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Coordination of operations with spatially and temporally shared resources, such as route
segments, fixes, and runways, improves the efficiency of terminal airspace management.
Problems in this category are, in general, computationally difficult compared to conven-
tional scheduling problems. This paper presents a fast time algorithm formulation using
a non-dominated sorting genetic algorithm (NSGA). It was first applied to a test problem
introduced in existing literature. An experiment with a test problem showed that new
methods can solve the 20 aircraft problem in fast time with a 65% or 440 second delay
reduction using shared departure fixes. In order to test its application in a more realistic
and complicated problem, the NSGA algorithm was applied to a problem in LAX terminal
airspace, where interactions between 28% of LAX arrivals and 10% of LAX departures are
resolved by spatial separation in current operations, which may introduce unnecessary de-
lays. In this work, three types of separations – spatial, temporal, and hybrid separations –
were formulated using the new algorithm. The hybrid separation combines both temporal
and spatial separations. Results showed that although temporal separation achieved less
delay than spatial separation with a small uncertainty buffer, spatial separation outper-
formed temporal separation when the uncertainty buffer was increased. Hybrid separation
introduced much less delay than both spatial and temporal approaches. For a total of 15 in-
teracting departures and arrivals, when compared to spatial separation, the delay reduction
of hybrid separation varied between 11% or 3.1 minutes and 64% or 10.7 minutes corre-
sponding to an uncertainty buffer from 0 to 60 seconds. Furthermore, as a comparison with
the NSGA algorithm, a First-Come-First-Serve based heuristic method was implemented
for the hybrid separation. Experiments showed that the results from the NSGA algorithm
have 9% to 42% less delay than the heuristic method with varied uncertainty buffer sizes.

I. Introduction

In a metroplex or high density terminal operations, typically within 100 nautical miles of an airport or
a major airport in a metroplex, resources, such as route segments, fixes, and runway, are normally spatially
segregated in order to reduce interactions between different traffic flows and to guarantee separation between
aircraft. Such separation may introduce unnecessary inefficiency due to lengthened routes or undesired alti-
tude constraints, introducing integrated arrivals and/or departures with shared resources may help improve
the efficiency.

In past years, in order to improve efficiency of terminal airspace operations, researchers treated the
arrival and departure scheduling problems as separate ones. Many algorithms were developed, such as
constrained position shifting (CPS),1–3 CPS with dynamic programming (DP),4 mixed integer linear pro-
gramming (MILP),5 and basic genetic algorithm (GA)6 for optimizing schedules. Recently, spatial and
temporal usage of shared resources started to draw researchers’ attention. A couple of approaches were
proposed to solve the optimal routing and scheduling problem. In 2009, Capozzi et. al7 introduced a MILP
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formulation and applied it to coordinate SFO arrivals and SJC departures. The MILP formulation was
found suitable for solving small scale problems but it required significant computational time if the number
of flights was greater than 10. Later, the authors8 further proposed a hybrid algorithm, which combined
basic GA and MILP. The GA was used to solve a high level problem (route assignment and sequencing)
while MILP was applied to the low level problems. Significant reduction in computational time was achieved
when the algorithm was applied to a small problem, but further research is needed for solving realistic and
complicated problems.

In this paper, a new formulation using a Non-dominated Sorting Genetic Algorithm (NSGA) was intro-
duced because of its ability to handle multi-objective optimization and multiple constraints. The NSGA was
demonstrated on a test problem first, then it was applied to an observed problem in LAX terminal airspace.
Currently, interactions between LAX arrivals and departures are resolved by spatially segregating arrival
and departure routes, which may introduce inefficiency. In this paper, three different separation approaches
to the LAX problem were examined including the hybrid separation which combines temporal and spatial
separation. The temporal and hybrid separations were formulated and solved using the NSGA algorithm.
Furthermore, a First-Come-First-Serve (FCFS) based heuristic method was applied to formulate the hybrid
separation to compare with the NSGA algorithm.

In this paper, Section II introduces the NSGA algorithm. In section III, a test problem is set up to
examine the performance of the new algorithm. In Section IV, the NSGA algorithm is applied to solve the
interactions between arrivals and departures in LAX terminal airspace in three different ways. Analysis
is then conducted to examine the benefits brought by integrating arrivals and departures spatially and
temporally. Comparison between the NSGA and the heuristic method is also conducted. Section V discusses
conclusions of the study.

