Multifunctional Nanocomposite with Healing and Health Monitoring Capabilities

Edward Sosa

ERC Inc. MRS Fall Meeting December 02, 2013

Applications in Space Exploration

- Composites for Structural Materials
 light weight → mass saving → cost effective
- Applications
 - crew cabin primary & secondary structures heavy lift launch systems rovers
- Concerns
 - damage tolerance \rightarrow mass saving loss
- In-Space Repair enable safe, reliable long duration space exploration
 - additive manufacturing
 - self repairable systems

ΕA

ENGINEERING

Self Healing Approaches

Variety of Repair Mechanism

- Irreversible Systems
- Covalently Bonded Polymers
- Non-Covalently Bonded Polymers
- ✤ Ionomers
- Hydrogen Bonded Polymers
- Metal Ligand Coordination Polymers
- ✤ Nanoparticle Diffusion

Irreversible Systems

- Encapsulation Techniques
- © Autonomous, quick, damage inspection
- ⊗ Single event, loading, complex machining

Reversible Systems

- Repolymerization Techniques
- Multiple healing, independent of loading, allows complex shapes
- ⊗ Not autonomous, healing timeframe

0.05 mm

G.J. Williams, Composites: Part A, 2009 Microencapsulation

Hollow Fiber

ΕA

B.J. Blaiszik, Polymer, 2009

ENGINEERING

DIRECTORATE

Re-Polymerization

J.S. Park, Composites Sci. Technol. 2009

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Multi-functional Nanocomposites

Reversible Polymerization Induced Healing • photo-induced reversible crosslinking or thermal activation increase lifetime performance Thermally Activated Re-Polymerization • reversible bond formation retro- Diels Alder chemistry **Introduction of Multi-Functional Properties** • enhanced electrical conductivity improved thermal management radiation shielding/hardness reduced gas permeation **Structural Health Monitoring** • damage detection damage repair evaluation

ENGINEERING

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Composite Fabrication

Carbon Fiber Coating

- spraying dispersed CNTs
- densification of spun MWCNTs

Nanotube Chemical Modification

- functionalization of SWCNTs & MWCNTs
- furan & maleimide chemistries
- Composite Fabrication
 - [0,60,-60]_{2s} fiber orientation
 resin transfer molding/wet lay up
- Other Nano-additives

✤ graphene, boron nitride nanotubes (BNNT)

December 2, 2013

ENGINEERING

WD = 10.8 mm

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Composite Panels

Panel Number	Nano-Additive Inclusion
1	Control – carbon fiber only
2	Upper ply coated with spun MWCNT, lower 5 plies sprayed with MWCNTs
3	Spray coated fibers with Mitsui MWCNTs lot 061220-24
4	Spray coated fibers with Mitsui MWCNTs lot 061220-24
5	Spray coated fibers with Mitsui MWCNTs lot 05072001K28
6	Spray coated fibers purified laser SWCNTs
7	Unidirectional (0° orientation) spun MWCNTs on front side only
8	Unidirectional (0° orientation) spun MWCNTs on front side only
9	Bi-directional spun MWCNTs with dispersed purified HiPco SWCNTs
10	Bi-directional spun MWCNTs with dispersed purified PLV SWCNTs

December 2, 2013

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

EA ENGINEERING

Nanotube Residency

- MWCNTs show mixed behavior
- Some migrate into matrix, others remain in close proximity to fibers
- SWCNTs remain in close proximity to fibers

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ENGINEERING

EA BIRECTORATE

Nanotube Residency

 s-MWCNTs stay highly intact and in close proximity to fiber

10 um

- SWCNTs directly dispersed in resin form small aggregates with matrix
- s-MWCNTs located near fibers

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ENGINEERING

EA ENGINEERING

Electrical Properties

- Measured with 4-point probe in 2-point configuration
- Measured in 9 locations of each side of panel
- Lowest measurement reported
- Similar measurements were observed for through thickness measurements
- Greater loadings and better dispersion are expected to improve electrical conductivity
- Type specific CNTs would be most desirable

ENGINEERING

Panel	Surface Resistance (kΩ)
1	œ
2	∞
3	3.45
4	œ
5	3.00
6	œ
7	0.175
8	9.55
9	1.62
10	104.8
_	NATIONAL AERONAUTICS

December 2, 2013

AND SPACE ADMINISTRATION

Thermal Conductivity

EA ENGINEERING

Thermal Conductivity - Linear Fit

Mechanical Analysis

ENGINEERING

DIRECTORATE

EA

- Composite panels impacted with forces of x and y ft·lb
- Impacted surfaces inspected optical and electron microscopy
- Composites cut into smaller 10 x 50 mm specimens for DMA
- Addition of CNTs improves the mechanical properties of composite

Microwave Heating

ENGINEERING

- Nanotubes well known to absorb microwave energy with high efficiency •
- Intent is to use microwave absorption as means to supply thermal energy • for repolymerization
- Additional improvement to thermal conductivity should also improve • heating efficiency (power-time to reach desired temperature
- Composite panels exposed to 100W microwaves with in situ thermal • imaging

Structural Health Monitoring

ENGINEERING

- Impacted panels show localized heating in area of impaction •
- Localized hot spot due to exposed CNTs that bridge cracks •
- Damage visible with greater resolution than flash thermography possible • tool for damage inspection
- Goal is to used localized heating for real time health monitoring •

Conclusions

- Nanocomposites fabrciated using a variety of carbon nanotube materials
- Addition of CNTs introduces multi-functionality into composite increasing electrical and thermal conductivity while enhancing strength
- CNTs may have interactions with polymer matrix facilitating bond dissociation
- Microwave exposure of composite shows improved heating efficiency
- Microwave heating with in-situ thermal profiling can be used for damage inspection and possible health monitoring
- Better control of dispersion is expected to further improve properties

ONAL AERONAUTICS SPACE ADMINISTRATION

Acknowledgements

Dr. Mary Jane E. O'Rourke

Solarno | Power of Light

Dr. Anvar Zhakidov Dr. John Ferrais William Holmes

ENGINEERING

Dr. Thomas Darlington **Brian Hanos**

Dr. Mark Sanders

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

