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Aircraft climb trajectories are difficult to predict, and large errors in these predictions
reduce the potential operational benefits of some advanced features for NextGen. The
algorithm described in this paper improves climb trajectory prediction accuracy by
adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and
airspeed measurements derived from position data to dynamically adjust the air craft weight
modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is
able to adapt to within 3 percent of the actual gross weight within two minutes of the initial
adaptation. The root-mean-square of altitude errorsfor five-minute predictions was reduced
by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in
missed alerts and a 10 percent reduction in false alerts. In a smulation with climb speed
capture intent and weight uncertainty, the algorithm improved climb trajectory prediction
accuracy by up to 30 percent and conflict detection performance, reducing missed and false
alerts by up to 10 percent.

Nomenclature

ao = speed of sound at sea level (kt)

a = speed of sound (kt)

D = drag (Ibf)

E ps observed energy rate

Enoser = modeled energy rate

AE = energy rate differenc&,,; — E,oqe1
g = gravitational acceleration (ft/sg@c
h = rate of climb (ft/min)

hyrea(t) = predicted altitude at tinte(ft)

herack () = actual altitude at timie(ft)

herror(t) = look-ahead altitude error at timéft), hyeq (t) — herger (£)
L = lift (Ibf)

m = aircraft mass (Ibm)

Po = static pressure at sea level (kPa)
P = static pressure (kPa)

T = thrust (Ibf)

Vr = true airspeed (kt)

Vr = true airspeed acceleration (ft/Sec
Veas = calibrated airspeed (kt)
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w = aircraft weight (Ibf)

174 = horizontal wind speed (kt)

y = ratio of specific heats at constant pressurecandtant volume
Yo Vi = air-relative and inertial flight path angle (deg

Y; = inertial heading (deg)

(1 = wind direction (deg)

Yrel = relative wind angleyp; — ¥,

I. Introduction

IR traffic demand is expected to increase substiyibver the next 20 years, but controller workldinits
airspace capacitylt is expected that higher levels of automationsieparation assurance (SA) will be required
to accommodate future demand growth. Trajectordiptien accuracy is essential to ensure both safiety
efficiency in trajectory-based operations and esigcautomated conflict detection. For instancesvious research
found an unacceptable number of late or missedicbdétections due to climb trajectory predictiamcertainty
when using an automated conflict detection f5dh addition, analysis of actual traffic in Fort Vo Center also
suggested that more robust conflict detection coedtlice the number of temporary altitude restmdissued to
climbing flights by around 70 perceh\n estimated 188 million gallons of fuel per yean be saved by allowing
uninterrupted climbs at the 27 busiest airporthéU.S>

Researchers have studied various methods of impyalimb trajectory prediction accuracy includimg tuse of
flight-planning data from airlineestablishing real-time air-to-ground data linKlifht parameters such as aircraft
weight, and improving aircraft performance mod&Rhe first two methods have shown that a significant
improvement in trajectory prediction accuracy isgible through the use of real-time data link ofraift state. Of
the aircraft states that were examined in thesieguaircraft weight and speed intent had thetgst@nfluence on
trajectory prediction accuracy, reducing the mdgtude error by 53 percent. Unfortunately, air¢naéight and
speed intent are considered competitive parambieagrlines and are not available for use. Thisladgo the
development of adaptive algorithms that compenfeatencertainty in aircraft state.

An approach to adapt climb predictions in real-timenore closely match observed track data hasshow
promise in past researéh’ but these algorithms were only evaluated withvaffights. As a result, it is not clear if
similar reductions in climb trajectory predictioma could be achieved with these methods foriatraft types,
equipage, etc. The results demonstrated improvedracy in terms of predicted top-of-climb time aadge error.
However, this does not necessarily imply that thire trajectory prediction more closely matchethiattrack data
because they did not report on altitude trajecpsediction errors for different look-ahead timeshil& these studies
adjusted the thrust parameter used for trajectaagliptions, a different approach is to adapt theenstatic weight
parameter instead.This method reduced the magnitude of climb prégficérrors in half, but only for a limited set
of 18 flights. By contrast, the purpose of the eatrstudy is to develop and evaluate an adaptisgaclgorithm in
terms of both trajectory prediction accuracy andflict detection performance for a statisticallgraficant number
of flights consisting of many aircraft types.

