
Shock Layer Radiation Modeling and Uncertainty

for Mars Entry

Christopher O. Johnston,∗

NASA Langley Research Center, Hampton, VA 23681

Aaron M. Brandis†

University Affiliated Research Center with University of California Santa Cruz,

Mountain View, CA 94035

and

Kenneth Sutton‡

National Institute of Aerospace, Hampton, VA 23669

A model for simulating nonequilibrium radiation from Mars entry shock layers is pre-
sented. A new chemical kinetic rate model is developed that provides good agreement
with recent EAST and X2 shock tube radiation measurements. This model includes a
CO dissociation rate that is a factor of 13 larger than the rate used widely in previ-
ous models. Uncertainties in the proposed rates are assessed along with uncertainties in
translational-vibrational relaxation modeling parameters. The stagnation point radiative
flux uncertainty due to these flowfield modeling parameter uncertainties is computed to
vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5
to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the
range of anticipated peak radiative heating conditions for proposed hypersonic inflatable
aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are
compiled along with a non-Boltzmann rate model for the dominant radiating molecules,
CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model
is developed, which is shown to result in up to a 50% increase in the radiative flux through
absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radia-
tion modeling parameters is presented and the uncertainty for each parameter is assessed.
The stagnation point radiative flux uncertainty due to these radiation modeling parameter
uncertainties is computed to vary from 18 to 167% for the considered range of free-stream
conditions. The total radiative flux uncertainty is computed as the root sum square of
the flowfield and radiation parametric uncertainties, which results in total uncertainties
ranging from 50 to 260%. The main contributors to these significant uncertainties are the
CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline
flowfield and radiation models developed in this work, the radiative heating for the Mars
Pathfinder probe is predicted to be nearly 20 W/cm2. In contrast to previous studies, this
value is shown to be significant relative to the convective heating.

I. Nomenclature

Av′v” Einstein emission coefficient for a vibrational-electronic transition (s−1)
Af,i Leading rate constant for chemical kinetic reaction i
Bv Spectroscopic constant for rotational energy (cm−1)
Cv,v Specific heat at constant volume for vibrational-electronic energy (J/kg/K)
c Speed of light, 2.9979×1010 cm/s
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Df,i Characteristic temperature for chemical kinetic rate constant i (K)
Ev Vibrational energy (cm−1)
Ee Electronic energy (cm−1)
E2 Second-order exponential integral
Gab Radiative absorption term defined in text (particles − s−1 − cm−3)
Fi Baseline rate divided by heritage rate at 8000 K.
Gem Radiative lifetime defined in text (s−1)
ge Electronic degeneracy
h Planck’s constant, 6.6256×10−27 erg-s
Iν Frequency-dependent intensity resulting from all radiative mechanisms (W/cm2/sr)
Jλ Frequency-dependent intensity divided by shock tube diameter (W/cm3/sr/μ)
Jc Integrated intensity divided by shock tube diameter (W/cm3/sr)
jν,ij Frequency-dependent emission coefficient for transition between electronic levels i and j (erg/cm3/sr)
k Boltzmann constant, 1.3806×10−16 erg/K
kf,i Forward rate for chemical reaction i (cm3mole−1s−1)
kb,i Backward rate for chemical reaction i (cm3mole−1s−1)
Kr Reaction rate constant for reaction r (K)
Nj Number density of electronic level j (particles/cm3)
nf,i Temperature exponent for chemical kinetic reaction i
qr Radiative flux at the wall (W/cm2)
qr,upper Radiative flux at the wall multiplied by the positive component of Δqr,total (W/cm2)
Qe Electronic partition function
Qint Internal partition function
Qv−t Vibrational-translational relaxation term (J/m3/s)
Rν Blackbody function (erg-cm−2-sr)
s Integration variable
Ta Dissociation controlling average temperature defined as (TtrTve)1/2 (K)
Tx Temperature, where x=e,v, or r for electronic, vibrational, or rotational modes (K)
z Distance along a body normal (cm)
Δqr,flow Radiative flux uncertainty due to flowfield modeling parameters
Δqr,rad Radiative flux uncertainty due to radiation modeling parameters
Δqr,total Total radiative flux uncertainty, computed as the root sum square of Δqr,flow and Δqr,rad

κν,ij Absorption coefficient including induced emission for transition between electronic levels i and j (cm−1)
λ wavelength (nm)
Λj,i Escape factor (dimensionless)
μ Reduced mass between colliding species
ν Frequency (s−1)
Ψ Solid angle
ρinf Free stream density (kg/m3)
τν Optical depth (dimensionless)

II. Introduction

The influence of radiative heating on the aerothermal environment of future NASA missions to Mars
is potentially significant.1 Concepts such as hypersonic inflatable aerodynamic decelerators (HIADs)2 may
consist of a geometry similar to a 70 degree sphere cone with a diameter as large as 20 m. This large
diameter will result in radiative heating that is a significant fraction of the convective heating, if not larger.
Proposed materials for the inflatable structure have relatively low heat flux limits (∼40 W/cm2). The
accurate prediction of the radiative and convective heating at these low magnitudes, which will likely occur
at high altitudes with strong shock-layer thermochemical nonequilibrium, presents a significant challenge
for NASA’s present aerothermodynamic simulation capability. Hollis and Prabhu3 reviewed the state-of-
the-art simulation capability for convective heating of a Mars entry vehicle. The focus of the present paper
is to define a baseline simulation approach for Mars entry radiative heating predictions and to assess the
uncertainty associated with this baseline model.
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The chemical kinetic and two-temperature modeling parameters presented in 1994 by Park et al.4 have
been the standard at NASA during the past two decades for Mars entry flowfield simulations. Because of
the relatively low entry velocities (<6 km/s) of Mars missions during this time1 (with the exception of Mars
Pathfinder), the majority of Mars entry simulations using the Park model have been focused on accurate con-
vective heating predictions, which are significantly less sensitive to the chemical kinetic and two-temperature
modeling parameters than the radiative heating (the convective heating being most sensitive to the catalyc-
ity model). Many comparisons with convective heating measurements have been performed to assess this
model for convective heating predictions.3 Although some comparisons with radiation measurements have
been made recently using this model,5–10 the experimental conditions were far from flight relevant and the
main radiating band system, the CO 4th Positive band, was not measured. Recent measurements by Cruden
et al.11 in the NASA Ames EAST facility have provided measurements of the CO 4th Positive and CN
Violet bands at pressures and velocities relevant to HIAD entries. These measurements, along with recent
theoretical studies of Mars entry flowfield and radiation properties,12–16 provide an opportunity to assess
the radiative heating prediction capability of the Park model4 and to make adjustments where necessary.
These tasks are the goal of the present paper, which will develop a chemical kinetic rate model by tuning
the Park model to fit the EAST measurements, and will develop radiative spectrum and non-Boltzmann
models based on recent data from the literature. Furthermore, the radiative heating uncertainty for these
developed models will be assessed through a parametric uncertainty analysis, using uncertainties for each
modeling parameter chosen during model development.

A brief overview of the flowfield and radiation codes used to implement the developed models is presented
in Section III. The flowfield conditions and geometry of present interest are also defined in this section,
along with an overview of shock layer radiative heating for HIADs entering Mars. Section IV presents the
modifications made to the Park et al.4 chemical kinetics for the present baseline model. The rates are
tuned to provide good agreement with recent EAST shock tube measurements by Cruden et al.11 Section V
presents a sensitivity analysis of the radiative heating to this new rate model and the vibrational relaxation
model. Uncertainties for the rates and relaxation parameters are chosen based on a literature review, and
a parametric radiative heating uncertainty is computed based on these flowfield modeling uncertainties.
Section VI presents the baseline radiation model, which includes spectrum and non-Boltzmann modeling
parameters. Uncertainties for these parameters are chosen based on a literature review, and a parametric
radiative heating uncertainty is computed based on these radiation modeling uncertainties. Section VII
combines the flowfield and radiation modeling parametric uncertainties from Sections V and VI and discusses
the total radiative heating uncertainty for Mars entry. Finally, Section VIII applies the developed radiation
model and uncertainty approach to the Mars Pathfinder vehicle.

III. Mars Entry Radiation Overview

This section provides an overview of the flowfield and radiation codes applied in this work, along with the
vehicle geometry and range of free-stream conditions considered. Radiative heating results are also presented
to provide a general overview of the nonequilibrium shock layers present at these conditions.

A. Overview of Applied Flowfield and Radiation Codes

The present baseline flowfield model is implemented using the LAURA Navier-Stokes solver.17 As mentioned
in the Introduction, the two-temperature thermochemical nonequilibrium model presented by Park et al.4 is
applied in this work, with chemical rate modifications made based on comparisons with shock tube radiation
measurements. These modified rates will be presented in Section IV, while details of the two-temperature
formulation are presented in Section V with the discussion of flowfield uncertainties. The following 16 species
are treated: CO2, CO, N2, O2, NO, C, N, O, CN, C2, C+, O+, NO+, O+

2 , CO+, and e−. Note that although
NCO was included by Park et al.,4 it is ignored throughout this work because its impact on radiative and
convective heating was found to be negligible.

The present baseline radiation model is implemented using the HARA nonequilibrium radiation code18,19

with tangent-slab radiation transport. Emission and absorption from C, O, and N species are treated, which
includes bound-free (photoionization), free-free, and bound-bound (atomic lines) radiative processes. The
computational approach and spectral data applied for modeling these processes are presented by Johnston.20

Note that the contribution from these atomic species is less than 3% of the total radiative flux for the Mars
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entry conditions of present interest.
The major contributors to Mars entry radiation are the molecular band systems, particularly the CO

4th Positive, CN Violet, CN Red, and C2 Swan bands. A complete list of the band systems treated and the
parameters used for their modeling is presented in Section VI. The strong CO 4th Positive band emits in
the vacuum ultraviolet region of the spectrum, and therefore experiences significant self absorption for most
shock layer conditions. This optically thick molecular band system requires the use of the rigorous line-by-
line (LBL) approach for radiation transport, instead of the more efficient smeared rotational band approach
previously applied by HARA.18 The option to treat specified band systems using the LBL approach, while
simultaneously treating other weaker bands systems using the SRB approach, was recently implemented in
HARA and will be applied throughout this work. It was found that only the CO 4th Positive band requires
the LBL approach for flight cases. Validation of the present LBL simulation for the CO 4th Positive band
is presented by Brandis et al.21

B. Baseline Geometry and Free-Stream Conditions

To model a general HIAD vehicle near peak radiative heating, a 70 degree sphere cone with a nose radius
of 3.75 m, shoulder radius of 0.375 m, and a maximum diameter of 15 m is considered throughout this
work. Increasing or decreasing the size of the vehicle by a factor of two will not significantly change the
conclusions of this study. This is because, for Mars entry, the majority of the radiative heating is emitted
from the nonequilibrium region of the shock layer, which is essentially unchanged by the size of the vehicle
for a given free-stream condition. This trend is not consistent with lunar-return Earth entry vehicles, where
the radiative heating (which is equilibrium dominated) increases nearly linearly with the vehicle size.