II. Methodology

In the terminal airspace, methods of integrating flights with shared resources include routing, sequenc-
ing, and scheduling. The objective is usually to minimize total delay time for a given set of flights while
maintaining separation constraints and achieving proper sequence of landings. The problems are typically
highly constrained due to aircraft separation requirements. According to Capozzi’s work8 the MILP formu-
lation using the CPLEX solver requires a large amount of computational time, which might prohibit further
application. In this work, a variation of GA is investigated.

GAs9 have been quite successful in a great range of problems. These groups of algorithms are stochastic
processes that model two natural phenomena: genetic inheritance and Darwinian evolution. Evolutionary
operators include selection, crossover, and mutation. In the basic GA, the selection is based on the fitness
functions of the population in the generation. Typical approaches to handle constraints are rejecting or
penalizing infeasible individuals. The rejection of infeasible individuals is easy and popular, but it may get
stuck when the feasible search space is not convex or the search space is highly constrained. Penalizing
infeasible individuals relaxes the constraints, but it is hard to decide the penalty.

NSGA II,10 the NSGA11 variant used in this research was developed in recent years in order to improve
GA’s performance on multi-objective optimization and multiple constraint handling. Each individual has
two attributes: fitness and errors. Fitness is calculated based on the objective, whereas errors are calculated
if constraints are violated. Compared with the basic GA, the only change in NSGA is the selection process.
Instead of fitness, the population is evaluated and ranked based on the ordering of their dominance (Pareto
dominance) and is sorted into a hierarchy of subgroups. Assuming the objective is to minimize and the
constraint function g has to be nonnegative, individual A is dominated by individual B if:fA > fB , if gA≥0 and gB≥0, or, gA = gB

gA < gB , if gA < 0 and gB < 0, or, gB > 0 and gA < 0
(1)

Where f is the objective and g is the constraint value.
In order to estimate the density of solutions surrounding a particular solution in the population, an

average distance between two neighboring solutions on either side of the particular solution along each
objective is calculated and is termed as the crowding distance. Crowding distance between members of each
sub-group introduces diversity among nondominated solutions.

Figure 1 demonstrates the selection procedure in NSGA II. At generation t, assuming P is the parent
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population and Q is the offspring population. Both P and Q have N individuals. They are first combined
to a 2N population Rt, then individuals in Rt are sorted based on their Pareto dominance. The best non-
dominated solutions are in set F1. After calculating crowding distances of set F1, if the size of F1 is smaller
than N, F1 will be added into the new population Pt+1. Then, solutions from set F2 are added to the new
population, and so on. This process will continue unless the size of Pt+1 exceeds N . In order to make sure
that the size of Pt+1 reaches N , the solutions from the next Fi will be partially chosen in terms of their
crowding distances . The order � in the flow is defined as Eqn. 2. After the selection process, the remaining
processes are the same as basic GAs.

{
A�B if rankA < rankB , or (rankA = rankB and crowding distanceA > crowding distanceB) (2)

 

Combine parent and 
offspring population 

Rt=PtU Qt 

Non-dominated-sort(Rt) 
→F (F1 F2 F3 …)

Pt+1 = Ø & i = 1

size(Pt+1+Fi) ≤N

Crowding-distance-assignment(Fi)

Pt+1=Pt+1U Fi 

i = i + 1

Sort(Fi,p )

Pt+1 = Pt+1 U Fi[1:( N- size(Pt+1)]

Selection: 
generation = t 

Crowding-distance-assignment(Fi)

Figure 1. NSGA II selection procedure

In this work, bit strings were used to represent solutions. Therefore, the search space is discrete and it
helps speed up the process without sacrificing much optimality. Usually, the population size was set to 800
and the maximum number of generations was defined to be 300. Because random initialization was used, any
problem set in this study was usually run over three times and the best results were reported. All problems
in this work were solved on a MacOS platform with 2x2.66GHz 6-Core Intel Xeon and 8GB RAM.

