” a merge between the CR and
the main-line repository occurs in a temporary candidate
area. After a successful git merge, the candidate software is
built and tested. If the merge, build, and test procedures go
smoothly, the script will push the candidate repository
changes back up to the main-line repository. Regardless of
the pass/fail outcome, the shell scripts will update the CR
status in Redmine and attach a log of the entire procedure
from start to finish using the REST API.

Continuous Services

The services of Redmine and the REST API described
provide a simple interface for single-shot builds. In order to
provide continuous and repeating services, a third open
source tool is being utilized called Jenkins. Jenkins offers a
clean and intuitive front end for scheduling command line
processes. The tool tracks the execution time of any job it
launches, and automatically sends emails out in the event of
a failed job. Jenkins detects pass or fail based on the return
status of the bash script.

Jenkins is configured to run the CR merge, build, and test
script every 15 minutes throughout the day. Thus, a
developer who has finished their CR work can merely go to
the Redmine interface and set their CR state to “ready for
testing.” ldeally within 15 minutes, the scheduled Jenkins
job picks up on the changed state and commences the
testing process. One important note is that within any

configured job, Jenkins will not launch a new process unless
the last job has already completed.

Nightly Builds

Jenkins jobs are also configured to perform nightly builds of
the project. These jobs use the same underlying engine as
the merge, build, and test described above, only they do not
query Redmine for new CRs, nor are any merges performed.
The test suite for nightly builds is larger than the CR
process. This is to exercise a gamut of unit tests and other
more extensive integrated testing without being a burden on
resources during work hours. Should any one of these jobs
fail, email notification goes out to the project leads with
information on the reason for failure. This allows
troubleshooting to take place before other CRs are
introduced on top of a broken build.

The results of these nightly builds are not merely discarded.
They represent a significant time and CPU investment, and
thus the build artifacts they produce during successful
executions are copied back to public areas. These build
artifacts can be used by other users through a process coined
“winking in” or “winkin” as a quick way to boot strap a
newly cloned source code repository.

Winking In

Building large MATLAB/Simulink projects such as
FLASHE/RAMSES requires MATLAB to do a significant
amount of processing to generate its .mex object files. Early
in the project it was realized that the MATLAB build artifacts
from one build area could be copied into a second area,
enabling code in the second location to run without any
further building by MATLAB. Copying files is significantly
faster than building them from scratch. As long as the
second area contains the same source code as the first area,
a user can entirely forego the build process by just copying
the artifacts from the first area and globally updating
embedded path information in some of the text files. This
procedure of copy and update has been coined “winkin”.
Winkin of the build artifacts (around 33,000 files) from a
pre-built area such as the nightly build area is an order of
magnitude faster than performing an entire rebuild. While it
can take up to two hours to build all the Simulink models
serially, and up to about 45 minutes using MATLAB’S
Parallel Computing Toolbox, winking in the build artifacts
takes only about five minutes.

10. AUTOCODE

One of the biggest benefits of the MBD process is the
ability to automatically generate production code directly
from the source models very early in the software design
cycle. This gives the project the ability to put many “miles”
on the software and find potential software issues starting as
early as pre-PDR. Commonly referred to as “autocoding,”
the GN&C flight software process uses the Simulink
Coder™ product to generate C++ flight code from the
Simulink models in RAMSES.

Focusing too much on the software performance early in the
project can slow down development if excessive emphasis is
put on the low level code. Generating code can also take a
long time and slow development if tested excessively. The
generation and verification of the autocode, however, has
been automated via the build and test server. Instead of
requiring developers to run all of the regression runs on the
the compiled autocode, the build and test server handles the
steps automatically in the nightly runs. Using the Software
In The Loop (SIL) mode in Simulink, the production C++
code is generated, compiled, wrapped in an s-function, and
executed closed-loop with the FLASHE simulation. The
same CR regression suite is run with the same logged data,
and the pass/fail criteria are used to determine the success of
the simulation. Figure 6 illustrates the only visual
difference that would be seen for the different simulation
modes. After PDR, the software verification will become a
more integrated part of the FSW development process. The
GN&C FSW team is planning to add Processor In The Loop
(PIL) runs for as well, leveraging the automated build and
test server. While SIL mode uses the same compiler that is
used for the Simulink models, PIL mode uses an emulated
GreenHills Integrity target that matches the Orion flight
computer target.

Execution Method
4 orionSimulatedFsw N
fswOut }—
Normal | p}simToFsw
fswToSim}—
AN /]
orionSimulatedFsw_mref
4 orionSimulatedFsw
(SIL) fswOut
SiL —pf simToFsw
fswToSim
B
orionSimulatedFsw_mref
orionSimulatedFsw
(PIL) fswOut
PIL simToFsw
fswToSim
orionSimulatedFsw_mref

Figure 6. The GN&C RAMSES FSW model in Normal,
SIL, and PIL modes.