The majority of this paper will focus on three free-stream conditions, all with a free-stream velocity of
7 km/s. The first two conditions, which have free-stream densities (ρinf ) of 5e-5 kg/m3 (0.011 Torr) and
1e-4 kg/m3 (0.022 Torr), were chosen to capture thermochemical nonequilibrium effects. As will be shown,
the entire shock layer is in chemical nonequilibrium for these cases. The third condition has a free-stream
density of 5e-4 kg/m3 (0.110 Torr), which is chosen to produce a flowfield that includes both nonequilibrium
and equilibrium regions, as well as increased radiative flux magnitudes. For all cases the angle of attack
is set to zero and the free-stream temperature is set to 150 K. The free-stream composition for all cases is
assumed to be 96% CO2 and 4% N2, by mole, to be consistent with recent EAST measurements.

The angle of attack is set to zero for all cases to simplify the flowfield modeling to axisymmetric grids.
For this study, a shock adapted grid with 128 cells in the normal direction and 48 cells along the body is
applied. Grid clustering around the shock is required for accurate radiative heating predictions because of
the significant emission from the nonequilibrium shock region.

The influence of thermochemical nonequilibrium on the present flight conditions is shown in Figs. 1 – 3,
which compare the stagnation line temperature and radiative flux profiles for two-temperature thermochem-
ical nonequilibrium and single-temperature chemical equilibrium simulations. For the 5e-5 kg/m3 and 1e-4
kg/m3 cases, Figs. 1(a) and 2(a) show that the entire shock layer is in chemical nonequilibrium, while thermo-
dynamic nonequilibrium is relatively small (as indicated by the rapid equilibration of the two temperatures
behind the shock). Consequently, Figs. 1(b) and 2(b) show a significant difference between the equilibrium
and nonequilibrium wall-directed radiative flux. The majority of the emission for the nonequilibrium case is
located directly behind the shock, while for the equilibrium case the emission is nearly constant throughout
the shock layer. Similar trends are seen in Fig. 3 for the higher density 5e-4 kg/m3 case, although the
differences in temperature and radiative flux are smaller between the equilibrium and nonequilibrium cases.

The radiative flux spectrum at the wall is presented in Fig. 4 for the ρinf = 1e-4 kg/m3 case. This
figure includes only the molecular band contribution for clarity (the atomic line contribution is less than 3%
of the total radiative flux). The significant contribution from the CO 4th Positive band in the wavelength
region between 120 and 220 nm is seen. Emission from the CO 4th Positive band originates mostly in the
nonequilibrium region of the shock layer. This is shown in Fig. 5, which presents the volumetric radiance
along the stagnation line resulting individually from the CO 4th Positive and CN Violet bands. The radiative
flux profile is also shown in this figure. The sharp increase in the radiative flux due to the spike in CO 4th
Positive emission is shown in this figure. Modeling this spike is therefore important for accurately modeling
the radiative flux. The EAST measurements considered in the next section provide a means for validating
our prediction capability of this nonequilibrium emission spike. The radiative flux contributions from other
band systems are presented individually in Figs. 6 and 7. The CN Violet band is seen to be the second
largest contributor to the radiative flux. The CN Violet emission originates mostly in the equilibrium region
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Figure 1: Stagnation line temperature and radiative flux profiles for the ρinf = 5e-5 kg/m3 (0.011 Torr) case.
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Figure 2: Stagnation line temperature and radiative flux profiles for the ρinf = 1e-4 kg/m3 (0.022 Torr) case.
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Figure 3: Stagnation line temperature and radiative flux profiles for the ρinf = 5e-4 kg/m3 (0.110 Torr) case.
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of the shock layer. The contributions from the equilibrium and nonequilibrium region of the shock layer are
studied in more detail in Appendix A, which simplifies the shock layer into two constant property layers: one
layer representing the strongly emitting nonequilibrium region behind the shock and one layer representing
the strongly absorbing region containing the rest of shock layer. This simplified model, which allows the
radiative transport equations to be solved analytically, provides insight into the emission and absorption
from these two distinct shock layer regions.
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Figure 4: Total radiative flux spectrum for the ρinf = 1e-4 kg/m3

case (atomic radiation removed for clarity).
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Figure 5: Volumetric radiance and radiative flux along the stagnation
line for the ρinf = 1e-4 kg/m3 case.
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for the ρinf = 1e-4 kg/m3 case.
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Figure 7: Radiative flux from individual band systems of CO for the
ρinf = 1e-4 kg/m3 case.

IV. Modifications to the Heritage Chemical Kinetics Model

Because of the significant contribution from nonequilibrium radiation to the total radiative heating for
Mars entry, the most important flowfield modeling parameters are the chemical kinetic rates. The present
section presents the chemical kinetic rate model used throughout this work.

A. Baseline Rate Model

The chemical kinetic rate model presented by Park et al.4 has been applied in the majority of previous
Mars entry radiation studies, and will therefore be referred to here as the “heritage” model. For this
model, the important CO and CO2 dissociation rates were chosen by Park et al.4 based on comparisons
with limited measurements by Davies22 and Nealy,23 respectively. Park et al.4 applied a one-dimensional
shock-fitting flowfield model for simulating the measurements and tuning the rates. As shown in Fig. 8,
applying the heritage rates (along with Park et al.’s4 vibrational relaxation parameters) using the present
shock capturing LAURA flowfield model results in a factor of three over-prediction of the measurements
of Nealy23 (the uncalibrated Nealy data was scaled to agree in the equilibrium region). This discrepancy
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suggests the heritage rate model should be reassessed using the same modern shock-capturing Navier-Stokes
codes used for actual vehicle shock layer radiation predictions. This reassessment will be presented in the
next subsection using recently published EAST and X2 shock tube measurements. The resulting rate model,
which will be shown to compare well with experiments across a wide range of pressures and velocities, is
presented in Tables 1 and 2. The rates listed in these tables will be referred to throughout this paper as the
“baseline” model. This name is chosen because these rates represent the baseline from which kinetic rate
uncertainties are assessed in the next section. From the coefficients listed in Tables 1 and 2, the forward
rate constant is obtained for reaction i as follows:

kf,i = Af,iT
nf,i

f,i exp(−Df,i/Tf,i) (1)

The last column in these tables presents the factor Fi, which represents the baseline rate divided by the
heritage rate,4 with both at a temperature of 8000 K. A “N/A” is listed for rates that are not included in
the heritage model. An Fi value of unity indicates that the baseline rate is identical to that in the heritage
model.
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Figure 8: Radiative intensity for the Nealy experiment23 considered
by Park et al.4 at 0.3 Torr and 9.05 km/s.
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Figure 9: Comparison of CO dissociation rates.

The average temperature for dissociation, Ta, listed in Tables 1 and 2 as the rate controlling temperature
for dissociation reactions, is assumed equal to (TveTtr)1/2, as suggested by Park et al.4 Uncertainties due to
this modeling of Ta are assumed to be captured in the rate uncertainties chosen in Section V. While tuning
the rates to fit the 0.25 Torr EAST data (as discussed in the next subsection), the modeling of Ta has a
negligible influence because the two temperatures equilibrate almost immediately behind the shock. Note
that for the flight cases presented in Figs. 1–3, this rapid equilibration is seen even though the free-stream
pressures are well below 0.25 Torr.

The reference sources for the various chosen rates are listed in Tables 1 and 2. The rates labelled “This
work” were chosen to provide the best fit with EAST data. The remainder of the rates, which have a smaller
influence on the shock tube radiation, were obtained from recent aerothermodynamic studies or set equal to
the heritage value. The rates chosen in this work to fit the EAST data are generally within the scatter of
proposed rates from past researchers. For example, the largest deviation from the heritage model (among
the “This work” rates) is present for the CO dissociation reaction, which is chosen to be 13 times larger than
the heritage rate. As shown in Fig. 9, this significant increase in the CO dissociation rate is at the upper
limit of previously proposed values.

B. Comparisons with Experimental Data

In the present comparisons with EAST measurements, the baseline flowfield and radiation models defined
in the previous section are applied, except for the chemical kinetic model, which will be specified as either
the baseline or heritage model. Flowfield-radiation coupling is accounted for in all simulations. This tends
to slightly decrease the peak vibrational-electronic temperature behind the shock, and therefore decrease
the level of peak radiative emission. To simulate the spatial smearing of the measurements, the simulated
radiation profiles are averaged at each spatial point over 0.5 and 0.3 cm for the 165–215 nm and 340–440
nm spectral ranges, respectively.
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Table 1: Chemical kinetics for neutral species applied in the present baseline model.

i Reaction Af,i nf,i Df,i Tf,i Third Body, M Ref. Fi

1 CO2 + M ↔ CO + O + M 2.8e+22 -1.50 6.328e+4 Ta N, C, O This work 2

1.4e+22 -1.50 6.328e+4 Ta others This work 2

2 CO + M ↔ C + O + M 3.0e+21 -1.00 1.29e+5 Ta All This work 13

3 C2 + M ↔ 2C + M 4.5e+18 -1.00 7.15e+4 Ta All This work 1.25

4 CN + M ↔ C + N + M 6.0e+15 -0.4 7.10e+4 Ta All Fujita et al.24 0.66

5 N2 + M ↔ 2N + M 3.0e+22 -1.60 1.132e+5 Ta N, C, O Park25 1

6.0e+3 2.6 1.132e+5 Tve e− Bourdon et al.26 1.2e-5

7.0e+21 -1.60 1.132e+5 Ta others Park25 1

6 NO + M ↔ N + O + M 1.1e+17 0.00 7.55e+4 Ta N, C, O, NO, CO2 Park25 1

5.0e+15 0.00 7.55e+4 Ta others Park25 1

7 O2 + M ↔ 2O + M 1.0e+22 -1.50 5.936e+04 Ta N, C, O Park25 1

2.0e+21 -1.50 5.936e+04 Ta others Park25 1

8 CO2 + O ↔ O2 + CO 2.71e+14 0.0 3.38e+4 Ttr Ibragimova27 6

9 CO + C ↔ C2 + O 2.4e+17 -1.00 5.80e+4 Ttr Park et al.4 1

10 CO + N ↔ CN + O 1.0e+14 0.00 3.86e+4 Ttr Park et al.4 1

11 CO + NO ↔ CO2 + N 3.0e+6 0.88 1.33e+4 Ttr Fujita et al.24 N/A

12 CO + O ↔ O2 + C 3.9e+13 -0.18 6.92e+4 Ttr Park et al.4 1

13 C2 + N2 ↔ CN + CN 1.5e+13 0.0 2.1e+4 Ttr Gokcen28 N/A

14 CN + C ↔ C2 + N 3.0e+14 0.00 1.81e+4 Ttr Fujita et al.24 3.2

15 CN + O ↔ NO + C 1.6e+12 0.10 1.46e+4 Ttr This work 0.1

16 N + CO ↔ NO + C 1.1e+14 0.07 5.35e+4 Ttr Fujita et al.24 N/A

17 N2 + C ↔ CN + N 1.1e+14 -0.11 2.32e+4 Ttr Park et al.4 1

18 N2 + CO ↔ CN + NO 1.2e+16 -1.23 7.70e+4 Ttr Fujita et al.24 N/A

19 N2 + O ↔ NO + N 6.0e+13 0.1 3.80e+4 Ttr Fujita et al.24 1.9

20 O2 + N ↔ NO + O 2.49e+9 1.18 4.01e+3 Ttr Bose & Candler29 2.2

Table 2: Chemical kinetics for ionized species applied in the present baseline model.