III. A Test Problem

To test the formulation using the NSGA algorithm, a test problem was rebuilt based on Capozzi’s
papers.7,8 In this problem, two departure flows are assumed to come from two neighboring airports OAK
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and SJC, respectively. As shown in Fig. 2, the two departure fixes W0 and W1 are defined as shared
resources. The distance for both W1 to OAK (route R4) and W0 to OAK (route R3) is 45 miles; The
distance for both W1 to SJC (route R2) and W0 to SJC (route R1) is 56 miles. The flight departure
schedule is described in Table 1, which is the same as the “phased peak demand” mentioned in Capozzi’s
paper.7 Aircraft were assumed to be of the same type. The minimum speed of aircraft was defined to be 140
knots and the maximum speed was 180 knots. The minimum separation required at runway Dr was set to
3 nautical miles for all aircraft pairs and the minimum separation at departure fixes Df was defined to be 4
nautical miles. The maximum delay was assumed to be 200 seconds. Flight time uncertainty was included
using a time error (δ) of 60 seconds.

Table 1. Scheduled departure time

airport schedule (seconds)
SJC 0 300 600 900 1020 1120 1240 1400 1580 1780
OAK 0 120 220 340 520 720 1020 1320 1620 1920

 

W0 

W1 

SJC

OAK 
R1

R2

R3

R4

Figure 2. Shared departure fixes for SJC and OAK

Two scenarios of fix usage were examined: segregated vs. shared. In the “segregated” case, only R1 and
R4 are available, whereas in the “shared” case, all four routes are available. In this problem formulation,
decision variables for each flight i are ground delays (di), aircraft speeds (vi), and route options (ri). For
each flight, its time to exit a departure fix (tpi) and its time to take off (tri) can be expressed as in Eqn. 3,
where ti0 is the scheduled departure time as shown in Table 1. There are two routes for either SJC or OAK
departures: ri = 0 represents the default route (R1 for SJC departures and R4 for OAK departures) and
ri = 1 represents the second route (R2 for SJC departures and R3 for OAK departures). Rd means the
default route and Rs is the second route. Variable vi denotes the airspeed. Therefore, in NSGA, there are
three genes (di, ri, vi) for each flight.tri = ti0 + di,

tpi = tri + ((1− ri) ·Rd + ri ·Rs)/vi

(3)

f =
∑

tpi (4)

The objective is minimizing the total time as in Eqn. 4. The constrains are: the separation at departure
fixes (Eqn. 5) and separation at runways (Eqn. 6). The problem with 20 flights was modelled and solved
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without multiple windows that were used in MILP formulations.7 The formulations in Eqn. 3 and 5 are
built for the case of shared fixes. For the case of segregated fixes, ri can be simply fixed at zero.

|tpi − tpj |·[ri·rj + (1− ri)·(1− rj)]−Df/vk − δ≥0, (i6=j, if tpi > tpj , k = j otherwise k = i) (5)

|tri − trj | −Dr/vk − δ≥0, (i6=j, if tpi > tpj , k = j otherwise k = i) (6)

Table 2 shows the resulting delays with segregated and shared fixes, respectively. A reduction of 65%
was achieved by shared departure fixes. The total delay saving was 440 seconds (from 677 seconds to 237
seconds) over segregated fixes. Among them, 516 seconds were saved from ground delay with increased
airborne delay of 76 seconds. Makespans were the same because it was constrained purely by flight schedule
in this problem. Figure 3(a) and 3(b) presented the results for segregated and shared fixes, respectively.
The vertical axes are way points. The times of SJCRWY and OAKRWY represent the scheduled departure
times, while the times of SJC and OAK are departure times computed by the algorithm. The differences
denotes the suggested delays. Note that many SJC departures used W1 which wasn’t available to them
in the “segregated” case and six out of ten OAK departures used W0 which wasn’t available to them in
the “segregated” case. Sharing departure fixes provides flexibility in route options, and the departure fixes
can therefore be fully used to improve operation efficiency. This test showed that the new formulation with
the NSGA performs well. It solved the 20 flight problem in around 30 seconds without any parallelization.
Because one of the strengths of GA-like algorithms is parallelization, significant reduction in computational
time could be easily realized.

