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Abstract—For Orion missions beyond low Earth orbit (LEO), 
the Guidance, Navigation, and Control (GN&C) system is 
being developed using a model-based approach for simulation 
and flight software.  Lessons learned from the development of 
GN&C algorithms and flight software for the Orion 
Exploration Flight Test One (EFT-1) vehicle have been applied 
to the development of further capabilities for Orion GN&C 
beyond EFT-1.  Continuing the use of a Model-Based 
Development (MBD) approach with the Matlab®/Simulink® 
tool suite, the process for GN&C development and analysis has 
been largely improved.  Furthermore, a model-based 
simulation environment in Simulink, rather than an external 
C-based simulation, greatly eases the process for development 
of flight algorithms.  The benefits seen by employing lessons 
learned from EFT-1 are described, as well as the approach for 
implementing additional MBD techniques.  Also detailed are 
the key enablers for improvements to the MBD process, 
including enhanced configuration management techniques for 
model-based software systems, automated code and artifact 
generation, and automated testing and integration. 
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1. INTRODUCTION 

The Orion spacecraft is being developed by NASA to take 
humans back to deep space.  The first test mission, EFT-1, 
will demonstrate many capabilities for extending the human 
presence in space beyond LEO.  For the Orion GN&C flight 
software (FSW), which is responsible for navigating, 
guiding, and controlling the vehicle, a model-based 
development process has been implemented.  Advantages of 
MBD in human spaceflight algorithm development on 
Orion have been previously described [1, 2].  Specifically, 
distinct benefits from MBD have been realized to date on 
Orion: removal of the steps of converting GN&C 
algorithmic pseudo-code documentation to flight software, 
increases in the amount of time spent exercising flight code, 
improvements in the processes for producing algorithm 
documentation and reviewing algorithm functionality, 
implementation of automated checking of software 
standards, and development of an automated testing 
framework and report generation. 
 
As part of that EFT-1 FSW development process, several 
challenges and areas of improvement were identified.  These 
included configuration management difficulties, code 
integration and graphical merging shortcomings, 
development complexities related to the simulation 
environment, slow simulation execution speed, efficiency of 
generated code, and long model build times.  To address the 
challenges and lessons learned from EFT-1, a number of 
improvements have been implemented.  The first has been 
to develop a medium fidelity, model-based, simulated 6-
degree-of-freedom (DOF) environment using Simulink [3] 
in which to exercise flight algorithms.  The past use of C-
based simulation environments required additional overhead 
and complicated interfaces to the Simulink environment.  
The Simulink simulation is also tailored to on-orbit flight 
regimes, which allows faster execution speeds.  Another 
advantage has been the use of Simulink model variants, 
which improves build time and allows quickly exercising 
different functionality without modifying the models.  A 
collection of process improvements has been implemented 
to address the challenges of configuration management and 
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require other higher fidelity C-based simulations.  For this 
reason, and because FLASHE is not intended to support 
ascent or descent and landing phases of flight, an interface 
to NASA’s Trick Simulation Environment [7] has been 
updated to work with the 2013a version of MATLAB.  Data 
being passed between the Trick simulation and the FSW in 
Simulink are exchanged via TCP/IP socket connections 
using custom s-functions, as was done for EFT-1.   

There are two main aspects of the interface between Trick 
and RAMSES.  The first is that the input/output data must 
be maintained, and can then support multiple other Trick-
based simulations.  There are likely two Trick-based 
simulations that will require interfacing with the GN&C 
FSW in RAMSES, so the development in Simulink and with 
FLASHE will ensure the Trick interface is maintained.  The 
current FLASHE regression testing includes a check that 
these interfaces do not break as development progresses.   