i Reaction Af,i nf,i Df,i Tf,i Ref. Fi

21 C + O ↔ CO+ + e− 8.8e+8 1.0 3.31e+4 Ttr Park et al.4 1

22 C + e− ↔ C+ + 2e− 3.7e+31 -3.0 1.307e+5 Tve Park et al.30 10.5

23 C+ + CO ↔ CO+ + C 1.0e+13 0.0 3.14e+4 Ttr Park et al.4 1

24 CO + e− ↔ CO+ + 2e− 4.5e+14 0.275 1.63e+5 Tve Teulet et al.31 N/A

25 N + O ↔ NO+ + e− 5.30e+12 0.0 3.19e+4 Ttr Park et al.32 1

26 NO+ + C ↔ C+ + NO 1.0e+13 0.0 2.32e+4 Ttr Park et al.4 1

27 NO+ + N ↔ O+ + N2 3.40e+13 -1.08 1.28e+4 Ttr Park25 1

28 NO+ + O ↔ O+
2 + N 7.20e+12 0.29 4.86e+4 Ttr Park25 1

29 NO+ + O2 ↔ NO + O+
2 2.40e+13 0.41 3.26e+4 Ttr Park25 N/A

30 O + O ↔ O+
2 + e− 7.10e+02 2.7 8.06e+4 Ttr Park32 1

31 O + e− ↔ O+ + 2e− 3.90e+33 -3.78 1.585e+5 Tve Park25 1

32 O2 + C+ ↔ O+
2 + C 1.00e+13 0.0 9.40e+3 Ttr Park et al.4 1

33 O+
2 + O ↔ O+ + O2 4.00e+12 -0.09 1.80e+4 Ttr Park32 1

34 O2 + e− ↔ O+
2 + 2e− 2.19e+10 1.16 1.30e+5 Tve Teulet et al.31 N/A
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EAST measurements are available11 at pressures of 0.25, 0.10, and 0.05 Torr. Although the two lower
pressures are more flight relevant, the 0.25 Torr cases are valuable for assessing the nonequilibrium chem-
istry because the non-Boltzmann influence is small, and therefore disagreements between measurements and
simulations are attributed to inadequacies in the chemical rates and not the non-Boltzmann excitation rates.
Similarly, the two temperatures are equilibrated almost immediately behind the shock, which reduces the
sensitivity of the simulations to translational-vibrational relaxation parameters. For these reasons, the 0.25
Torr cases were used to tune the “This work” rates in Table 1. Comparisons with the 0.25 Torr cases are
presented next, followed by comparisons with the more flight relevant 0.10 and 0.05 Torr cases.

Comparisons between the baseline or heritage rate simulations and the 0.25 Torr EAST measurements
are presented in Figs. 10–12. In (a) and (b) of these figures, the spatial profile of Jc is presented, which is
defined as the integrated intensity (over the two specified spectral ranges) divided by the shock tube diameter
of 10.16 cm. The 165–215 nm range considered in (a) captures a significant fraction of the important CO
4th Positive band system, while the 340–440 nm range in (b) captures a majority of the CN Violet band
system. Considering the 165–215 nm range, a factor of 3–4 over-prediction of the peak radiance is seen for the
heritage rates, in addition to a significantly larger region of nonequilibrium. This significant over-prediction
of the CO 4th Positive emission suggests that the simulated CO number density is too large. As discussed
previously, a factor of 13 increase in the CO dissociation rate was chosen for the baseline model to correct
this over-prediction. The factor of 2 increase in the CO2 dissociation rate and the choice of the Ibragimova27

rate for the reaction CO2 + O ↔ O2 + CO also reduced the over-prediction by decreasing the CO2 number
density and therefore reducing the temperatures in the nonequilibrium region (the increase in CO number
density from these changes is more than offset by the temperature decrease). The chosen baseline rates are
seen to significantly improve the agreement with the measurements.

Considering the CN Violet emission in the 340–440 nm range, a less extreme over-prediction is seen for
the heritage rates than was seen for the CO 4th Positive band. The rates chosen previously to improve the
CO 4th Positive emission result in a significant decrease in the nonequilibrium temperatures, which cause
a strong decrease in the CN Violet emission (through a reduction in the total CN number density). This
decrease is slightly more than is required for agreement with measurements. A factor of 10 decrease in the
rate for the reaction CN + O ↔ NO + C was therefore chosen to offset this decrease. The resulting baseline
rates are seen to provide improved predictions of the nonequilibrium CN Violet emission, although slight
under-predictions of the peak emission remain. To improve the agreement further would require sacrificing
the excellent agreement seen for the CO 4th Positive. The nonequilibrium emission from the CO 4th Positive
band is significantly larger than the CN Violet band, so preference was given to achieving the best agreement
for the CO 4th Positive band.

To further validate the rates chosen for the baseline rate model, the baseline rate simulation and measured
spectrum at the peak nonequilibrium point and an equilibrium point are presented in (c)–(f) of Figs. 10–
12. Except for Fig. 11(d), good agreement is seen between the simulated and measured spectra. These
comparisons confirm that the good agreement seen in the spatial profiles of (a) and (b) are not due to a
fortuitous cancellation of various spectral regions. In the nonequilibrium regions, (c) shows that the peak
nonequilibrium emission of the CO 4th Positive band, which contributes significantly the radiative flux for a
flight case, is simulated accurately with the baseline rate model. Similarly, good agreement is seen in (d) for
the nonequilibrium emission of the CN Violet band, although it is not quite as good as that seen for the CO
4th Positive band. In the equilibrium region, (e) and (f) show excellent agreement for both band systems.

The good agreement between the baseline rate results and 0.25 Torr measurements was seen because the
rates were chosen to force this agreement. Comparisons with experiments at other conditions, specifically
flight relevant pressures of 0.1 and 0.05 Torr, will therefore define the quality of the baseline rate model.
These comparisons are made in Figs. 13 and 14 for a pressure of 0.1 Torr and Figs. 15 and 16 for a pressure
of 0.05 Torr. As with the 0.25 Torr cases, (a) and (b) present the integrated profile for the CO 4th Positive
and CN Violet bands. The agreement between the baseline simulation and measured profiles are seen to be
nearly as good as that seen previously for the 0.25 Torr cases. Note that unlike the 0.25 Torr cases, these
lower pressure cases do not reach chemical equilibrium within the test time. The slight differences seen near
the end of the test time may be a result of driver gas contamination in this region of the flow. Similarly to
the 0.25 Torr results, the heritage rate is seen to significantly over-predict the CO 4th Positive band and, to
a lesser extent, the CN Violet band.

The spectral comparisons presented in (c)–(f) of Figs. 13–16 show surprisingly good agreement between
the baseline simulations and measurements at two nonequilibrium spatial points (unlike the 0.25 Torr cases,
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T48−26: 6.71 km/s, 0.25 Torr
Simulation: Baseline Rates
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T48−26: 6.71 km/s, 0.25 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates

(b) 340-440 nm

170 180 190 200 210
0

20

40

60

80

100

120

λ (nm)

J λ
 (

W
/c

m
3 /s

r/
μ

)

 

 
EAST Data (Spectrum)
Baseline Rates (Spectrum)
EAST Data (Cumulative*100)
Baseline Rates (Cumulative*100)

(c) Distance = 3.0 cm
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(d) Distance = 3.0 cm
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(e) Distance = 9.0 cm
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Figure 10: Comparison of nonequilibrium profiles for Test 51, Shot 2 at 6.71 km/s and 0.25 Torr.
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T48−43: 7.75 km/s, 0.25 Torr
Simulation: Heritage Rates
Simulation: Baseline Rates

(a) 165–215 nm
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T48−43: 7.75 km/s, 0.25 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates
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(c) Distance = 3.0 cm
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(d) Distance = 3.0 cm
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(e) Distance = 7.0 cm

340 360 380 400 420 440
0

10

20

30

40

50

λ (nm)

J λ
 (

W
/c

m
3 /s

r/
μ

)

 

 
EAST Data (Spectrum)
Baseline Rates (Spectrum)
EAST Data (Cumulative*100)
Baseline Rates (Cumulative*100)

(f) Distance = 7.0 cm

Figure 11: Comparison of nonequilibrium profiles for Test 48, Shot 43 at 7.75 km/s and 0.25 Torr.
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T48−39: 7.82 km/s, 0.25 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates

(a) 165–215 nm
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T48−39: 7.82 km/s, 0.25 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates

(b) 340-440 nm
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(c) Distance = 3.0 cm
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(d) Distance = 3.0 cm
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(e) Distance = 8.0 cm
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Figure 12: Comparison of nonequilibrium profiles for Test 48, Shot 39 at 7.82 km/s and 0.25 Torr.
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T51−40: 6.72 km/s, 0.1 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates
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T51−40: 6.72 km/s, 0.1 Torr
Simulation: Baseline Rates
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(b) 340-440 nm
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(c) Distance = 3.0 cm
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(d) Distance = 3.0 cm
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(e) Distance = 5.0 cm
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Figure 13: Comparison of nonequilibrium profiles for Test 51, Shot 40 at 6.72 km/s and 0.10 Torr.
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T51−12: 6.90 km/s, 0.1 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates
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T51−12: 6.90 km/s, 0.1 Torr
Simulation: Baseline Rates
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(b) 340-440 nm
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(c) Distance = 2.8 cm
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(d) Distance = 2.8 cm
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(e) Distance = 5.0 cm
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Figure 14: Comparison of nonequilibrium profiles for Test 51, Shot 12 at 6.90 km/s and 0.10 Torr.
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T51−48: 7.47 km/s, 0.05 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates
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T51−48: 7.47 km/s, 0.05 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates

(b) 340-440 nm
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(c) Distance = 3.2 cm
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(d) Distance = 3.2 cm
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(e) Distance = 4.5 cm
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(f) Distance = 4.5 cm

Figure 15: Comparison of nonequilibrium profiles for Test 51, Shot 48 at 7.47 km/s and 0.05 Torr.
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T51−43: 7.83 km/s, 0.05 Torr
Simulation: Baseline Rates
Simulation: Heritage Rates
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T51−43: 7.83 km/s, 0.05 Torr
Simulation: Baseline Rates
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(b) 340-440 nm
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(c) Distance = 3.3 cm
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(d) Distance = 3.3 cm
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(e) Distance = 5.3 cm
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Figure 16: Comparison of nonequilibrium profiles for Test 51, Shot 43 at 783 km/s and 0.05 Torr.
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both spatial points are in nonequilibrium because equilibrium is not reached during the test time). Especially
good agreement at the point of peak emission is seen in (c) and (d) of these figures. The poorer agreement
for the downstream point in (e) and (f) suggests further that driver gas contamination may be influencing
this region of the flow. Recall that the 0.25 Torr cases confirm that the approach to equilibrium is properly
simulated with the baseline rate model.
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X2: 8.6 km/s, 0.1 Torr
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Figure 17: Comparison of nonequilibrium profiles for X2
measurements at 8.6 km/s and 0.1 Torr.