Table 2. Comparison of delays

Ground delay(sec) Airborne delay (sec) Total delay (sec) Makespan (sec)
Segregated 645 32 677 2900

Shared 129 108 237 2900

0 500 1000 1500 2000 2500 3000
SJCRWY

 

SJC

 

W0

 

W1

 

OAK

 

OAKRWY

Time (second)

(a)

0 500 1000 1500 2000 2500 3000
SJCRWY

 

SJC

 

W0

 

W1

 

OAK

 

OAKRWY

Time (second)

(b)

Figure 3. Schedules for (a) segregated departure fixes and (b) shared departure fixes

IV. Case Study: LAX Terminal Airspace

The interactions between arrivals and departures in LAX terminal airspace was identified to be a potential
scheduling problem that could be solved more efficiently than current procedures. This section describes the
model, method, and analysis for this problem.
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A. Description

According to the Standard Terminal Arrival Routes (STARs) of Los Angeles terminal airspace, arrivals to
Los Angeles airport (LAX) from the North are required to take procedure SADDE6, which is to fly from
Fillmore(FIM) to Santa Monica(SMO) via SYMON and SADDE fixes. Based on the Standard Instrument
Departures (SIDs), LAX departures to the North need to follow procedure CASTA2, which is to take off
from Runway 24R to WPT1 a through NAANC and GHART (see Fig. 4 ). In order to spatially segregate
these two flows, arrival flights from FIM are required to maintain their flight altitudes above 12,000 feet at
Fix GHART, while departures have to keep theirs at or below 9,000 feet at the same fix.

 

SMO

FIM

SYMON 

SADDE 
GHART 

NAANC

AJAYE

BURSILEX

SUTIE CORTY

WPT1

WPT2
RWY

Figure 4. Interactions between SADDE arrivals and CASTA departures

To resolve potential conflicts, departures and arrivals have to fly longer-than-necessary distances and
constrain their climb and descent altitudes. If there was no arrival flow, departure flights could fly directly
to WPT1 through WPT2 with a distance of 16.25 nmi as shown in Fig. 4 instead of the 24.69 nmi CASTA2
departure. And if there was no departure flow, arrivals from FIM could utilize the route of FIM-WPT1-
SMO with a distance of 29.69 nmi instead of the 35.46 nmi SADDE6 approach. Direct routes could save
approximately 60 seconds for an arrival flight and 120 seconds for a departure flight. It should also be noted
that the extra inefficiency caused by undesired altitudes hasn’t been taken into account.

As studied by Timar,12 approximately 28.1% of LAX arrivals use the SADDE6 procedure and 10.4%
of LAX departures use the CASTA2 procedure. In a typical day, this can be translated to 220 arrival
flights and 80 departure flights. The total cost or delay in a day due to the arrival departure interaction is
approximately 380 minutes with spatially segregated routes in the SIDs and STARs. Could it be improved?
The following study addresses this using three different methods: spatial, temporal and hybrid separation.
Spatial separation uses the same strategy as in SIDs and STARs. Temporal separation utilizes the direct
routes with conflicts resolved solely with temporal controls. As in Fig. 4, the direct route for departures is
RWY-WPT2-WPT1, and for FIM arrivals it is FIM-WPT1-SMO-SUTIE. Hybrid separation applies both
temporal and spatial separation.

B. Modeling

Three flows are taken into account in this work: arrivals from FIM (Set A1), departures from Runway
24L(Set D), and arrival flights from the East towards SUTIE(Set A2). Table 3 shows scheduled arrival times
(ti0) at FIM, RWY, and SUTIE, respectively. Historical traffic schedules between 18:30 pm to 19pm (UTC
time) on March 5, 2010 were used as a reference for generating the schedules. There are a total of 15 flights

aPoints WPT1 and WPT2 are made up for simplicity.
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including five arrivals from FIM, six arrivals from east of LAX, and four departures from Runway 24L. In
this work, flights were assumed to be the same type.

Table 3. Scheduled arrival times

Order FIM (sec) RWY (sec) SUITE (sec)
1 0 30 430
2 135 298 671
3 263 540 1070
4 860 1240 1210
5 1230 NA 1376
6 NA NA 1780

1. Decision Variables

Assume that route R1 refers to RWY-WPT2-WPT1 (direct route for departures), R2 represents RWY-
NAANC-GHART-AJAYE-WPT1 (lengthened route for departures), R3 denotes FIM-WPT1-SMO-SUTIE
(direct route for arrivals), and R4 is the route of FIM-SADDE-GHART-WPT2-SMO-SUTIE (lengthened
route for arrivals). In the formulation of hybrid separation, four design variables were defined for each
arrival flight in Set A1:

• d1i - The delay at or before FIM.

• ri - If ri = 0, the direct route R3 will be chosen, otherwise, R4 is selected.

• vi - The aircraft speed between FIM and WPT1 when flying the direct route or the speed between
FIM and WPT2 if flying the indirect route.