The second main aspect of the RAMSES interface to the 
Trick simulations is that the FSW functionality remains 
consistent across simulation environments.  The FLASHE 
regression testing is also exercising a subset of the 
functionality that is unique to the Trick simulation, in that it 
is part of an ascent profile which is not the primary role of 
FLASHE.  Thus, the GN&C FSW, as developed in 
RAMSES, is maintained for operation in both Simulink- 
and Trick-based simulation environments. 

 

6. CONFIGURATION MANAGEMENT 

One of the biggest challenges in the Orion GN&C FSW 
development, both before PDR and leading up to the EFT-1 
flight test, was configuration management.  While MBD 
affords many benefits over the course of a project, having a 
large, geographically dispersed team across many 
organizations makes working with graphical models 
particularly challenging.  The first hurdle in working with 
many organizations is dealing with separate information 
technology (IT) and security requirements; finding a method 
in which all team members can share information has never 
been a trivial problem.  Secondly, the set of tools for 
managing the work of many team members must be both 
robust and easy to use in order to facilitate deploying flight 
software.  While solutions were found for both of these 
problems for EFT-1, they were not ideal and recent work 
has largely improved these aspects of the GN&C 
development process. 

Members of the Mathworks team have described 
configuration management techniques in the context of 
Simulink model development [8].  The Orion GN&C team, 
however, has learned two important lessons for successfully 
carrying out Simulink model development with dispersed 
organizations: establish easy access to a configuration 
controlled repository and utilize tools that ease distributed 
development.    

Simulation model and flight software development for EM-
1 has utilized servers at NASA’s Johnson Space Center 
(JSC) to centralize code and model repositories.  While 
organizations often limit internal network access due to 
security and intellectual property reasons, the roles of Orion 
contractors with NASA already include the contractual 
agreements required for a collaborative work environment 
on JSC servers.  As a result, there have been far fewer, and 
more minor, issues related to GN&C developers having 
access to the JSC repositories. 

The configuration management tool that greatly aids the 
Orion GN&C configuration control process has been git, an 
open-source, distributed revision control system.  Git has 
been successfully used for large projects such as the Linux 
kernel and has a large user base.  Because git is a distributed 
source code management system, there is no dependency 
upon a server connection to manage file revisions.  
Furthermore, because each developer has a complete history 
of a repository locally, actions in git are faster than a 
centralized system.  In fact, compared to the EFT-1 code 
management database, git is one to two orders of magnitude 
faster on common operations such as creating a new 
repository and checking the status of file modifications. 

With other revision control tools used in the past, there was 
a need to develop a set of custom scripts that managed a 
“view” of the source code.  These scripts provided two main 
functions: enabling interfacing with different simulation 
environments, and segregating the source code under 
configuration management from the generated artifacts.  
When working in a view, the custom scripts managed the 
interactions between the simulation and the RAMSES 
models in Simulink to simulate a mission run.  Also, the 
execution of Simulink models involves the generation of 
executable artifacts (i.e. .mex* files).  When present in a 
configuration controlled area, these mex files are potentially 
a hassle to separate from the maintenance of the source 
code.  The use of git makes this problem obsolete with the 
ability to ignore certain files or types of files.  Therefore the 
dependence on custom scripts and “views” were completed 
eliminated by using git. 

In addition, git is particularly adept at non-linear 
development, where branches and merges are common, 
easy, and fast.  This has made collaboration for FLASHE 
and RAMSES development much easier than in the past.  
Previously, exchanging source code between organizations 
was done via one of two inconvenient methods: post source 
file(s) to a secure website where it could be downloaded by 
another developer, or wait for the periodic synchronization 
of databases between organizations, which was as 
infrequently as once per week.  With access via simple ssh 
connections to the common JSC servers and with git 
merging capabilities, exchanging and sharing work is 
significantly more efficient.   