1. Algorithm Description

A. General Concept

The adaptive climb algorithm uses observed airciaftk data to improve climb trajectory predictiobg
dynamically adjusting the modeled aircraft weightoperates each time a track data update is redeikt each
update, the algorithm computes an observed enatgyfrom the track data and a modeled energy rate the
aircraft performance models used to generate tajepredictions. The modeled weight is adjustedtiog the
value of the modeled energy rate closer to the rebdeenergy rate. From a physics perspective, tieegy rate
represents the rate of change of the kinetic ateinpial energy of the aircraft. A high-level oveswi is illustrated in
Figure 1. The subscripts in the high-level illusta show how the energy rate is computed at olasienv timet;.
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Figure 1. High-level overview of adaptive climb algorithm.

B. Energy Rate Calculation
The observed and modeled energy rafeg.(and E,,,4.;) for this algorithm are derived from the simpliie
form of the point-mass equations of motion of aorait in climb??

T-D d(W; cos(Prer))

Ve —— — _
T m 9Ya dt

1)
h = Vysin(y,) ()

Dividing both sides of equation (1) by the gravdatl constang, substituting the aircraft weight for mg, and
rearranging the terms such that the left-hand saisists only of observable states and the rightitsde only of
modeled aircraft parameters, results in a dimetessrform of equation (1):

1. 1d(W,cos(Wre;)) T-—D
Vit Ve t+— = 3
g T Ya g dt w ( )
For actual traffic, the true airspeed acceleratimasurement is not sufficiently precise to estaniae energy

rate, as it is derived from position data that havé2-second update cycle. THg term in equation (3) can be
rewritten using the chain rule:

dVydh dV; .
o Wrdh _ dVr @)
dh dt dh

If the aircraft is flying a constant calibratedspieed (CAS) to constant Mach climb profi8,T /dh can be
assumed to be constant in the constant-CAS porfloglimb profile represents the flight proceduree thilot
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executes from takeoff to the top-of-climb. A comt&AS to constant Mach climb profile is a flightopedure that
is defined by the pilot setting the throttle to theximum climb thrust and accelerating to a tafg&s value. The
pilot then maintains this CAS until a target Madlue is captured. When Mach capture occurs thé pikntains
this Mach value until the top-of-climb. Constant ££0 constant Mach climb profiles are common fanoercial
flights. In the constant-CAS portion of the climt/;;/dh can be assumed to be constant (see Appendix)likgab
the algorithm only during the constant-CAS portadrihe climb (generally between 15,000 and 25,@@®)fpermits
the use of this assumption. Substituting equatjringo equation (3) yields:

dVy h 1d(W,cos(¥re)) T —D

dvr h 5
dhg trety dt w ®)

Equation (5) can be further simplified if the flighath angley, is assumed to be small. An aircraft with a
nominal climb rate of 2000 feet/min and ground speE450 knots has a flight path angle of approxétyathree
degrees. Givery, = sin(y,) by the small angle approximation, equation (2) lsamewritten as:

]:l
= — 6
Ya =1 (6)

Substituting equation (6) into equation (5) produtte dimensionless form of the energy rate equiatio

dVrh h  1dWcos(Yre)) T —D

- 7
dhg+VT g dt w @

The left-hand side of the equation is composedeaintof state variables that can be derived frassifion data
and wind state that is provided by the Rapid Up@tele (RUC)'® a numerical weather forecast model that updates
hourly. Note the simulations run in this study diot incorporate wind. The left-hand side of equat{@) is the
observed energy rate:

dveh h 1d(W,cos
obs :_T_+_+_M (8)
dhg Vi g dt

and the right-hand side is the modeled energy rate:

Emodel = (9)