• d2i - The delay at or before SUTIE to ensure separation at SUTIE.

For a departure flight in set D, three decision variables were defined:

• di - The delay before departure.

• ri - If ri = 0, the direct route R1 will be chosen, otherwise R2 is selected.

• vi - The speed from departure to WPT1.

Only one decision variable exists for an arrival flight in Set A2:

• di - The delay time at or before SUTIE to ensure separation with A1 at SUTIE.

In the case of temporal separation, route options (ri) in Set D and Set A1 are fixed at zero so both
departures and arrivals take direct routes. The only way to meet the separation requirements is to use time
control. In the study, two scenarios were set up. In scenario one, no aircraft is allowed to arrive/depart early
or speed up. In scenario two, aircraft are allowed to arrive/depart early or speed up up to 30 seconds.

2. Constraints

Eqn. 7 shows the expression for FIM arrivals. Let R
′

3 denote route FIM-WPT1 and R
′

4 represents route
FIM-SADDE-WPT2, which are partial routes of R3 and R4, respectively. Variable LR

′
i
represents the length

or distance of route R
′

i. Variable tFIM (FIM,i) is defined to be the time when flight i arrives at FIM. Variable
tFIM (WPT,i) denotes the arrival time of flight i at WPT1 if a direct route is chosen, or the arrival time of
flight i at WPT2 if the indirect route is selected. Variable tFIM (SUTIE,i) refers to the arrival time of flight
i at SUTIE. The minimum travel time between WPT1 to SUTIE is defined to be 290 seconds. When R4 is
activated, the minimum travel time between WPT2 to SUTIE is set to 220 seconds.
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tFIM (FIM,i) = ti0 + d1i

tFIM (WPT,i) = tFIM (FIM,i) + [(1− ri) · LR
′
3
+ ri · LR

′
4
]/vi

tFIM (SUTIE,i) = tFIM (WPT,i) + (1− ri)·(d2i + 290) + ri·(d2i + 220)

(7)

Eqn. 8 shows the expression for departures, where tDEP (RWY,j) represents the time flight j departs
from RWY, variable tDEP (WPT2,j) denotes the time flight j arrives at WPT2, and R

′

1 refers to the route
RWY-WPT2. Variable tDEP (WPT1,j) represents the time flight j arrives at WPT1.

tDEP (RWY,j) = ti0 + dj

tDEP (WPT2,j) = tDEP (RWY,j) + (1− rj) · LR
′
1
/vj

tDEP (WPT1,j) = tDEP (RWY,j) + [(1− rj) · LR1 + rj · LR2 ]/vj

(8)

Eqn. 9 presents the expression for A2 arrivals with simply one decision variable.

tSUTIE(SUTIE,k) = ti0 + dk (9)

Separation constraints were applied at fixes that could have potential violations, such as FIM, RWY,
WPT1, WPT2, and SUTIE. Separation requirements were 3 nmi at the runway and 4 nmi elsewhere. As
in the previous section, an uncertainty buffer of δ was added in the separation constraints for a sensitivity
study.

3. Objective

The objective is to minimize the sum of exit times, as shown in Eqn. 10. For departures it is the time when
a flight leaves the waypoint WPT1. For arrivals, it is the time when a flight reaches waypoint SUTIE.

J =
∑
i,j,k

tFIM (SUTIE,i) + tDEP (WPT1,j) + tSUTIE(SUTIE,k) (10)

C. Results

In this section, results using three different separation methods are presented and compared. Different buffers
are set up to deal with uncertainty and the impacts are studied. In addition, two scenarios are defined: only
delays are considered in the first one, while early arrivals are allowed in the second case. For any flight,
its unimpeded flight time (fly via direct route without any consideration of separation from other flights) is
treated as a baseline. Beyond that, any extra flight time will be called delay.

1. Comparison of separation methods

This section compares separation methods when uncertainty buffers were defined to be zero. In the case of
spatial separation, because the indirect route was the only option, there exists associated extra flight time of
771 seconds. Because all flights were assumed to be the same aircraft type, the total delay can be computed
manually. Including route-caused delay the total delay is 1,001 seconds as shown in the Table 4. It can be
seen that without uncertainty buffers the delay with hybrid separation was 357 seconds – a reduction of 64%
or 10.7 minutes compared to the 1,001 second delay with spatial separation. While in this case, the temporal
separation also achieved much less delay than the spatial separation. The reduction was 59% or 9.8 minutes.