10

11. METRICS

An important part of any large software project is metric
tracking. A major advantage in automated regression
testing is the ability to continuously collect metrics on the
FLASHE and RAMSES models through the entire period of
development. A lesson learned from the EFT-1
development is that better metrics tracking may have helped
to avoid issues and rework during the unit testing, software
standards compliance, and integration phases of the project.
A lot of time and effort can be saved at the back end of a
project by managing software metrics early on. For
example, code with a high complexity is very difficult to
fully test. To comply with the Class-A software standards,
all flight code must be fully covered and have unit tests
proving 100% Modified Condition Decision Coverage
(MCDQC). If the code is too complex, 100% MCDC may be
unachievable and the code may need to be modified to
comply. Tracking and managing the complexity of the code
from the pre-PDR stage will greatly reduce this potential
rework and the need to change proven algorithms toward the
end of the development cycle.

Collecting software metrics early in the project will help
provide trends that can help identify problems early. It
becomes simpler to pin-point software changes that make
either positive or negative impact to design parameters (like
stack). As the metrics collection tools are under
development, there is a limited amount of data that to
provide useful trends. Error! Reference source not found.
is an illustration of an example of how trends could be used
to identify a large code impact.

The automated build and test server is used to collect
weekly metrics. These metrics are continuously collected
and stored in a SQLite [10] database. SQLite is in the
public domain, is ACID (Atomicity, Consistency, Isolation,
Durability)-compliant and implements most of the SQL
standard. This permits optimum querying for extraction of
large data sets with little chance of data corruption. Fifty-
four unique metrics are currently being collected for the
GN&C FSW.

When targeting a real-time operating system with limited
power, the software must be optimized appropriately. The
Orion spacecraft uses a relatively low powered Power PC
750FX clocked at 400 Mhz with a 100 Mhz FSB (Front-
Side Bus). The GN&C partition is only allocated 7.5 ms
each second to execute all capability, and has a stack
allocation of less than 500K. The CPU allocation is less
than 80% of that for the EFT-1 flight, and the GN&C
partition will have more software capability in future
missions. Tracking the relative performance will spotlight
changes made to the code that have negative effects on the
performance. Visibility into which algorithms are utilizing
the most CPU processing will aid in prioritizing
optimization efforts. Being able to conduct code
optimization in the early stages of the software development
eases CPU allocation issues later in the program..
Furthermore, because keeping simulation speed as high as

Sample Partition Stack Usage - Example

300
Maximum Allocated: 256 Kb
250
20% Margin
P - e ———— — —— — — — ———_—_—_ -
I
|
E‘ i . Bample change after major
= 150 i "__/' software optimization change
a /——-..._ |
A '
[
o |
I
I
|
G — ;
I
I
Current Data | Exarmple data only
" " a a a 2 = = 2 = -1 = -1 = 2 = - - a
A 8 ; & 5 - - - - - o &
2 & 8 § & a & §I & 3§ = 2 3 2. .o
~—leoAttHold Month
==|eoBurn
auxOffPulse

leoAttHold - example future
leoBurn - example future
auxOffPulse - example future

Figure 7. Example illustration of software metrics trends.

possible is very important for development, metrics that
record the build and run times for each regression test are
useful in determining changes that have slowed down
simulation build and execution times. This is particularly
true in the context of the lessons learned from EFT-1
development. Table 4 shows examples of some of the types

of metrics collected on the GN&C flight software.

Table 4. Example metrics collected for the GN&C FSW.

Metric

Description

Code Cyclomatic
Complexity

Unit Test reports

SLOC

Profile Reports
Per Regression
Run

Stack usage per
regression run

Build time
Run speed

Model Advisor
Compliance

Code complexity should be managed
early on to ease unit testing effort

Useful for monitoring the unit testing
progress of the entire project

SLOC is a useful project management
metric for resource planning

Useful for showing the methods that
are utilizing the CPU the most

Stack is limited and needs to be
managed to stay within a specific
allocation

Major changes in build time will be
recognized and isolated to individual
CRs

Simulation speeds should be as high as
possible to ease development

The pass/fail data for each model on
modeling standards compliance

11

12. SUMMARY

The Orion GN&C team has used its experience in model-
based development of flight software to produce effective
flight code for the first Orion test flight. The team has
extended that experience to build upon a number of lessons
learned to improve the development environment and
processes for a larger set of GN&C functionality and
software required for missions beyond LEO. The following
is a summary of challenges encountered during EFT-1
software development and resulting solutions as discussed
in this paper.

Challenge: Provide an environment where model-based
FSW can be developed quickly and without TCP/IP
interfaces between C and Simulink.

Solution: A new simulation is built natively in Simulink via
model-based design principles.

Challenge: Enhance collaboration between geographically-
dispersed teams operating on different secure networks.
Solution: Utilize git distributed version control.

Challenge: Speed up model development.