Generally the observed energy at the current tenaot equal to the modeled energy rate computet ubie
current modeled thrudt; and dragD,, and the previously modeled aircraft weigtit . The temporal subscripts
are added to illustrate the actual implementatibthe algorithm. The previously modeled weightuged because
fuel burn is not computed between time steps whaimguthe algorithm. The energy rate differencelitamed by
taking the difference of equation (8) from equat{®h

dVT> he  hy 1 (d(chos(wrel))> T, =Dy (10)
t t

ot = (97) b
dh/e; g (Vrdy 9 dt

i

C. Weight Adaptation Method
In equation (10) the modeled thrust, drag, or wegrameters can be adjusted to minimize the enexgy
difference. The modeled weight was selected far ithplementation of the algorithm because the erreveight is
relatively static compared to the thrust and dildge magnitude of the thrust and drag are largepeddent on the
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altitude and the thrust can change rapidly dependimthe throttle setting. To minimize the energtedifference a
new modeled weight/;, is selected using the current modeled thfisand dragD;; such that the modeled energy

rate equals the current observed energy rate:

T,. — D,.
W, .t P

i Wti = EObStl. (11)

Using equation (11) it is possible to match theeobsd energy rate in a single iteration. Howeueiprievious
work using real track data the measured state W o/olatile and successive trajectory predictiomsre
inaccurate in naturd. To resolve this, a sensitivity paramefer was introduced that regulates the adaptation speed
as a way to improve the robustness to noise. Thisportant because a single uncharacteristic atiaptcan
completely negate the cumulative improvement. Athee to the limited period in which the algorithrpeoates,
there may not be enough time to recover. The teatpgubscript is used because the value of the tsatysi
parameter can change between iterations. To incaig,, into the algorithm, the energy rate differenceru in
equation (10) was rewritten by substituting in goura(11) for the observed energy rate, and rerged to isolate
the updated model weight:

-1

1 AE
w.=—— 12
ti (Wti_1 + T, — Dti> (12)

The sensitivity parameter is applied to the fiactivith theAE term since the energy rate difference is computed
using imprecise position data:

. -1
1 AE
W, = . 13
i <Wti—1 * P Ty = Dfi) 49

D. Sensitivity Parameter Logic

A simplistic approach would be to g&t to a constant value. However, such an approack wioieperform well
when the track data are volatile or when therenigtgpically large energy rate difference. In tlase of volatile
track data, a slower, more conservative approadfféxtive. On the other hand, an atypically laegeergy rate
difference requires a more aggressive approachanlitigher adaptation speed. To accommodate foe theenarios,
a robust approach was used. The sensitivity pasamets designed as a flexible parameter

. . . AEti - AEavg
B, = max(0.205,B;,_, +0.05) if i>0,AE; > 0.0001,[——=——| <3
i avg
0.005 5 AR otherwise (14)
. j=1 ti—j
AEg,y = B

The logic that sets the magnitude of the sengitiparametes,;, depicted in equation (14), was designed to
evaluate the integrity of the observed energy difeerence calculation and adjust the sensitivigrgmeter
accordingly. To do this the current energy ratéedéafnceAEti is compared to the mean of the five previously
computed energy rate differences. A threshold washait is used to determine if the current eneady difference
is an outlier. For this study, the threshold wastsehree times the average energy rate differe_‘ﬂ'i;gg. If the
current energy rate calculation is determined taabeoutlier, the sensitivity parameter is reseatoonservative
value to minimize the magnitude of the adaptatmmtiiat iteration. If it is not classified as artl@r, the algorithm
increments the sensitivity parameter by a fixed amap to a maximum value. The maximum value wakeddo
limit the aggressiveness of the algorithm to ensmmoth incremental progress. Note the numerialles in
equation (14) were selected based on performaniog as iterative method and are specific to theusition
environment that was used in this study.
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Additionally, constraints were placed on the magpht of the change in weight between iterations ted
overall cumulative adapted weight. The magnitudéhefchange in weight between iterations was wtetfito one
percent of the aircraft’'s nominal modeled weightasabsolute limit on the effect an outlier energte difference
can have on the adaptation. The constraint plandtie cumulative adapted weight limits the adapte@jht value
to be within 80 and 120 percent of the nominal nedlaircraft weight. This range of acceptable weigtiues was
selected based on observed weight variations fropp€nbarger’s 2001 study