Another improvement in the FLASHE/RAMSES 
development for EM-1 has been the code integration 
process.  The two process approaches used previously were 
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1) monthly submissions of code changes to an integration 
team, and 2) a small team responsible for all changes 
directly incorporated into the primary FSW code database.  
The first approach was used early on in the project when 
there were more GN&C developers doing parallel 
development without efficient means of recombining the 
work.  The monthly integration process was a large and 
challenging effort for reasons including limited tools for 
merging distributed changes, long integration periods, and 
simultaneous code changes to graphical models that were 
difficult to merge.  It was not uncommon for the process of 
integrating all of the code changes to take up to a month, 
which left essentially no time for developers to include their 
new updates into the latest baseline.  This process was 
inefficient for all involved.  When the EFT-1 flight test 
mission was established, the GN&C team moved into more 
of a production mode with a limited team involved in 
making direct changes to the GN&C models and code.  
Members of the small team could see updates immediately, 
but the larger community was required to wait for baselines, 
which were generally months apart.  For developers who 
were not on the small team, their work was done on top of a 
baseline release.  That work was then sent to a team member 
who could integrate it into the configuration management 
tool, but those steps were accomplished via email or posting 
to a common area, completely outside of the CM tool.  If 
any other changes had occurred in parallel, those had to be 
manually merged or reapplied.  None of these interactions 
utilized features which configuration management tools are 
intended to provide. 

The process that has been implemented more recently with 
FLASHE/RAMSES development has been an automated 
continuous integration process.  Scripts running in the JSC 
lab monitor for requests for integration from GN&C 
developers.  This request comes via a web-based issue 
submittal page where the developer specifies the location of 
his or her repository as well as the git branch containing the 
work.  Then a series of regression tests are automatically 
started.  If the developer’s work merges properly and passes 
the regression tests, then it is automatically merged into the 
“central” repository for others to retrieve.  If the merge with 
the developer’s branch or the regression tests fail, logs are 
created and made available on the issue page for review.   

The automatic and continuous nature of the integration 
process takes advantage of the best aspects of the previous 
integration processes, while also adding automation that 
saves a lot of time.  Like the process used for the small 
production team on EFT-1, the developer is responsible for 
keeping up to date with progress and work being integrated 
into the central repository.  For example, if a developer has 
not merged the latest work into his or her branch prior to 
requesting integration, it is possible that the merge will 
contain conflicts.  Instead of the responsibility for cleaning 
up the merge conflicts being the job of an integrator, it is the 
responsibility of the developer to properly merge in the 
latest from the central repository to ensure the automatic 
integration process runs to completion.  Because integration 

takes place continuously, a developer can pull the latest as 
often as multiple times per day, with low overhead, in order 
to incorporate small changes more frequently to make tasks 
that take a long time to complete easier to manage.  Another 
improvement over past processes is that the regression 
testing is completely automated, as long as the data used to 
verify the regression tests do not change.  For the production 
team on EFT-1, it was important that changes were not 
introduced that inadvertently caused simulation runs and 
tests to fail.  At times this could be a burden because of the 
amount of time it took to build and execute all the models 
and tests.  With an automated process, it is simpler and 
faster for a developer to rely on an automated regression and 
verification process to take the time to build and execute the 
models, while the developer’s time and computer resources 
can be freed up for other productive uses. 

 

7. MODEL MERGING 

Another common challenge with model-based development, 
specifically with graphical models, is model merging.  For 
ASCII, text-based files, there is a long history, familiarity, 
and simplicity with merging multiple changes to the same 
file.  Finding the differences in one or more lines of source 
code is relatively straightforward, so merging can be 
automatic when there are no conflicts between the changes, 
or can be compared side-by-side when the changes conflict 
with one another.  Although the .mdl format for Simulink 
models are text-based, it is not straight-forward to merge 
these text files and still have a functioning graphical model 
in Simulink.  As a result, model differencing and merging 
requires being able to view the Simulink models 
themselves, not the text files. 