Tables 5, 6 and 7 show individual flight results for sets A1, D1, and A2, respectively, when the hybrid
separation is applied. Table 5 provides the results for arrivals from FIM. It indicates that three of five arrival
flights can make use of the direct route to reduce overall delay. In Table 6, all four departures flew their
direct routes. Among the arrivals from the East, two flights were assigned some delays. The resulting delay
under hybrid separation was reduced to 357 seconds as shown in Table 4.
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Table 4. Total delay with different separation methods

uncertainty buffer Spatial Temporal Hybrid
0 s 1,001s 413 s 357 s
30 s 1,163 s 776 s 759 s
60 s 1,673 s 1,808 s 1,490 s

Table 5. Results for A1 arrivals with hybrid separation and zero uncertainty

A1 Arrivals delay at FIM (s) Route Speed (kt) delay at SUITE (s)
Flight 1 0 direct 349 39
Flight 2 68 indirect 344 15
Flight 3 0 indirect 319 12
Flight 4 0 direct 350 0
Flight 5 0 direct 350 0

Table 6. Results for departures (D1) with hybrid separation and zero uncertainty

Departures delay before departure (s) Route Speed (kt)
Flight 1 0 direct 250
Flight 2 0 direct 250
Flight 3 8 direct 250
Flight 4 0 direct 250

Table 7. Results for A2 arrivals with hybrid separation and zero uncertainty

A2 Arrivals delay before SUITE (s)
Flight 1 0
Flight 2 0
Flight 3 8
Flight 4 0
Flight 5 62
Flight 6 4

2. Impact of uncertainty

The results of schedulers could be sensitive to the uncertainty of flight times. Robustness is required in
actual operations. The easy and popular way to increase the robustness is to introduce an uncertainty buffer
for flight times. As a trade-off, adding buffers causes additional delays. In this study, the buffers of 30 and
60 seconds were applied. Table 4 shows the results. In the table, the temporal separation introduced much
less delay than the spatial separation in the deterministic case, but when the uncertainty buffer increased to
60 seconds, the temporal separation caused more delay than spatial separation. This showed that temporal
separation was sensitive to the uncertainty buffer and corresponding schedules might be undesired in actual
operations. The hybrid approach generated the least delay compared with the other two approaches, although
the reduction decreased to 183 seconds when the buffer was 60 seconds. Results in Table 4 show the trade-off
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between buffer size and delays. In order to find out the best balance, an uncertainty study is required for
future work.

Figure 5. Time Line with hybrid separation and buffer = 0 seconds

Figures 5 and 6 show the time lines for all metering points when the buffer is zero and 30 seconds,
respectively, where the hybrid approach was applied. SUT stands for SUTIE for simplicity. Each flight has
a safe zone shown as a grey box in front of its arrival time. These safe zones can be packed in Fig. 5, but
they are well separated by a 30 second buffer in Fig. 6. Note how the flight loading of WPT1 and WPT2
changes significantly between 0 and 30 seconds. When the buffer is zero, FIM001, FIM004, and FIM005
are proposed to fly the direct route, but when the buffer increases to 30 seconds, the other FIM arrivals –
FIM002 and FIM003 – are proposed to take the short cut.

Figure 6. Time Line with hybrid separation and buffer = 30 seconds

3. Impact of early arrivals

Allowing early arrival or speeding up increases flexibility and reduces delay. In the previous cases, no early
arrival or speeding up was allowed. In this section, early arrival is allowed up to 30 seconds. The results
are presented in Table 8. For spatial separation, the delay was simply calculated by shifting each aircraft 30
seconds earlier than the previous case. The temporal and hybrid separations were solved using the NSGA
algorithm as in previous sections. As shown in the table, when the uncertainty buffer was zero, total delays
caused by both temporal and hybrid separation were negative, which means on average aircraft arrived early.
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The delay reduction from spatial separation to hybrid separation was 12.5 minutes when the uncertainty
buffer is zero and the reduction decreased to 3 minutes when the buffer increased to 60 seconds. On the
other hand, the uncertainty buffer in flight time still plays an important role. When the buffer increased,
the delay required increased quickly, especially for the temporal separation.