I11. Evaluation of Algorithm in Fast-Time Simulations

A. Simulation Environment

For this study, the Airspace Concepts Evaluatiost@y (ACESY was used to simulate the National Airspace
System (NAS). ACES is a fast-time, gate-to-gateusation of the NAS that generates four-degree-eéfiom
trajectories of aircraft based on aircraft perfoncen models from the Base of Aircraft Data (BABAfrom
departure fix to arrival fix. The routes and depeattimes for the aircraft in the simulation areided from actual
routes flown on a specific day in the NAS. Thistfaem was used for the capability to evaluate gdanumber of
flights consisting of many aircraft types, the @bito precisely define the amount and types ofeutainty applied
and the ability to evaluate conflict detection penfiance. The uncertainty model and conflict ded&cprocess in
ACES are described in detail in [15].

B. Limitationsof ACES

ACES is an effective platform for evaluating thilgaithm, however it does have limitations. Theseai
discrepancy between track data generated using A€@ES3Host radar track data. The track data gerematACES
are the result of continuous integration of theatipms of motion and as such do not contain ndikés is not the
case for Host radar track data, and poses a signifproblem for tools that require state feedba@bis is one of the
reasons that the adaptive algorithm was first dged and evaluated using ACES instead of a platfidenthe
Center-TRACON Automation System (CTAS) that useoréed track data. Future work is planned to incoate
feedback uncertainty in ACES.

Another discrepancy that is unique to ACES is egldb the horizontal conformance of the aircraft.flights in
ACES are in-conformance horizontally throughout theation of flight. However, from the point of weof an
automated conflict detection system, this wouldmaitl true for actual Host track data. Among otfeasons, this is
because it would not be aware of the majority afteoclearances that are issued by controllers. pewison of
controller clearances by voice to flight plan amaedts entered found that while 95 percent of alétalearances
were entered, less than one-third of route cleasmeere entered. Thus, the improvements in conflict detection
performance achieved in this study with the adapéilgorithm may not be realized in practice withbatizontal
conformance.

C. Experiment Setup

To evaluate the adaptive algorithm, two simulatiovexe run using a traffic file with approximatel3@D
departure flights. In these simulations the alfgnitwas applied to climbing flights starting at fivst track at or
above 15,000 ft. up to the first track above 25,20t ensure the aircraft was in the constant-@&8ion of climb.
The algorithm’s time step was set to 12 seconasatzh the radar track update rate in Center aiespac

The first simulation served as a proof-of-concept awas designed to evaluate how well the algoritaduced
trajectory prediction error in the sole presenceveight uncertainty. Trajectory prediction errcasndefined as the
altitude error of the trajectory prediction wittspect to actual track of the aircraft computed &snation of look-
ahead time:

herror (t) = hpred (t) - htrack (t) (15)

In ACES, weight uncertainty is applied to the fuedight parameter of the aircraft. Fuel-weight utmiety was
uniformly distributed between -50 and +50 percerthe modeled nominal gross fuel weight.

The second simulation was designed to test theridigo in a more realistic environment with uncemtgiin
climb intent in addition to fuel weight. For thigmeriment, uncertainty was uniformly distributedvieeen -10 and
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+10 percent to the modeled capture CAS and Madlesahssociated with the constant CAS to constashMimb

profile. The fuel-weight uncertainty was uniforndistributed between -50 and +50 percent to the nahmodeled
gross fuel weight. Since there is climb intent dnel weight uncertainty the adapted weight is ngpested to
converge with the actual weight of the aircrafteTalgorithms ability to reduce trajectory prediotierror and the
resulting impact on conflict detection performaneere examined. The configuration details for botpegiments
are described in Table 1.