To test the quality of the chosen baseline rates further, a
measurement of the CN Violet at 0.1 Torr made in the X2 facil-
ity33 is considered. The measured integrated radiance between
310–450 nm is presented in Fig 17 and compared with the re-
sults of the baseline and heritage rate models. The baseline rate
model is seen to provide excellent agreement with the measure-
ments, which provides further confidence in the chosen rates.
The heritage rate model is seen to significantly over-predict
the measurements. This is consistent with the over-prediction
reported by Palmer et al.34 using the heritage rate model.

V. Uncertainty Contribution
due to Flowfield Modeling Parameters

This section examines the sensitivity of the radiative flux
to flowfield modeling parameters and determines the radiative
flux uncertainty due to these parameters. The HIAD flight cases considered in previous sections are the
focus of this analysis. The radiative flux sensitivities to chemical kinetic rates are presented in subsection
A, while the sensitivities to vibrational relaxation parameters are presented in subsection B. Finally, the
radiative flux uncertainty due to these parameters is assessed in subsection C.

A. Radiative Flux Sensitivities to Chemical Kinetic Rates

The sensitivity of the radiative flux to each chemical kinetic rate is found by changing the individual rate
and recomputing the flowfield and radiation. This process is performed for a one order-of-magnitude increase
and decrease in each rate listed in Table 1 (sensitivities for rates listed in Table 2 were found to all be less
than 1% and are therefore not included in this table). The resulting percent change in the stagnation point
radiative flux is presented in Table 3 for the 5e-5, 1e-4 and 5e-4 kg/m3 HIAD cases at 7 km/s. The “+Δkf”
column represents the percent change in the radiative flux due to a one order-of-magnitude increase in each
rate, while the “−Δkf” column represents the percent change due to a one order-of-magnitude rate decrease.
Sensitivities less than 1% are replaced by “–” in this table for clarity. Table 3 shows that the 5e-5 and 1e-4
kg/m3 cases are more sensitive to the kinetic rates than the 5e-4 kg/m3 case, which is expected because the
former cases contain larger regions of thermochemical nonequilibrium. For all three cases the sensitivities
to the dissociation rates for CO, NO, O2, and CO2 are seen to be significant. The one order-of-magnitude
increase in the CO dissociation rate results in a 71.1%, 63.6%, and 17.0% decrease in the radiative flux for
the 5e-5, 1e-4, and 5e-4 kg/m3 cases, respectively. This radiative flux decrease is a result of lower CO number
densities and temperatures, which decreases the emission of the strongly radiating CO 4th Positive system.
This is shown in Fig. 18, which presents the sensitivity of the stagnation line temperature and radiative
flux profiles to CO dissociation rate. It is seen that increasing the rate by one order-of-magnitude (+Δkf,5)
results in thermochemical equilibrium (identified by the constant temperature region) throughout a large
fraction of the shock layer.

The reactions identified in Table 3 that provide the largest radiative heating sensitivity are studied in more
detail in Table 4. This table lists references to studies that provide alternative rate values to those applied in
the baseline model. Also listed are uncertainty bounds for each rate, which are assessed from the variation
of these other proposed rates from the baseline rate. The abbreviation “om” stands for order-of-magnitude.
Most of the uncertainties are seen to be directional, meaning the rates proposed by other researchers were
either all above or all below the baseline value. The listed uncertainties are only approximate because the
differences between the rates change with temperature (the listed uncertainties are evaluated at 7000 K).
An example of the scatter in proposed rate values was shown previously in Fig. 9, which compares various
rates for CO dissociation.
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Table 3: Percent change in the stagnation-point radiative flux due to 1 order-of-magnitude changes in each reaction rate.

ρinf = 5 × 10−5 kg/m3 ρinf = 1 × 10−4 kg/m3 ρinf = 5 × 10−4 kg/m3

i Reaction +Δkf -Δkf +Δkf -Δkf +Δkf -Δkf

1 CO2 + M ↔ CO + O + M 4.6 -12.5 3.9 -11.6 – –

2 CO + M ↔ C + O + M -71.1 106.6 -63.6 102.8 -17.0 37.0

3 C2 + M ↔ 2C + M – – – – – –

4 CN + M ↔ C + N + M – – – – – –

5 N2 + M ↔ 2N + M – – – – – –

6 NO + M ↔ N + O + M -10.5 10.0 -12.3 11.0 -2.70 3.51

7 O2 + M ↔ O + O + M – 8.4 -1.3 6.9 – 2.36

8 CO2 + O ↔ O2 + CO – – – – – –

9 CO + C ↔ C2 + O – – – – – –

10 CO + N ↔ CN + O – – – – – –

11 CO + NO ↔ CO2 + N – – – – – –

12 CO + O ↔ O2 + C -2.1 – -2.6 – – –

13 C2 + N2 ↔ CN + CN – – – – – –

14 CN + C ↔ C2 + N – – – – – –

15 CN + O ↔ NO + C -2.3 – -2.6 – -1.33 –

16 N + CO ↔ NO + C -4.9 3.2 -5.3 4.2 -2.16 1.72

17 N2 + C ↔ CN + N 7.0 -1.7 5.6 -1.4 2.30 –

18 N2 + CO ↔ CN + NO – – – – – –

19 N2 + O ↔ NO + N – 7.4 – 6.7 – –

20 O2 + N ↔ NO + O -1.1 1.0 -1.4 1.3 – –
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Figure 18: Dependence of stagnation line temperature and radiative flux profiles on the CO dissociation rate for the ρinf = 1e-4 kg/m3 case.

Table 4: Uncertainty values for most significant rates for radiative heating predictions.

# Reaction Data Sources Uncertainty

1 CO2 + M ↔ CO + O + M 35–37 +0, -1 om

2 CO + M ↔ C + O + M 38–41 +50, -75%

6 NO + M ↔ N + O + M 42,43 +1, -1 om

7 O2 + M ↔ O + O + M 25 +50, -50%

12 CO + O ↔ O2 + C 44,45 +1, -0 om

15 CN + O ↔ NO + C 46,47 +1, -0 om

17 N2 + C ↔ CN + N 28 +50, -50%

19 N2 + O ↔ NO + N 24,30,48 +50, -50%
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B. Vibrational Energy Relaxation Models

The two-temperature energy equation formulation presented by Lee49 and Gnoffo et al.50 is the basis for the
Mars specific modeling parameters presented by Park et al.,4 which are applied in the present baseline model.
This formulation contains four terms that account for energy exchange between the translational-rotational
and vibrational-electronic energy modes: 1) vibrational energy reactive source term, 2) electronic energy
reactive source term, 3) vibrational-translational energy relaxation, and 4) electronic-translational energy
relaxation. Of these four terms, only the vibrational-translational energy relaxation term is significant for
the Mars entry cases of present interest. The modeling of this term and its influence on the radiative flux is
the focus of this subsection.

The vibrational-translational energy relaxation term is written by Gnoffo et al.50 as follows

Qv−t = ρCv,v

∑
i=mol. Xi/τv,i∑

i=mol. Xi
(2)

where Cv,v is the vibrational-electronic specific heat, Xi is the mole fraction, and τv,i is the vibrational-
translational relaxation time. The primary uncertainty in computing Qv−t is the modeling of τv,i, which
itself is modeled with two components:

τv,i = τMW
v,i + τP

v,i (3)

where τMW
v,i is the Millikan and White component and τP

v,i is the Park high temperature correction. The
τMW
v,i component is computed as follows:

τMW
v,i =

1
p

∑
j

Xj×exp
[
aLT,i,j(T

−1/3
tr − bLT,i,j) − 18.42

]
(4)

where aLT,i,j and bLT,i,j are the Landau-Teller coefficients. The Landau-Teller coefficients used in the present
baseline model are taken from Park et al.4 For the cases of present interest, the most significant aLT,i,j and
bLT,i,j values are for i = CO and j = CO, C, O, and N. While the Park et al. model applies the data of
Millikan and White51 for the CO–CO (i–j) coefficients, the data of Center52 measured for CO–O is applied
for the CO–C, CO–O, and CO–N coefficients. The τMW

v,i values resulting from Center’s values for the CO–
C, CO–O, and CO–N coefficients are many orders of magnitude smaller than if the Millikan and White
correlation was applied. As a result of these small values, it is found that the contribution of τMW

v,i is small
relative to τP

v,i for the cases of present interest.
The Park high temperature correction25 to the relaxation time, τP

v,i, is computed with the following
formula:

τP
v,i =

(
πmi

8kTtr

)1/2 1
σv,iNtotal

(5)

where σv,i is the effective cross-section for vibrational relaxation. This term is represented as σv,i =
σ′

v,i(50, 000/Ttr)2 m2. The σv,i values applied for the present baseline model are taken from Park et al.4 to
be 3e-22, 1e-20, and 3e-21 m2 for CO, CO2, and N2, respectively. The value for CO is the most important
parameter in the present vibrational-translational relaxation model. This value was chosen as 3e-22 m2 by
Park et al. to fit the induction time data of Appleton et al.39 However, applying the present shock capturing
simulation to the Appleton et al. experiments does not reproduce the induction times computed by the
shock fitted computation of Park et al., with the presently computed induction times being up to an order-
of-magnitude smaller. Because the same thermochemical models are being applied in the present study as
were applied by Park et al., the difference in computed induction times is likely a result of the different fluid
mechanical treatment of the shock. Decreasing σv,CO by one order-of-magnitude is found to result in good
agreement between the present shock capturing simulations and the data of Appleton et al. In contrast to
this proposed decrease in σv,CO, a recent study by Fujita53 suggests an order of magnitude increase based on
ab initio computations. Based on these conflicting values for σv,CO, a ± one order-of-magnitude uncertainty
is assessed for this parameter. In the absence of other data, this uncertainty is applied for all σv,i values.

The radiative flux sensitivity to σ′
v,CO and σ′

v,CO2 was found to be less than ±5% for one order-of-
magnitude changes in these parameters. For the other σ′

v,i values the radiative flux sensitivity is less than
±1%. It is found that for most cases a decrease in σ′

v,i results in an increase in the radiative flux.
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C. Radiative Flux Uncertainty Due to Flowfield Modeling Uncertainties

This subsection examines the possible upper and lower bounds of the radiative heating based on the parameter
uncertainties identified in the previous two subsections. Note that all parametric uncertainties considered
here are epistemic uncertainties, meaning those due to lack of knowledge. These epistemic uncertainties do
not have an associated probability distribution, as they represent only the possible range of values for each
parameter. This range of possible values for each parameter corresponds to a possible range of radiative flux
values. The radiative flux uncertainty due to flowfield modeling parameters is therefore represented by the
upper and lower radiative flux values possible given the parametric uncertainty bounds.54 These upper and
lower bounds are computed by adjusting the modeling parameters to their uncertainty bounds for maximum
and minimum radiative heating. These two computations provide the upper and lower radiative heating
uncertainty bounds due to flowfield uncertainties (this assumes that the radiative heating is a monatomic
function of all parameters within their chosen uncertainty bounds, which has been observed to be true for
all parameters considered here). These bounds are different than the sum of the individual sensitivities
(presented in the previous 2 subsections) because of the nonlinear interaction between the flowfield kinetics
and energy equations.