In the past, the Orion GN&C team experimented with third-
party differencing and merging tools called SimDiff and 
SimMerge by Ensoft [9].  Recent releases of MATLAB have 
introduced tools for merging Simulink models.  The 
Simulink tools are capable of finding and merging small to 
medium sized differences in models but cannot 
automatically track large changes, which is true even of 
text-based merging.  For Orion, the GN&C flight software 
team has not required specialized licenses for model 
development; only MATLAB, Simulink, and Stateflow are 
needed.  The Simulink merging tool, however, is only 
available with the Simulink Report Generator toolbox, so 
license costs are a deterrent and hindrance for many GN&C 
developers.  As a result of this limitation, the GN&C team 
has customized the interaction between git and Simulink 
.mdl files, and also developed a process that facilitates 
conflict communication between model developers. 

When conflicts occur when merging text files in git, the 
syntax convention of “<<<<<<” and “>>>>>>” is used to 
indicate modifications made by the developer doing the 
merge, the work being merged into, and the common 
ancestor.  For Simulink .mdl files, these modifications 
inserted by git prevent an executable model from being 
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opened in Simulink.  A customization of the attributes of git 
has been implemented to instead create three separate .mdl 
file instances:  “theirs,” “mine,” and “ancestor.”  With this 
specific handling of merge conflicts of .mdl files, the 
Simulink model differences can be viewed either side by 
side, or with other model merging tools. 

There are some very beneficial aspects of git being a 
distributed revision control system whose utilities have been 
described in previous sections.  One challenge in Simulink 
model development without a centralized repository on a 
server that maintains “checkin/checkout” write privileges is 
avoiding model conflicts altogether.  There is nothing to 
prevent developers using git to both modify the same .mdl 
file simultaneously, which is more difficult to merge 
(regardless of what merge tools are available) than a plain 
text file.  To address that issue, a script has been developed 
that gives insight to all developers what .mdl files are 
currently being modified.  This script works by querying the 
branches of GN&C developers’ repositories and finds .mdl 
files that have been modified.  This list of modified model 
files is updated multiple times per day and posted to a 
webpage wiki for developers to review.  Although there is 
no guarantee that .mdl conflicts are eliminated, this 
capability and the information derived are useful for 
identifying potential or existing conflicts early.  An 
important aspect of the process regardless of the tools is 
communication amongst developers.  For example, if a 
developer sees in the .mdl list another person working on 
the model he or she wishes to modify, a phone call can 
clarify if work schedule arrangements should be needed in 
order to cleanly merge both sets of model work.  The other 
main procedural approach used on EFT-1 has been to assign 
a single point of contact to each algorithm, to avoid 
unnecessary model merging conflicts. 

 

8. SIMULATION VALIDATION, VERIFICATION, 
AND DOCUMENTATION 

As with any software, ensuring that the behavior of the code 
meets expectations is a tedious and detail-oriented task. The 
Orion GN&C FSW for EFT-1 has undergone a very 
thorough process that certifies that the software has been 
built correctly and that it meets the specifications laid out in 
the requirements.  For the FLASHE simulation, the fidelity 
of the software need not be as high as it is for a human-rated 
spacecraft, but determining what fidelity to implement is an 
important question and a task on its own.  For example, 
there are two models for determining the ephemerides of the 
celestial bodies: the ephemeris interpolation tables, and the 
SPICE libraries. The SPICE libraries are of the highest 
fidelity, while the ephemeris tables—which interpolate 
between SPICE data—have less fidelity. The analyst should 
trade simulation execution speed and model fidelity in order 
to determine which of the models to use. 
 
Prior to determining whether a model is valid, a level of 

expectation must be set forth for each model, as described in 
Table 3.  The cornerstone of FLASHE model validation is 
the question of whether the model produces the correct 
results.  At a minimum, the unit tests should prove that the 
fundamental algorithms in the model produce the correct 
result.  The unit test data can be compared against analytical 
answers, results from other simulations with validated 
models, hardware test data, flight test data, etc.  In the 
aforementioned example of the ephemeris tables, the results 
can be compared to SPICE data.  A template for building 
unit tests was developed.  This template provides a unified 
interface for calling unit tests throughout the FLASHE code 
base, allowing the entire validation test suite to be called 
from a single top-level function. 
 