Table 1: Configuration Details of Simulations
Simulation Fuel Weight Uncertainty Capture CAS Uncertainty Capture Mach Uncertainty
1 uniform(-50%,+50%) N/A N/A
2 uniform(-50%,+50%) uniform(-10%,+10%) uniform(-10%,+10%)

Conflict detection performance was measured bytify@émg discrepancies between conflict detectionadm
using the adapted and non-adapted trajectory giredscand the true conflict detections identifiezsing the flown
trajectories of the aircraft. A conflict is defined a point in time when two aircraft are separdedess than 5
nautical miles horizontally and 1,000 feet vertigalwo cases called missed alerts and false afegte quantified
and compared. A missed alert is an instance wharenélict detection is made at point in time usihg flown
trajectory of the aircraft but at the same pointime is not detected using the adapted or nontadafpajectory
predictions. A false alert is an instance at a pointime where a conflict detection is made fon@n-existent
conflict using the adapted or non-adapted trajgqpoedictions.

The terminology in Table 2 below is used to descth® results of these experiments.

Table 2: Terminology used to describe theresults of these experiments

Term Definition
Actual Weight True gross aircraft weight of the slated aircraft
Adapted Weight Gross aircraft weight modeled using adaptive atbori

Non-Adapted Weight  Gross aircraft weight with uncertainty included
Adapted Trajectory 4-D trajectory prediction generated using adapteiat
Non-Adapted Trajectory 4-D trajectory prediction generated using non-agipteight

D. Simulation with Fuel Weight Uncertainty

To evaluate the adaptive algorithm’s performanke,adapted weight was compared to the actual weige
aircraft at successive iterations. The same equataf motion and atmospheric data are used to genehe
trajectory predictions and simulate the modeledraft; therefore with just weight uncertainty, tdapted weight is
expected to converge to the actual weight. A cdserevthe algorithm adapts from a weight that ihérghan the
actual weight of the aircraft is illustrated in Big 2. A case where the opposite is true is ilaistt in Figure 3.
Note in these figures the red line that represtsion-adapted weight has a non-zero slope diuekdurn.
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Figure 2: Example of adaptation with heavier non-adapted weight.
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Figure 3: Example of adaptation with lighter non-adapted weight.

The algorithm adjusts the aircraft weight gradpahd smoothly in these two cases (blue line). Heurhore,
once the adapted weight converges to within 3 perokthe actual weight, the adapted weight comtinto track
the actual weight throughout the rest of climb. é&Ndte algorithm does not completely converge wliih actual
weight of the aircraft because of the assumptiandWT /dh is constant and the use of the sensitivity paranfigt.
These features are especially relevant for separassurance because inaccurate trajectory pr@usctian lead to
erroneous conflict detections and unnecessaryugsnlmaneuvers. This same general behavior wasredd at an
aggregate level (see Figure 4).
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Figure 4: Root-mean-squar e of grossweight error as a function of time.

The convergence of the adapted weight to the heteight results in major improvements in trajegtor
prediction accuracy. Consider the histograms bealbaltitude prediction errors for a five-minute lecahead time at
the first track above 21,000 feet (see Figure %hwhd without adaptation. Recall that the algaonithas enabled at
the first track above 15,000 feet, thus, was inratpen for two to three minutes by this point. Talgorithm
effectively reduced the standard deviation of thttude error from 1,151 feet to 305 feet, a 73 ceat
improvement. Improvement occurs across a rangealysis altitudes starting at 18,000 feet up t@@0,feet (see
Figure 6). Note the improvement in trajectory pedidn accuracy decreases with altitude becausaiiticeaft is
approaching top-of-climb.
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Figure5: Five minute look-ahead altitude error improvement at 21,000 feet with adaptation (a) compared to
without adaptation (b).

9

American Institute of Aeronautics and Astronautics



1200 T T T

t

1000 without adaptation i

600 . . 1
with adaptation

400 |- l .

200 +~ —

altitude error (ft)

0 1 | 1
18000 21000 24000 27000 30000
analysis altitude (ft)

Figure 6: Root-mean-squar e of five minute look-ahead altitude error during climb.