The previous two subsections reviewed the baseline chemical kinetic and vibrational energy relaxation
models applied in the present study. The parameters in these models with the largest impact on radiative
heating predictions were identified as the chemical kinetic rates (kf,i) listed in Table 4 and the effective
cross-section for vibrational relaxation (σ′

v,i). The sensitivity of the radiative heating to ± changes in
these parameters was shown, as well as the possible uncertainty of these parameters based on theoretical and
experimental data in the literature. In review, the chemical kinetic rate uncertainties are listed in Table 4 (all
rates not listed in the table are assigned ± one order-of-magnitude uncertainties) while the σ′

v.i uncertainties
are assigned values of ± one order-of-magnitude. The sensitivity analysis presented in Table 3 indicates
whether a positive or negative change in the chemical rate results in a positive or negative change in the
radiative flux. In addition, it was found that decreasing σ′

v,i increases the radiative flux.
The upper and lower bound computations result in the stagnation line temperature and radiative flux

profiles presented in Figs. 19, 20, and 21 for the 5e-5, 1e-4, and 5e-4 kg/m3 HIAD cases, respectively. The
resulting uncertainty bounds are summarized in Table 5, where Δqr,flow represents the percent uncertainty
in the baseline radiative flux (qr) due to flowfield modeling parameters. The upper bound uncertainty is
seen to be larger than 100% for the 5e-5 and 1e-4 kg/m3 cases. This significant uncertainty is largely a
result of the -75% CO dissociation rate uncertainty applied. Recall from Fig. 18(b) and Table 3 that a one
order-of-magnitude decrease in this rate alone results in a similar radiative flux as the upper bound shown
in Fig. 20(b).

The comparisons with EAST shock tube data presented in Section IV justified increasing the CO disso-
ciation rate by more than an order-of-magnitude (a factor of 13) from the Park et al. heritage rate. The
heritage rate is therefore below the -75% uncertainty bound applied to this new rate. If a lower uncertainty
limit large enough to contain the heritage rate was applied, the upper uncertainty bounds listed in Table 3
would be greater than 200% for the 5e-5 and 1e-4 kg/m3 cases. In this regard, the EAST measurements
have allowed for a significant reduction in the baseline radiative flux uncertainty. It could be argued that the
good comparisons with EAST measurements suggest that the -75% uncertainty on the CO dissociation rate
should be reduced even more. However, the present authors believe that further measurements are required
to adjust this uncertainty non-conservatively below the present -75% value.

Table 5: Radiative flux uncertainties due to flowfield modeling parameters

ρinf qr Δqr,flow

(kg/m3) (W/cm2) (%)

5e-5 9.38 +124, -36.9%

1e-4 14.3 +127, -32.9%

5e-4 40.2 +76.6, -9.20%

20 of 43

American Institute of Aeronautics and Astronautics



0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

distance along stagnation line (cm)

T
ve

 (
K

)

 

 
Upper Bound
Baseline
Lower Bound

(a)

0 5 10 15 20
0

5

10

15

20

25

distance along stagnation line (cm)

W
al

l−
D

ir
ec

te
d 

R
ad

ia
ti

ve
 F

lu
x 

(W
/c

m
2 )

 

 
Upper Bound
Baseline
Lower Bound

(b)

Figure 19: Stagnation line temperature and radiative flux profiles for upper and lower radiative heating bounds for the ρinf = 5e-5 kg/m3 case.
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Figure 20: Stagnation line temperature and radiative flux profiles for upper and lower radiative heating bounds for the ρinf = 1e-4 kg/m3 case.
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Figure 21: Stagnation line temperature and radiative flux profiles for upper and lower radiative heating bounds for the ρinf = 5e-4 kg/m3 case.
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VI. Uncertainty Contribution due to Radiation Modeling Parameters

This section presents the baseline radiation model and its associated uncertainty, as was done in the
previous section for the flowfield model (note that the baseline radiation model presented here was applied
throughout the previous sections). Details of the radiative spectrum and non-Boltzmann modeling parame-
ters applied in the present baseline model are presented in subsections A and B, respectively, along with the
uncertainty for each parameter. A sensitivity analysis of the radiative flux is performed in subsection C to
highlight the most important modeling parameters. Finally, in subsection D the radiative flux uncertainties
due to these radiation modeling parameters are computed for the HIAD flight cases using the same approach
applied in the previous section for the flowfield modeling parameters.

A. Spectrum Modeling

The molecular band systems treated in the present study, excluding those present in high temperature air,
are listed in Table 6. The oscillator strengths presented by Babou et al.12 are applied for all C2 and CN
band systems, along with the CO 4th Positive and CO Infrared systems. The oscillator strengths presented
by da Silva and Dudeck13 are applied for the remaining CO band systems.

Before assessing the oscillator strength uncertainty for the important CO 4th Positive band, it should
be noted that the oscillator strengths for the vibrational bands with Δv < −4 are of primary interest (this
is shown in Fig. 40 of Appendix A). This is because the radiative flux in the “blackbody limited” region of
the spectrum, where Δv > −4, is relatively insensitive to the oscillator strengths, as indicated by Eqs. (23)
and (25). The oscillator strengths from Babou et al.12 applied in this work for CO 4th Positive are based
on the ab initio electronic transition moment function (ETMF) of Kirby and Cooper.55 Comparisons of this
ETMF with experimental data, as well as with values proposed by other researchers,56–59 has focused mostly
on vibrational bands with Δv > 0. An exception to this is the work of Wallart et al.,60 who shows that
the ETMF of Kirby and Cooper compares better than that of Deleon56 (which is applied by da Silva and
Dudeck13) for vibrational bands with Δv < −4. In contrast to the findings of Wallart et al., comparisons
with shock tube measurements by Brandis et al.21 showed better agreement for these vibrational bands using
the oscillator strengths of da Silva and Dudeck,13 which predict nearly 30% less emission than the Babou
et al. oscillator strengths. The variation in the oscillator strengths proposed by various researchers,12,13,61

and the inconclusive validation of these values for Δv < −4 leads to the choice of a ±40% uncertainty for
the oscillator strengths of the CO 4th Positive band system. A comparison between the results obtained by
applying the Babou et al. and da Silva and Dudeck oscillator strengths is presented in Fig. 22 for the 6.71
km/s, 0.25 Torr EAST case considered previously in Fig. 10. The better agreement with measurements for
the Babou et al. results in the equilibrium region (which is independent of the chemical rates tuned to agree
in the nonequilibrium region) motivated the use of these values in the present baseline model instead of the
da Silva values. As shown in Section IV, this good agreement in equilibrium is seen for all cases for both the
CO 4th Positive and CN Violet band systems using the Babou et al. oscillator strengths.
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Figure 22: Comparison of nonequilibrium profiles for Test 48, Shot 26 at 6.71 km/s and 0.25 Torr.
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Other than CO 4th Positive, the rest of the band systems for a Mars entry shock layer are optically thin,
even CN Violet. This means the vibrational bands that contribute the most to the radiative flux, and are
therefore of most interest in the uncertainty assessment, are those with Δv = 0. The oscillator strength
uncertainties chosen for these band system are listed in Table 6. These values were obtained by comparing
the values presented by the cited sources. The spectroscopic constants for the energy levels of molecules
listed in this table were taken from Babou et al.62 The oscillator strengths and spectroscopic constant for
air band systems applied in this study are presented by Johnston.18

Table 6: Molecular band processes applied in the present study, excluding those present in high temperature air.

Molecule Upper State – Lower State Band λ Range +/-

Name (nm) Uncertainty

CO A1Π – X1Σ+ 4th Positive 120 – 280 40%12,13,61

CO b3Σ+ – a3Πr 3rd Positive 250 – 450 50%12,13

CO d3Δi – a3Πr Triplet 320 – 2500 50%13

CO a’3Σ+ – a3Πr Asundi 370 – 2500 50%13

CO B1Σ+ – A1Π Angstrom 400 – 700 50%13

CO X1Σ+ – X1Σ+ Infrared 1200 – 7000 50%12,13

CN A2Πi – X2Σ+ Red 400 – 2800 30%12,13,61

CN B2Σ+ – X2Σ+ Violet 300 – 550 15%12,13,61

C2 d3Πg – a3Πu Swan 390 – 1000 50%12,13,61

C2 b3Σ−
g – a3Πu Ballik-Ramsay 500 – 3000 50%12,13,63,64

C2 A1Πu – X1Σ+
g Phillips 350 – 1200 50%12,13

C2 D1Σ+
u – X1Σ+

g Mulliken 200 – 250 50%12,13

C2 C1Πg – A1Πu Des.-D’Azam. 280 – 700 50%12,13

C2 e3Πg – a3Πu Fox-Herzberg 200 – 500 50%12,13

CO2 X1Σ+
g – X1Σ+

g Infrared 1700 – 25000 50%

CO2 A1B2 – X1Σ+
g UV 190 – 320 100%

B. Non-Boltzmann Modeling

The electronic state conservation equation, or Master equation, is written for each electronic state (j) of a
molecule as the sum of the collisional (col) and radiative (rad) production rates:

(
∂Nj

∂t

)
=

(
∂Nj

∂t

)
col

+
(

∂Nj

∂t

)
rad

(6)

This equation is solved in the present study by making the quasi-steady state assumption,25 which sets the
left hand side of this equation equal to zero. The evaluation of the collisional and radiative production rates
are discussed in the following two subsections.

1. Treatment of Collisional Processes for Non-Boltzmann Modeling

The collisional component in Eq. (6) is computed using the flowfield number densities and given production
rates as follows (

∂Nj

∂t

)
col

=
Ncol∑
r=1

(βj,r − αj,r)(Kf,rNiNM − Kb,rNjNM ) (7)

where αj,r and βj,r are the forward and backward stoichiometric coefficients for reaction r and electronic
state j. For a reaction of the form

A(i) + M ↔ A(j) + M (8)

the coefficients αj,r and βj,r are equal to 0 and 1, respectively. In this reaction M is a heavy particle or
electron and A(i) and A(j) are the lower and upper electronic states during the collision. The non-Boltzmann
excitation rates applied in the present study will be listed in following paragraphs. The forward rates are
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computed from provided coefficients, while the backward rates are computed for a reaction of the form of
Eq. (8) as follows

Kb,r = Kf,r

ge,iexp(− hc
kTve

Ee,i)

ge,jexp(− hc
kTve

Ee,j)
(9)

where ge and Ee are the degeneracy and energy of the indicated electronic state.
The baseline excitation rate model applied in this work is an extension of the heavy-particle and electron-

impact excitation rate models compiled by Park.65,66 The main differences between the present baseline
model and Park’s model are that the present model contains more recent data for some important rates
and includes rates for C2. These differences will be discussed in the following paragraphs. Note that the
electron-impact and heavy-particle dissociation processes included by Park65,66 were found to be negligible
for the present cases and are ignored. Table 7 presents the electronic levels treated in the present model for
the three most significantly radiating molecules, CN, CO and C2. The levels with the “(group)” label are
actually combinations of closely spaced levels.