Table 3.  FLASHE model standards. 

Validation Criteria Description 
Model Reference  Each model should be allow 

independent, stand-alone 
configuration, revision management 

Structured 
Parameters 

Each model reference block should 
utilize structured model reference 
parameters for constants that are 
used within the model 

Uses standard 
utilities 

Each model should use utilities from 
the standard library 

Default initialization 
data file 

Each model should have a standard 
parameter data initialization file 
used to configure the model 

Unit tests  Each model should have a standard 
unit test suite used for validation 
purposes 

Documentation Each model should have a standard 
set of documentation 

 
 
In addition to testing code, the unit test template contains 
example documentation based on MATLAB’s native m-file-
to-HTML publishing capability.  The MATLAB Report 
Generator toolbox also has capabilities to generate HTML 
files containing hyperlinked images of models in Simulink 
and Stateflow.  These reports are collected and linked 
together for easy distribution and review.  Furthermore, the 
website wiki used for the project can directly tie in to the 
repository of artifacts, making it possible to review current 
documentation on any model merely by navigating to the 
project webpage, thus removing the need to maintain 
equivalent documentation in separate locations. 

While having unit tests for each model provides proof for 
the accuracy of the overall simulation, it is not practical for 
each developer to run the gamut of validation tests.  Rather, 
for day-to-day simulation development and code updates, a 
set of regression tests have been designed.  The idea behind 
the regression suite is two-fold.  The first objective is to 
exercise each simulation model at least once prior to 
submitting changes for integration.  The second objective is 
to test an integrated simulation run, providing a way to 
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check that interfaces have been properly built.  Thus, the 
regression tests provide an answer to the verification 
question: “Does the simulation continue to perform as 
expected?”  A set of verified regression data is available for 
comparison to the developer.  The data also serve as gate-
keepers for integration of submitted changes.  
 

9. AUTOMATED BUILD AND TEST SERVICES 

As mentioned in Section 6, a continuous, automatic 
integration process has been implemented.  This approach 
has provided substantial time savings and robustness for 
development.  It includes automated builds and testing, and 
when each task of work correctly passes the regression 
testing, the main repository is updated automatically.  

The popular and open web based service Redmine is being 
used as a centralized front end for communicating and 
coordinating regular change traffic with the git repositories.  
The Redmine interface provides a simple and intuitive 
mechanism to create, assign and update software Change 
Requests (CRs).  Furthermore, email notification alerts are 
sent as the state of a CR changes throughout its lifetime.  
Any CR written into Redmine maintains a current state.  
These CR attributes can be queried through an HTTP-based 
protocol called the REST (REpresentational State Transfer) 
API.  This feature has been utilized by building several bash 
shell scripts that check the state of all Redmine CRs using 
curl to communicate through the REST API.   When a CR is 
changed to “ready for testing,” a merge between the CR and 
the main-line repository occurs in a temporary candidate 
area.  After a successful git merge, the candidate software is 
built and tested.  If the merge, build, and test procedures go 
smoothly, the script will push the candidate repository 
changes back up to the main-line repository.   Regardless of 
the pass/fail outcome, the shell scripts will update the CR 
status in Redmine and attach a log of the entire procedure 
from start to finish using the REST API.   

Continuous Services 

The services of Redmine and the REST API described 
provide a simple interface for single-shot builds.  In order to 
provide continuous and repeating services, a third open 
source tool is being utilized called Jenkins.  Jenkins offers a 
clean and intuitive front end for scheduling command line 
processes.  The tool tracks the execution time of any job it 
launches, and automatically sends emails out in the event of 
a failed job.  Jenkins detects pass or fail based on the return 
status of the bash script. 