Given the overall improvement in trajectory preidic accuracy the next step was to examine the éinpa
conflict detection performance. Missed alerts aaldef alerts were evaluated for conflicts that imedl flights at a
minimum altitude of 18,000 feet where at least ohéhe aircraft was in climb. The minimum altitudasures that
adaptation occurs for at least one of the flighitee results are plotted in Figure 7 for missedtsland Figure 8 for
false alerts.

The algorithm reduced the number of missed afertall look-ahead times by up to 15 percentldbaeduced
the number of false alerts by up to 10 percentafblook-ahead times. Note for missed alerts anskfalerts the
results for times less than one minute prior tcs lo§ separation are similar because the differdreteeen an
adapted and non-adapted trajectory are small foln sushort prediction time. Overall, the these ltesndicate a
significant improvement in conflict detection parfance.
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Figure7: Missed alert rate.
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Figure 8: Falsealert rate.

The algorithm has proven to be successful in corsgting for weight uncertainty alone. However, atual
operations there are many sources of uncertaintg. i@ajor source of uncertainty is in the aircragtismb intent. If
the aircraft flies a flight procedure that is difat from what is modeled, large trajectory praditterrors can
occur.

E. Simulation with Climb Intent and Fuel Weight Uncertainty

Now that the algorithm’s ability to improve trajecy prediction accuracy and conflict detection perfance
has been demonstrated the next step was to evatuatmore realistic scenario. The five-minute ladiead altitude
error was evaluated at 21,000 feet (see Figureith)amd without adaptation. The standard deviatibthe altitude
error was reduced by 26 percent with respect tonive-adapted trajectory prediction. A more compnshes
examination indicates that a reduction in five niénlook-ahead altitude error occurs for analydisuales starting
at 18,000 feet up to 30,000 feet (see Figure 10jehe improvement in trajectory prediction accyrdecreases
with altitude because the aircraft is approachapydaf-climb.
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Figure 9: Five minute look-ahead altitude error at 21,000 feet with weight and climb profile uncertainty for
the adapted (a) and non-adapted (b) cases.
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Figure 10: Root-mean-squar e of five minute look-ahead altitude error during climb

Given the improvement in trajectory prediction @exy, conflict detection performance was examindédsed
alerts and false alerts were evaluated for cosflicat involved flights at a minimum altitude of,Q80 feet where at
least one of the aircraft was in climb. The minimalitude ensures that adaptation occurs for attleae of the
flights. The results are plotted in Figure 11 fassed alerts and Figure 12 for false alerts.

The use of the algorithm reduced the number ofedsalerts at all times prior to the conflict by tgp10
percent. For false alerts there is up to a 10 pemegluction that occurs between one minute arel rfiinutes prior
to the conflict. For times greater than five mirsutprior to loss of separation, the algorithm shdittie
improvement with respect to the non-adapted trajggtredictions.
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Figure 11: Percentage of missed alerts made before loss of separation
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Figure 12: Percentage of false alerts made befor e loss of separation

The algorithm improved trajectory prediction aa@my by 20 to 30 percent and improved conflict ditec
performance by reducing the number of missed adentisfalse alerts made up to five minutes prigheoconflict by
up to 10 percent. The addition of climb profile artainty significantly reduced the improvement injéctory
prediction accuracy.

This reduction in trajectory prediction accuracyphasizes the importance of accurate climb profile
information. Climb profile and associated captupeexls (e.g., CAS and Mach) will remain unknown he t
automation unless it is published in the flightrplar made available via data-link. These missingcg@é of
information are detrimental to the algorithm beeait®nly adapts based on the most recent track dtaimplicitly
assumes that the actual flight will climb accordinghe profile in the aircraft model. If this doest hold, then the
climb predictions made using the adaptive algorithith be accurate for short look-ahead times ofto couple
minutes, but less accurate for longer look-aheaédi