Table 7: Electronic levels treated in the present non-Boltzmann model.

i Term Ee,i ge,i

CN

1 X2Σ+ 0 2

2 A2Π 9245 4

3 B2Σ+ 25753 2

4 a4Σ+ 32400 4

5 D2Π+ 54486 4

CO

1 X1Σ+ 0 1

2 a3Π 48687 6

3 a’3Σ+ 55836 3

4 d3Δ 61120 6

5 e3Σ− (group) 64230 6

6 A1Π 65076 2

C2

1 X1Σ+ (group) 613.9 7

2 b3Σ− (group) 7217 5

3 c3Σ+ (group) 11157.7 6

4 d3Π 20022.5 6

5 C1Π (group) 31249.6 26

The heavy-particle impact excitation rates are computed from measured backward reaction (quenching)
rates at 300 K (Khp

r,300) using the approach presented by Park.66 For optically allowed transitions, the
forward reaction rate for the heavy-particle excitation from electronic state i to j is obtained from the
following formula:

Khp
f,ij = 4 × 10−15 ge,j

ge,i

(
8k

πμ

)1/2 (
1

10, 000

)m

Tm+1/2exp

[
− hc

kT
(Ee,j − Ee,i)

]
(10)

where the exponent m is defined as

m = −0.657×log10(7.70 × 1020Khp
r,300μ

1/2) (11)

This equation assumes that the quenching cross section varies from the measured value at 300 K to the value
of 4×10−15 cm2 at 10,000 K. For optically forbidden transitions, the following formula is applied:

Khp
f,ij =

ge,j

ge,i
Khp

r,300

(
T

300

)1/2

exp

[
− hc

kT
(Ee,j − Ee,i)

]
(12)

Using Equations (10) and (12), each rate may be written in terms of constants Ahp, nhp, and Ehp through
the following expression

Khp
f,ij = Ahp

(
Ta

6000

)nhp

exp(−Ehp/Ta) (13)
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where Ta = (TveTtr)1/2. These constants are listed in Table 8 for each process. For brevity, the constants
are not listed for rates that are dependent on the collision partner M . These rates may be found in Park.66

The source of each Khp
r,300 value used to construct the rates listed in Table 8 are presented in the last

column of this table. The rates labelled “Approx. (Park)” were computed by Park66 using approximated
Khp

r,300 values. Those labelled “Approx. (Present)” were computed in the present work using Khp
r,300 values

assumed equal to the gas kinetic value of 1e-10 cm3/s. It is seen in Table 8 that the rates compiled by Park66

are used for all CN and CO rates, except for reactions 6 – 8, which represent transitions between the ground
state of CO and the three highest excited states. Rates for these three reactions, which were not included
in Park’s final model, were taken from a review performed by Schofield.67

Reaction 8 is one of the most significant rates in the present non-Boltzmann model, as will be shown in
the following subsection. This rate represents the excitation from the CO ground state to the upper level of
the CO 4th Positive transition (A1Π). The review by Schofield67 shows that the proposed Khp

r,300 values for
this process vary by ±50%. Applying Eq. (10) for this allowed transition, it is found that a 50% variation
in Khp

r,300 has a negligible impact on Khp
f,ij above 5000 K, which is the temperature range of present interest.

This is a result of Eq. (10) assuming a fixed cross section of 4×10−15 cm2 at 10,000 K, which causes the
resulting Khp

f,ij above 5000 K to be insensitive to the chosen Khp
r,300 values. The temperature dependence

of Khp
f,ij assumed by Eq. (12) was based by Park on the limited temperature dependent data available for

NO, N2, and CO. The limited temperature dependent data for CO was obtained by Settersten et al.68 for
the B1Σ level (this level is not included in the present model) for temperatures up to 1000 K. This data
is compared in Fig. 23 with the presently applied extrapolation. It is seen that assuming a constant cross
section (which is presently applied for forbidden transitions) would compare just as well with the data.
Figure 24 compares the rates for reaction 8 computed assuming the present variable cross section, assuming
a constant cross section equal to its value at 300 K, and the rate presented by Zalogin.16 This comparison
shows a noticeable difference between the variable and constant cross section rates. It also shows that both
rates are more than an order-of-magnitude greater than the Zalogin values. These observations suggest a
± one order-of-magnitude uncertainty for this rate. This same uncertainty will be applied to all rates in
Table 8 that are non-“Approx.”. For the “Approx.” rates, no data is available for comparison and therefore
a ± two orders of magnitude uncertainty is conservatively chosen.
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The electron impact excitation rates applied in this baseline model are computed from electron impact
excitation cross sections (σel) provided in the literature.65 The forward reaction rate for electron-impact
excitation from electronic state i to j is obtained from σel using the following formula:

Kel
f,ij =

8π(hc)2

m
1/2
e

(
1

2πkTe

)3/2 ∫ ∞

E∗
σele

−hcE/kT EdE (14)

where E is energy (cm−1) and E∗ the threshold energy for the transition, equal to Ee,j −Ee,i. This equation
is a simplified version of the equation suggested by Park.65 It assumes that the Franck-Condon factors for a
given lower level sum to 1.0. Compared to the significant uncertainties present for the σel values, the error
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Table 8: Heavy-Particle impact excitation rates (cm3/s) for non-Boltzmann modeling applied in the present study.

# Reaction Ahp nhp Ehp Source

1 CN(X2Σ+) + M ↔ CN(A2Π) + M M dependent Park66

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M M dependent Park66

3 CN(B2Σ+ ) + M ↔ CN(a4Σ+) + M M dependent Approx. (Park66)

4 CN(a4Σ+) + M ↔ CN(D2Π+) + M M dependent Approx. (Park66)

5 CO(X1Σ+) + M ↔ CO(a3Π) + M M dependent Park66

6 CO(X1Σ+) + M ↔ CO(a’3Σ+) + M 5.20E-10 0.500 80370 Schofield67

7 CO(X1Σ+) + M ↔ CO(d3Δ) + M 2.61E-11 0.500 87975 Schofield67

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 2.52E-09 0.344 93669 Schofield67

9 CO(a3Π) + M ↔ CO(a’3Σ+) + M M dependent Approx. (Park66)

10 CO(a’3Σ+) + M ↔ CO(d3Δ) + M M dependent Approx. (Park66)

11 CO(d3Δ) + M ↔ CO(e3Σ−) + M M dependent Approx. (Park66)

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 8.78e-11 0.498 971 Approx. (Park66)

13 C2(X1Σ+) + M ↔ C2(b3Σ−) + M 7.23e-10 0.773 9504.7 Approx. (Present)

14 C2(X1Σ+) + M ↔ C2(c3Σ+) + M 8.67e-10 0.773 15176.6 Approx. (Present)

15 C2(X1Σ+) + M ↔ C2(d3Π) + M 7.49e-10 1.06 27927.7 Wang69

16 C2(X1Σ+) + M ↔ C2(C1Π) + M 3.76e-09 0.773 44096.6 Approx. (Present)

17 C2(b3Σ−) + M ↔ C2(c3Σ+) + M 1.21e-09 0.773 5671.9 Approx. (Present)

18 C2(b3Σ−) + M ↔ C2(d3Π) + M 1.21e-9 0.773 18423.0 Approx. (Present)

19 C2(b3Σ−) + M ↔ C2(C1Π) + M 5.26e-09 0.773 34591.9 Approx. (Present)

20 C2(c3Σ+) + M ↔ C2(d3Π) + M 1.01e-09 0.773 12751.1 Approx. (Present)

21 C2(c3Σ+) + M ↔ C2(C1Π) + M 4.38e-09 0.773 28920.0 Approx. (Present)

22 C2(d3Π) + M ↔ C2(C1Π) + M 4.38e-09 0.773 16168.9 Approx. (Present)

introduced by this simplification are negligible. The resulting rate model is presented in Table 9, with each
rate being represented through the following expression

Kel
f,ij = AelTve

nelexp(−Eel/Tve) (15)

The source of each cross section is listed in the table, where the abbreviation “Approx.” indicates σel was
approximated because no data was available in the literature. Park65 discusses the choice of his approximate
values for cases with no available data. The approximate cross sections chosen in the present work for C2

are equal to the “formula of Huo” values listed by Park.65

The uncertainty associated with each rate is assessed by considering rates for which data from multiple
sources is available. Comparisons for reactions 24 and 37 are compared in Figs. 25 and 26. As indicated
in Table 9, the Harrison70 and Park65 rates shown in these figures are applied to reactions 24 and 37,
respectively. It is seen that a ± one order-of-magnitude uncertainty would nearly cover the spread of
proposed values. Similar comparisons are seen for other rates with multiple proposed values available. For
the uncertainty analysis performed in subsection D, this ± one order-of-magnitude uncertainty will be applied
for the non-“Approx.” rates in Table 9. Since no data is available to assess the quality of the “Approx.”
rates, a ± two order of magnitude uncertainty will be applied.

26 of 43

American Institute of Aeronautics and Astronautics



2000 4000 6000 8000 10000 12000
10

9

10
11

10
13

10
15

10
17

T (K)

K
f,

ij
el

 (
cm

3 /s
)

CN(X) + e− <=> CN(B) + e−

 

 
Park 2008 (approx.)
Zalogin 2001
Harrison 2012
Surzihkov 2010

Figure 25: Excitation rate comparison for reaction 24.
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Figure 26: Excitation rate comparison for reaction 37.

Table 9: Electron-Impact excitation rates (cm3/s) for non-Boltzmann modeling applied in the present study.