Solution: Create a process that allows for parallel
development on separate branches, with continuous
integration and eliminate reserved checkouts.

Challenge: Implement a usable
capability for Simulink models.
Solution: Design and implement custom scripts that tap into
underlying git capability to extract “mine,” “theirs,” and
“ancestor” instances, and allow the developer to 3-way
compare these models.

graphical merging

Challenge: Standardize the simulation model
testing, validation, verification, and documentation.
Solution: Experiences from previous projects have been
applied in the areas of model development. A standard API
to unit test drivers has been created that facilitates creating,
running, and documenting unit tests and associated models.

design,

Challenge: Ease the burden of integrating multiple branches
at once, leading to long integration cycles.

Solution: Responsibility of merging and correcting code is
placed on each individual developer, which allows code
changes to be integrated into the baseline and available for
distribution within a matter of hours.

Challenge: Speed up and automate testing and integration
for individual developers.

Solution: Utilize automated scripts and tools to merge and
test code. Automatically integrate if all of the regression
data are unchanged.

Challenge: Maintain and manage a working, compiled, and
testable version of the autocode concurrently with model
development.

Solution: Utilize automated nightly scripts on build and test
server to autocode and test.

A model-based simulation environment in Simulink
improves the process for development of on-orbit flight
algorithms. Furthermore, a series of process improvements
contribute greatly to the work flow of the team, including
enhanced configuration management techniques for model-
based software systems, automated code and artifact
generation, and automated testing and integration.

ACKNOWLEDGMENTS

To acknowledge all the contributors to the Orion GN&C
model and process development is not possible since it was
a product of a large, diverse team. However, the authors
wish to acknowledge Chris Rossi from Draper Laboratory
and Leon Gefert from the Glenn Research Center.

12

REFERENCES

[1] Tamblyn, Scott, Henry, Joel, and King, Ellis, A Model-
Based Design and Testing Approach for Orion GN&C
Flight Software Development. IEEE Aerospace
Conference. Big Sky, Montana, 2010.

[2] Henry, Joel R. and Jackson, Mark C., Orion GN&C
Model Based Development Experience and Lessons
Learned. AIAA GN&C Conference, 2012.

[3] The Mathworks online: http://www.mathworks.com/
[4] git online: http://git-scm.com/

[5] NASA’s Navigation and Ancillary Information Facility
online: http://naif.jpl.nasa.gov/naif/toolkit.html

[6] Odegard, Ryan G., et. Al, Configuring the Orion
Guidance, Navigation, and Control Flight Software for
Automated Sequencing. IEEE Aerospace Conference.
Big Sky, Montana, 2011.

[7] Lin, Alexander S., Penn, John M., Trick Simulation
Environment 07, NASA Tech Briefs, June 2012; 17-18.

[8] Walker, Gavin, Friedman, Jonathan, and Aberg Rob.,
Configuration Management of the Model-Based Design
Process. Proceedings of SAE World Congress &
Exhibition, 2007.

[9] Ensoftcorp online: http://www.ensoftcorp.com/simdiff/all-
simdiff-and-simmerge-editions/

[10] SQLite online: http://www.sqlite.org/

BIOGRAPHY

Ryan Odegard is an aerospace
engineer at the Charles Stark Draper
Laboratory. He has worked with
NASA on guidance, navigation, and
control architecture design, as well
as systems engineering concept
: design, database design, and
reliability analysis. His background includes
multidisciplinary system design optimization for complex
systems and architecture development. Currently a
Member of the Technical Staff at Draper Laboratory,
Ryan earned his S.M. from the Massachusetts Institute of
Technology in Aeronautics and Astronautics under a
Draper Laboratory Fellowship, and has a B.S. from the
University of Arizona in Mechanical Engineering.

Zoran Milenkovic received a B.S. in
Aerospace Engineering from lowa
State University in 2004 and an
M.S. in Aerospace Engineering from
the University of Houston in 2010.
His work at the Draper Laboratory
has been focused on the area of
guidance and navigation for rendezvous and proximity
operations for the Space Shuttle, the Orion MPCV, and
the Sierra Nevada Dream Chaser amongst others. In
2006 he joined the Draper Laboratory team having
previously worked at Muniz Engineering and Lockheed
Martin.

Joel Henry is the GN&C Software
Functional Manager for Orion at
NASA’s Johnson Space Center in
Houston, Texas. He has a
background in mechanical
engineering and computer science.
Joel has a BSME from the
University of Texas at Austin and is a Licensed
Professional Engineer in the state of Texas.

Michael Buttacoli is an Aerospace
Engineer with the National
Aeronautics and Space
Administration. He has worked in
the NASA community for 15 years
developing software for Mission
Control, Trajectory Design, and 1SS
Rendezvous and Proximity operations. He is now a part
of the GN&C Engineering team for the Orion project.
Mike holds a B.S. degree in Aerospace Engineering from
Purdue University.

13

14