V. Conclusion

The algorithm described in this paper can imprdkegectory prediction accuracy for climbing flights
significantly and as a result improve conflict dwien performance. The adaptive climb algorithm aiyically
adjusts the aircraft weight modeled for trajectorgdictions based on observed rate-of-clitmiind true airspeeid,
feedback. In simulations with just weight uncentgjithe standard deviation of altitude errors feefminute look-
ahead predictions was reduced by 73 percent. Whmb speed capture intent uncertainty was also heagléhe
algorithm reduced the standard deviation of fivewne look-ahead altitude errors by 20 to 30 percéhe
improvement in trajectory prediction accuracy clated to better conflict detection performance. ther case with
climb speed capture intent uncertainty, the nunolbenissed and false alerts made up to five minptes to loss of
separation was reduced by as much as 10 percentwgigg the algorithm.

Overall this study has demonstrated that the adapteight algorithm can be used as a foundation fo
improving trajectory prediction accuracy to the emtt necessary for higher-levels of separation asser
automation needed to increase the capacity of theé Beneration Air Transport System.

V. FutureWork

A. Rate-Of-Climb Feedback Uncertainty

In this study, the observed state feedback usethdyalgorithm to compute the observed energy datenot
contain noise. Thus, the observed energy rate g@esentative of the actual energy rate of theadtrdn actual
operations, however, there is significant nois¢him observed state because it is derived from iogeerack data
that is updated on a 12-second cycle. It is immorar the algorithm to be capable of computingepresentative
observed energy rate using noisy track data otserwhe improvements in trajectory prediction accyrand
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conflict detection performance may not be realizeduture study using ACES is planned to evaluat ddaptive
weight algorithm with rate-of-climb feedback uneanty.

B. Evaluation using CTAS

The next step in the validation process of theptida weight algorithm is to evaluate its performarin the
presence of real-world uncertainties. This willdmeomplished by implementing the algorithm in CTA®Bijch is a
real-time research prototype system developed aSAlAhat includes mature capabilities for 4-D tréjeg
predictions, conflict detection, conflict resoluticand other functions [17-18]. Multiple days ofwsad Fort Worth
Center traffic will be evaluated. In this studyjéetory prediction accuracy will be the only metsiace the CTAS
input files include controller actions.

C. Terminal Airspace Application

The adaptive climb algorithm developed in this papecurrently only enabled when climbing flighteabove
15,000 feet By the time an aircraft has reache@Qbfeet in most cases the acceleration segmerdrtesd and the
desired CAS has been captured. Recall that thiedause the derivation of the airspeed-altituddigra @V, /dh)
assumes that the flight is in the constant-CASipomf climb.

In terminal airspace a CAS speed restriction isgdaon aircraft at altitudes less than 10,000 Feetjet aircraft,
this speed restriction is generally enforced at Ra@ts. Given the speed restriction, aircraft teméccelerate to a
CAS value that is close to the speed restrictioth mxaintain this speed until eclipsing 10,000 fest shich, the
algorithm could be enabled as soon as it is detexdhthe flight is maintaining constant CAS. Theoaitipm would
be disabled once the flight reaches 10,000 fedtsblosequent trajectory predictions would use tapted weight
instead of the nominal value.

This could result in more accurate climb trajectprgdictions below 15,000 feet When the flight ez 15,000
feet, the algorithm would then be re-enabled usheglast adapted weight. This would likely resulta smaller
energy rate gap, shorter adaptation time, and greditnb trajectory accuracy and improved confligtection
performance when the algorithm is re-enabled ad(bfeet.

Appendix: Constant True Airspeed-Altitude Gradient Assumption

If an aircraft is maintaining constant CAS in cliftite true airspeed-altitude gradiedt4/dh) can be
approximated as a constant. This is evident whettipd) constant CAS lines on a true airspeed-alétplot (see
Figure 13). The constant CAS lines are approxirgdieéar.
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Figure 13: Constant CASLineson True Airspeed vs. Altitude Plot

Figure 13 was generated using the Standard Atnesspmodel® and the CAS to true airspeed conversion
equation’
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