# Reaction Ael nel Eel Source

23 CN(X2Σ+) + e− ↔ CN(A2Π) + e− 6.41e-09 0.20 18303 Harrison70

24 CN(X2Σ+) + e− ↔ CN(B2Σ+) + e− 6.83e-10 0.39 40428 Harrison70

25 CN(X2Σ+ ) + e− ↔ CN(a4Σ+) + e− 5.13e-11 0.35 47323 Approx. (Park65)

26 CN(X2Σ+) + e− ↔ CN(D2Π+) + e− 4.07e-10 0.25 79368 Approx. (Park65)

27 CN(A2Π) + e− ↔ CN(B2Σ+) + e− 1.36e-04 -0.74 28030 Approx. (Park65)

28 CN(A2Π) + e− ↔ CN(a4Σ+) + e− 4.55e-04 -0.77 37548 Approx. (Park65)

29 CN(A2Π) + e− ↔ CN(D2Π+) + e− 1.22e-03 -0.82 69300 Approx. (Park65)

30 CN(B2Σ+) + e− ↔ CN(a4Σ+) + e− 7.85e-05 -0.66 14148 Approx. (Park65)

31 CN(B2Σ+) + e− ↔ CN(D2Π+) + e− 6.29e-04 -0.79 45559 Approx. (Park65)

32 CN(a4Σ+) + e− ↔ CN(D2Π+) + e− 4.23e-04 -0.77 36015 Approx. (Park65)

33 CO(X1Σ+) + e− ↔ CO(a3Π)+ e− 8.42e-11 0.28 80530 Riahi et al.71

34 CO(X1Σ+) + e− ↔ CO(a’3Σ+)+ e− 1.82e-14 1.17 102434 Riahi et al.71

35 CO(X1Σ+) + e− ↔ CO(d3Δ)+ e− 3.16e-12 0.66 114626 Riahi et al.71

36 CO(X1Σ+) + e− ↔ CO(e3Σ−)+ e− 2.10e-14 1.17 113995 Riahi et al.71

37 CO(X1Σ+) + e− ↔ CO(A1Π)+ e− 3.82e-09 0.12 95850 Park65

38 CO(a3Π) + e− ↔ CO(a’3Σ+)+ e− 4.43e-8 -0.73 23456 Riahi et al.71

39 CO(a3Π) + e− ↔ CO(d3Δ)+ e− 7.74e-15 1.17 44552 Riahi et al.71

40 CO(a3Π) + e− ↔ CO(e3Σ−)+ e− 3.21e-15 1.27 44896 Riahi et al.71

41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 1.49e-05 -0.74 27860 Approx. (Park65)

42 CO(a’3Σ+) + e− ↔ CO(d3Δ)+ e− 2.53e-11 0.16 10611 Riahi et al.71

43 CO(a’3Σ+) + e− ↔ CO(e3Σ−)+ e− 6.04e-13 0.61 11041 Riahi et al.71

44 CO(a’3Σ+) + e− ↔ CO(A1Π)+ e− 6.56e-06 -0.69 17750 Approx. (Park65)

45 CO(d3Δ) + e− ↔ CO(e3Σ−)+ e− 1.09e-10 1.66 10686 Riahi et al.71

46 CO(d3Δ) + e− ↔ CO(A1Π)+ e− 2.62e-06 -0.63 10570 Approx. (Park65)

47 CO(e3Σ−) + e− ↔ CO(A1Π)+ e− 1.41e-06 -0.58 6971 Approx. (Park65)

48 C2(X1Σ+) + e− ↔ C2(b3Σ−) + e− 5.25e-04 -0.876 12822.89 Approx. (Present)

49 C2(X1Σ+) + e− ↔ C2(c3Σ+) + e− 3.37e-05 -0.530 16676.24 Approx. (Present)

50 C2(X1Σ+) + e− ↔ C2(d3Π) + e− 6.45e-08 -0.179 29932.77 Halmova72

51 C2(X1Σ+) + e− ↔ C2(C1Π) + e− 1.00e-04 -0.396 45526.85 Approx. (Present)

52 C2(b3Σ−) + e− ↔ C2(c3Σ+) + e− 8.57e-03 -1.215 9893.11 Approx. (Present)

53 C2(b3Σ−) + e− ↔ C2(d3Π) + e− 1.59e-05 -0.436 19375.79 Approx. (Present )

54 C2(b3Σ−) + e− ↔ C2(C1Π) + e− 6.89e-05 -0.381 35594.37 Approx. (Present)

55 C2(c3Σ+) + e− ↔ C2(d3Π) + e− 9.03e-05 -0.647 14918.32 Approx. (Present)

56 C2(c3Σ+) + e− ↔ C2(C1Π) + e− 5.428e-05 -0.372 29691.92 Approx. (Present)

57 C2(d3Π) + e− ↔ C2(C1Π) + e− 1.09e-04 -0.495 17461.08 Approx. (Present)
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2. Treatment of Radiative Processes for Non-Boltzmann Modeling

The evaluation of the radiative production rate for the Master equation, Eq. (6), is typically approximated
as follows (

∂Nj

∂t

)
rad

= −Λj,iGemNj (16)

where Gem is the radiative lifetime, which represents the depopulation of level j due to spontaneous emission
to level i for a specified radiative transition, and Λj,i is the escape factor, which represents the fraction of the
emission that is not reabsorbed. Values of Λj,i are usually assumed equal to 1.0 for an optically thin band
system or a value close to zero for a completely optically thick band system. This approximate treatment
simplifies the evaluation of Eq. 16 considerably because it removes its dependency on the non-local state
of the gas. However, studies by Bose et al.73 and Johnston et al.74 for Titan entry and da Silva75 and
Sohn76 for Earth entry have shown that assuming a constant Λj,i leads to significant errors in the predicted
radiative flux at certain conditions.

The present authors did not find any studies regarding the influence of Λj,i for Mars entry radiation, and
therefore a detailed study is included in Appendix B. This appendix presents the theoretical development and
computational approach applied as well as detailed results for the ρinf = 1e-4 kg/m3 case. It is found that
the detailed treatment of Λj,i leads to a significant increase in the CO 4th Positive emission. For example,
the upper state number density of the CO 4th Positive band and radiative flux along the stagnation line
are presented in Figs. 27 and 28 for cases with and without the detailed treatment of Λj,i. The “Λj,i =
Computed” result includes the detailed treatment of Λj,i while the ”Λj,i = 1” result assumes optically thin
band systems. The higher CO(A) number density seen in Fig. 27 for the Λj,i = Computed case results in
stronger CO 4th Positive emission and larger radiative flux values. A 50% increase in the total radiative
flux reaching the surface is seen in Fig. 28 for the “Λj,i = Computed” result. This significant increase in
the radiative flux indicates that the detailed treatment of Λj,i is required for accurate Mars entry radiation
simulations. Consequently, all results presented in this paper, including the EAST simulations, include the
detailed treatment of Λj,i.
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Figure 27: Stagnation line number density profiles of the CO(A1Π)
state for the ρinf = 1e-4 kg/m3 case.
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Figure 28: Stagnation line radiative flux profiles for the ρinf = 1e-4

kg/m3 case.

C. Radiative Flux Sensitivity to Non-Boltzmann and Spectrum Modeling Parameters

The uncertainties in the spectrum and non-Boltzmann radiation modeling parameters were discussed in the
previous two subsections. The sensitivity of the radiative flux for the 3 baseline cases (7 km/s at densities of
5e-5, 1e-4, and 5e-4 kg/m3) to these parametric uncertainties is studied here. Assuming the baseline flowfield
solution, a separate radiation calculation is made with each radiation modeling parameter adjusted to its
upper and lower uncertainty bound (Note that for heavy-particle impact processes with multiple collision
partners (M), the rates for all collision partners were adjusted together).

The resulting top 8 sensitivities are listed in Tables 10–12 for the 3 baseline cases. The listed sensitivities
are the percent change from the baseline radiative heating for a positive (+ΔKf ) or negative (-ΔKf ) change
in the specified parameter (the magnitude of the ± change in each parameter is listed in the column labelled
“Uncertainty”). As expected, the top sensitivities for the relatively nonequilibrium 5e-5 kg/m3 case are all
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non-Boltzmann rates involving the radiating states of the CO 4th Positive and CN Violet band system. The
sensitivity of greater than 100% seen for reaction 8 in Table 10 is significant. A discussion of the ± one
order of magnitude uncertainty for this rate was discussed with Fig. 24. The large sensitivities to the other
CO rates is a result of their ±2 orders-of-magnitude uncertainty. As the free-stream density is increased,
Tables 11 and 12 show the expected decrease in the radiative flux sensitivity to non-Boltzmann parameters
and increase in the sensitivity to band oscillator strengths (indicated in the tables as the associated radiative
process).

Table 10: Top 8 radiation modeling sensitivities for the ρinf =5e-5 kg/m3 case.

# Reaction Uncertainty +ΔKf -ΔKf

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 1 om 112 -46.9

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 2 om 47.5 -8.00

41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 2 om 27.9 -0.41

46 CO(d3Δ) + e− ↔ CO(A1Π)+ e− 2 om 13.1 -5.00

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M 1 om 6.18 -8.00

44 CO(a’3Σ+) + e− ↔ CO(A1Π) + e− 2 om 11.9 -0.16

47 CO(e3Σ−) + e− ↔ CO(A1Π) + e− 2 om 11.6 -0.14

27 CN(A2Π ) + e− ↔ CN(B2Σ+) + e− 2 om 9.47 -0.11

Table 11: Top 8 radiation modeling sensitivities for the ρinf =1e-4 kg/m3 case.

# Reaction Uncertainty +ΔKf -ΔKf

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 1 om 47.2 -37.7

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 2 om 23.3 -5.10

41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 2 om 14.3 -0.25

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M 1 om 3.85 -7.00

46 CO(d3Δ) + e− ↔ CO(A1Π)+ e− 2 om 6.73 -0.10

44 CO(a’3Σ+) + e− ↔ CO(A1Π) + e− 2 om 6.54 -0.08

CO(A1Π) ↔ CO(X1Σ+) +hν 40% 1.69 -4.20

47 CO(e3Σ−) + e− ↔ CO(A1Π) + e− 2 om 5.44 -0.07

Table 12: Top 8 radiation modeling sensitivities for the ρinf =5e-4 kg/m3 case.

# Reaction Uncertainty +ΔKf -ΔKf

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 1 om 4.10 -7.86

CO(A1Π) ↔ CO(X1Σ+) +hν 40% 4.89 -6.58

CO(d3Δ) ↔ CO(a3Π) +hν 50% 3.24 -3.24

CN(B2Σ+) ↔ CN(X2Σ+) +hν 15% 2.48 -2.54

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M 1 om 1.22 -3.48

CO(X1Σ+) ↔ CO(X1Σ+) +hν 50% 1.95 -2.15

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 2 om 2.06 -0.55

41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 2 om 1.42 -0.03

D. Radiative Flux Uncertainty Due to Non-Boltzmann and Spectrum Modeling Uncertainties

Similarly to Section III-C, where the upper and lower radiative heating bounds due to the uncertainty in
flowfield modeling parameters were assessed, the present subsection assesses the upper and lower radiative
heating bounds due to the uncertainty in radiation modeling parameters. The radiation modeling parametric
uncertainties were discussed in parts A and B of the present section. To determine these upper and lower
bounds, a computation is made with all radiation parameters adjusted to their uncertainty bound for max-
imum radiative heating and another computation is made with all radiation parameters adjusted to their
uncertainty bound for minimum radiative heating. These bounds are different than the sum of the various
sensitivity analyses because of the nonlinear interaction between the non-Boltzmann rates and the optical
thickness of the CO 4th Positive band system.
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The upper and lower bound computations result in the stagnation line CO(A1Π) number density and
radiative flux profiles presented in Figs. 29–31 for the three baseline cases (note that flowfield uncertainties
are not included in these computations so the flowfield is fixed for each case). Considering the CO(A1Π)
number density figures, it is seen that the upper bound result approaches the Boltzmann result for all three
cases (the Boltzmann curve is not plotted for the 5e-4 kg/m3 case because it is indistinguishable from both
the baseline and upper bound result). Note that in the boundary layer region below 2 cm, the influence
of radiative absorption on the non-Boltzmann model causes the upper bound, baseline, and lower bound
results (which all include non-Boltzmann computations) to have larger CO(A1Π) number densities than the
Boltzmann result. The CO(A1Π) number densities for the lower limits are seen to deviate significantly more
from the baseline values because there is no lower limit, such as the Boltzmann limit present for the upper
bound.