Table 8. Total delay when early arrival is allowed

uncertainty buffer Spatial Temporal Hybrid
0 s 551 s -170 s -195 s
30 s 713 s 393 s 309 s
60 s 1,223 s 1,338 s 1,041 s

4. NSGA algorithm v.s Heuristic method

The performance of the NSGA algorithm is compared with that of a FCFS based heuristic method. Be-
cause this problem involves route option and multiple scheduling points, the rules of FCFS may not be
straightforward and have to be clarified:

• The estimated or scheduled entering times are used as references for setting up priority. For FIM
arrivals, the entering times are the arrival times to fix FIM. For departures, they are the estimated
times of leaving RWY. And the estimated SUTIE arrival times are used as references for arrivals from
the East. Each flight decides its route based on the FCFS rule in the order of their entering times.
The route that causes the lowest delay at the time will be chosen.

• The conflicting flights in metering points WPT1, WPT2, and SUTIE are resolved based on the esti-
mated arrival times, not their entering times. For instance, assume flight A has an earlier entering
time than flight B, but the estimated arrival time of flight A at fix F is later than flight B. If flight A
would conflict with flight B at fix F, then flight A would be delayed before it reaches fix F. With this
rule, the arrival sequences at these metering points are actually allowed to be changed. This may be
different from the strict FCFS rule.

• No flight should be delayed more than M seconds at any fix. M is set to 200 in this work.

• The order of flights in the same flow should be kept, e.g. FIM arrivals, SUTIE arrivals, and departures.

In the NSGA algorithm, the resolution of delay was approximately five to ten seconds. Table 9 presents
the results using the heuristic method with a delay resolution of one second. When the uncertainty buffer
is zero, the results generated by the NSGA algorithm can save about 42% over the heuristics method even
though the latter has high resolution. When the buffer size increases, that saving was reduced to 20%
or 9%, which was probably due to the decreased solution space. Overall, the proposed NSGA algorithm
outperformed the heuristic method with a great difference. Unlike conventional scheduling problems, the
optimization method showed greater advantage over heuristics due to the complicated solution space. On the
other hand, it is also noticed that when the buffer size is large enough, the benefit of integration of arrivals
and departures could disappear and the heuristic method becomes a good choice due to its computational
easiness.

Table 9. Delay with hybrid separation using different methods

uncertainty buffer NSGA algorithm Heuristic Difference
0 s 357 s 611 s 42%
30 s 758 s 950 s 20%
60 s 1,490 s 1,638 s 9%
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V. Conclusion

The integration of departures and arrivals seems promising in improving operational efficiency in terminal
airspace. The problem combines routing and scheduling problems, which further challenges the MILP solver.
This work introduced a variation of genetic algorithm – NSGA. The NSGA was used because it is better
than basic GA in handling constraints. Results with a test problem showed that the new formulation with
NSGA can solve the problem in a fast time fashion.

A potential application of integrated arrivals and departures was identified in LAX terminal airspace.
The arrival and departure route structures were modelled with three different strategies: spatial separation,
temporal separation, and hybrid separation. A problem was set up based on a historical traffic schedule with
a total of 15 flights and three flows included. The results showed that although the temporal separation
introduced much less delay than the spatial separation, it caused more delay than the latter when the
uncertainty buffer increased to 60 seconds. The hybrid separation outperformed both the temporal and the
spatial separations: It reduced unnecessary delay by 64% or 10.7 minutes if no early arrival/departure or
speeding up was allowed; And if early arrival/departure or speeding up was allowed, the saving increased
to 12.5 minutes. Compared with a FCFS based heuristic method, the schedules produced by the NSGA
saved flight time up to 42%, which showed greater advantage over FCFS than typically seen in conventional
scheduling problems. Overall, this study showed that it is promising to improve operation efficiency in LAX
terminal airspace by integrating departures and arrivals using hybrid separation with the NSGA algorithm.
Apparently, such efficiency may vary with aircraft departure and arrival schedules. The proposed method
can be applied in a fast time fashion to decide if benefit exists and how to quantify it. Therefore, it can help
decision makers to operate properly.

In order to achieve this goal, an analysis needs to be completed for the uncertainty in the schedules. In
the future work, such uncertainty analysis will be conducted. The robustness of the benefits and controllers’
workload will be examined by imposing flight time perturbations. The balancing point for the trade-off
between robustness and delay will be studied. The schedulers using different separation approaches and
different algorithms will be investigated and compared.
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