Jenkins is configured to run the CR merge, build, and test 
script every 15 minutes throughout the day.  Thus, a 
developer who has finished their CR work can merely go to 
the Redmine interface and set their CR state to “ready for 
testing.”  Ideally within 15 minutes, the scheduled Jenkins 
job picks up on the changed state and commences the 
testing process.  One important note is that within any 

configured job, Jenkins will not launch a new process unless 
the last job has already completed.   

Nightly Builds 

Jenkins jobs are also configured to perform nightly builds of 
the project.  These jobs use the same underlying engine as 
the merge, build, and test described above, only they do not 
query Redmine for new CRs, nor are any merges performed.  
The test suite for nightly builds is larger than the CR 
process.  This is to exercise a gamut of unit tests and other 
more extensive integrated testing without being a burden on 
resources during work hours.  Should any one of these jobs 
fail, email notification goes out to the project leads with 
information on the reason for failure.  This allows 
troubleshooting to take place before other CRs are 
introduced on top of a broken build. 

The results of these nightly builds are not merely discarded.  
They represent a significant time and CPU investment, and 
thus the build artifacts they produce during successful 
executions are copied back to public areas.  These build 
artifacts can be used by other users through a process coined 
“winking in” or “winkin” as a quick way to boot strap a 
newly cloned source code repository.  

Winking In 

Building large MATLAB/Simulink projects such as 
FLASHE/RAMSES requires MATLAB to do a significant 
amount of processing to generate its .mex object files.  Early 
in the project it was realized that the MATLAB build artifacts 
from one build area could be copied into a second area, 
enabling code in the second location to run without any 
further building by MATLAB.  Copying files is significantly 
faster than building them from scratch.  As long as the 
second area contains the same source code as the first area, 
a user can entirely forego the build process by just copying 
the artifacts from the first area and globally updating 
embedded path information in some of the text files.  This 
procedure of copy and update has been coined “winkin”.  
Winkin of the build artifacts (around 33,000 files) from a 
pre-built area such as the nightly build area is an order of 
magnitude faster than performing an entire rebuild.  While it 
can take up to two hours to build all the Simulink models 
serially, and up to about 45 minutes using MATLAB’s 
Parallel Computing Toolbox, winking in the build artifacts 
takes only about five minutes.   

 
10. AUTOCODE 

One of the biggest benefits of the MBD process is the 
ability to automatically generate production code directly 
from the source models very early in the software design 
cycle.  This gives the project the ability to put many “miles” 
on the software and find potential software issues starting as 
early as pre-PDR.  Commonly referred to as “autocoding,” 
the GN&C flight software process uses the Simulink 
Coder™ product to generate C++ flight code from the 
Simulink models in RAMSES. 
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Challenge: Standardize the simulation model design, 
testing, validation, verification, and documentation. 
Solution: Experiences from previous projects have been 
applied in the areas of model development. A standard API 
to unit test drivers has been created that facilitates creating, 
running, and documenting unit tests and associated models. 

Challenge: Ease the burden of integrating multiple branches 
at once, leading to long integration cycles. 
Solution: Responsibility of merging and correcting code is 
placed on each individual developer, which allows code 
changes to be integrated into the baseline and available for 
distribution within a matter of hours. 

Challenge: Speed up and automate testing and integration 
for individual developers. 
Solution: Utilize automated scripts and tools to merge and 
test code. Automatically integrate if all of the regression 
data are unchanged. 

Challenge: Maintain and manage a working, compiled, and 
testable version of the autocode concurrently with model 
development. 
Solution: Utilize automated nightly scripts on build and test 
server to autocode and test. 

A model-based simulation environment in Simulink 
improves the process for development of on-orbit flight 
algorithms.  Furthermore, a series of process improvements 
contribute greatly to the work flow of the team, including 
enhanced configuration management techniques for model-
based software systems, automated code and artifact 
generation, and automated testing and integration. 
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