Considering the radiative flux bounds in Figs. 29(b), 30(b), and 31(b), the expected larger spread of
uncertainty bounds for the lower density case is seen. This behavior was also seen in the sensitivity analysis
presented in the previous subsection. The uncertainty bounds presented in these figures are summarized in
Table 13, where Δqr,rad represents the percent uncertainty in the baseline radiative flux (qr) due to radiation
modeling parameters. Comparing these values to the flowfield uncertainty bounds in Table 5, it is seen that
the positive uncertainty bound (Δqr,max) is lower for the radiation parameters than the flowfield parameters.
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Figure 29: Stagnation line CO(A1Π) number density and radiative flux profiles for upper and lower radiative heating bounds due to radiation
modeling parameters for the ρinf = 5e-5 kg/m3 case.
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Figure 30: Stagnation line CO(A1Π) number density and radiative flux profiles for upper and lower radiative heating bounds due to radiation
modeling parameters for the ρinf = 1e-4 kg/m3 case.
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Figure 31: Stagnation line CO(A1Π) number density and radiative flux profiles for upper and lower radiative heating bounds due to radiation
modeling parameters for the ρinf = 5e-4 kg/m3 case.

Table 13: Radiative flux uncertainties due to radiation modeling parameters.

ρinf qr Δqr,rad

(kg/m3) (W/cm2) (%)

5e-5 9.38 +150.5, -82.1%

1e-4 14.3 +70.5, -78.1%

5e-4 40.2 +18.2, -55.2%

VII. Total Radiative Heating Uncertainty Assessment

The previous two sections assessed the radiative heating parametric uncertainty resulting separately
from flowfield and radiation modeling. This separation of the parametric uncertainty is a consequence of
the flowfield modeling parameters being inputs to the LAURA flowfield code and the radiation modeling
parameters being inputs to the HARA radiation code. It was shown that the chemical kinetic rates provide
the majority of the flowfield modeling uncertainty listed in Table 5, while the non-Boltzmann rates were
shown to provide the majority of the radiation modeling uncertainty listed in Table 13. Because the non-
Boltzmann rates were held fixed (as well as the other radiation parameters) while the chemical kinetic
rates were tuned to match the EAST measurements, the chemical kinetic and non-Boltzmann rates are
not independent of one another. As a result, the total uncertainty (Δqr,total) is obtained using a root-sum
squared (RSS) of the flowfield (Δqr,flow) and radiation (Δqr,rad) modeling uncertainties (if the flowfield and
radiation parameters were independent, a simple sum would then be appropriate):

Δqr,total =
√

Δq2
r,flow + Δq2

r,rad (17)

For the 7.0 km/s case considered throughout this paper, Table 14 presents Δqr,total and the associated
components presented previously. The total uncertainty values are seen to range from +195% at the lowest
density to +78.7% at the largest density. The dependency of these uncertainties on free-stream velocity is
indicated in Tables 15 and 16, which present the baseline radiative flux and uncertainties for velocities of
7.7 and 6.3 km/s. These two velocities are seen to produce larger positive uncertainty values, which are a
result of the larger flowfield uncertainty component (Δqr,flow).

Also presented in Tables 14–16 are the stagnation point convective heating (qc) values for each case. The
super-catalytic and radiative equilibrium wall boundary conditions are applied for all flowfield computations.
The super-catalytic assumption results in conservative convective heating values, but has a negligible influ-
ence on the radiative heating. These qc values may be compared with the qr,upper values, which are equal to
qr increased by the positive Δqr,total component. It is seen that for the 7.0 and 7.7 km/s cases, the qr,upper

values are nearly equal to or greater than the qc values. This indicates the importance of the reducing the
present radiative heating uncertainty.
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Table 14: Baseline radiative flux and uncertainty values for a velocity of 7.0 km/s.

ρinf qc qr Δqr,flow Δqr,rad Δqr,total qr,upper

(kg/m3) (W/cm2) (W/cm2) (%) (%) (%) (W/cm2)

5e-5 28.2 9.38 +124, -37% +151, -82% +195, -90% 27.7

1e-4 40.3 14.3 +127, -33% +71, -78% +145, -85% 35.0

5e-4 92.3 40.2 +77, -9.2% +18, -55% +79, -56% 72.0

Table 15: Baseline radiative flux and uncertainty values for a velocity of 7.7 km/s.

ρinf qc qr Δqr,flow Δqr,rad Δqr,total qr,upper

(kg/m3) (W/cm2) (W/cm2) (%) (%) (%) (W/cm2)

5e-5 38.0 17.6 +172, -35% +137, -79% +220, -86% 56.3

1e-4 54.9 24.7 +149, -32% +69, -75% +164, -82% 65.2

5e-4 120 70.8 +58, -8.2% +18, -54% +61, -55% 114

From Tables 14–16, the appropriate uncertainty for a given trajectory may be assessed. The simplest
approach would be to choose the uncertainty from these tables for the peak radiative heating point in the
trajectory. However, the significant variation in these uncertainties with density prohibits the choice of a
general uncertainty value for all cases. For cases out of the range of these tables, including other geometries,
the uncertainty approach presented in this paper allows for the straightforward assessment of the radiative
heating uncertainty.

VIII. Application to Mars Pathfinder

The Mars Pathfinder vehicle successfully entered Mars in 1997.77 The forebody heatshield consisted of
a 70-degree half-angle sphere-cone with a 0.6638 m nose radius, 0.0662 m shoulder radius, and maximum
diameter of 2.65 m. The free-stream conditions for three trajectory points near peak heating are presented in
Table 17. The stagnation point convective heating assuming both a super catalytic (qc,sc) and non-catalytic
(qc,nc) wall are presented. The baseline stagnation point radiative heating along with the flowfield and
radiation modeling uncertainty components defined previously are presented for each trajectory point (only
the upper limit uncertainty is presented for these cases). As in the previous section, the total radiative
heating uncertainty is obtained using an RSS of the flowfield and radiation components. Finally, the upper-
limit radiative heating (qr,upper) is obtained, as discussed previously, by applying the total uncertainty to
the baseline radiative heating. For the t=52 and 61 s cases, Figs. 32(a) and 33(a) present the stagnation
line temperature and radiative flux profiles. It is seen that although the shock layer is a factor of 5 smaller
than the previously studied HIAD cases, the radiative flux is of a similar magnitude because of the strong
nonequilibrium emission contribution in both cases, which is independent of vehicle size or shock layer
thickness.

A result of note in Table 17 is that if the actual convective heating is assumed to lie somewhere between
the super- and non-catalytic values, then the radiative heating is a significant fraction of the heating at
these trajectory points. This is especially true if the upper-limit radiative heating values are considered,
which are actually larger than the non-catalytic convective heating for t = 52 and 61 s. This is shown in
Figures. 32(a) and 33(a), which present the radiative and convective heating along the entire forebody. The
qr,upper values are computed separately at each point on the surface. On the cone region of the surface, the

Table 16: Baseline radiative flux and uncertainty values for a velocity of 6.3 km/s.

ρinf qc qr Δqr,flow Δqr,rad Δqr,total qr,upper

(kg/m3) (W/cm2) (W/cm2) (%) (%) (%) (W/cm2)

5e-5 21.0 1.51 +202, -22% +167, -75% +262, -78% 5.47

1e-4 29.2 2.67 +177, -24% +79, -72% +194, -75% 7.85

5e-4 66.0 8.98 +50, -6.1% +18, -51% +53, -52% 13.7
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Table 17: Trajectory points near peak heating for the Mars Pathfinder vehicle.

t Uinf ρinf qc,sc (qc,nc) qr Δqr,flow Δqr,rad Δqr,total qr,upper

(s) (m/s) (kg/m3) (W/cm2) (W/cm2) (%) (%) (%) (W/cm2)

52 7364 5.76e-5 86.6 (25.5) 13.6 +147% +250% +290% 53.0

61 6994 1.69e-4 121 (39.8) 18.7 +170% +92% +193% 54.8

66 6596 2.80e-4 125 (47.2) 10.8 +169% +51% +177% 29.9

convective heating decreases while the radiative heating maintains nearly a constant value. This implies a
larger relative contribution from radiative heating in the cone region.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

Distance along stagnation line (cm)

R
ad

ia
ti

ve
 f

lu
x 

to
w

ar
ds

 w
al

l (
W

/c
m

2 )

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
x 10

4

T
em

pe
ra

tu
re

 (
K

)

radiative flux
 

T
tr

T
ve

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

70

80

90

radial distance (m)

Su
rf

ac
e 

H
ea

ti
ng

 (
W

/c
m

2 )

 

 
q

c,sc

q
c,nc

q
r

q
r,upper

(b)

Figure 32: Stagnation line profiles and surface heating for t=52 s Pathfinder case.
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Figure 33: Stagnation line profiles and surface heating for t=61 s Pathfinder case.

Various pre- and post-flight aerothermal analyses of Pathfinder estimated the radiative heating using ther-
mochemical equilibrium models.78–80 As suggested by Figs. 1–3, these equilibrium models under-predicted
the radiative heating relative to the present baseline model, with peak heating values of roughly 5 W/cm2.
These erroneously low values relative to the convective heating resulted in minimal attention for Pathfinder
radiative heating simulations. The results of the present baseline model indicate that radiative heating was
likely a larger contributor to the total heating for Pathfinder than previously thought. This conclusion is
supported by recent studies by Surzikhov,81,82 although these studies assumed a Boltzmann population of
electronic states, which resulted in radiative heating a factor of 5 greater than the present (non-Boltzmann)
model.
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IX. Concluding Remarks

A model for simulating Mars entry radiative heating was developed and the uncertainty associated with
this model was assessed. The developed model consists of chemical kinetic rates tuned to provide good
agreement with recent EAST shock tube radiation measurements at 0.25 Torr, which contain nearly Boltz-
mann conditions for the strongly radiating CO and CN molecules. The most notable rate in this model was
the CO dissociation rate, chosen as a factor of 13 greater than the commonly used Park rate. Applying a
non-Boltzmann rate model based on recent values from the literature, the developed chemical kinetic rate
model was then compared with measurements at 0.10 and 0.05 Torr, which contain strong non-Boltzmann
emission. Good agreement was observed at these conditions to provide a level of validation for both the
chemical kinetics and non-Boltzmann models. A sensitivity analysis was performed for the flowfield and ra-
diation modeling parameters. For a range of free-stream conditions, the radiative flux was shown to be most
sensitive to changes in the CO dissociation rate and CO heavy particle impact excitation rates. Using the
uncertainty values chosen for each modeling parameter, radiative flux uncertainties due to the flowfield and
radiation modeling parameters were computed. These uncertainties, due flowfield and radiation parameters,
were combined using a root sum square to provide a total radiative heating uncertainty. The total radiative
heating uncertainty was computed for a range of free-stream conditions and ranged from +262, -78% at
the lowest free-stream velocity and density (6.3 km/s, 5e-5 kg/m3) to +61, -55% at the highest free-stream
velocity and density (7.7 km/s, 5e-4 kg/m3). The developed model and uncertainty approach were applied
to the Mars Pathfinder vehicle. A peak radiative heating of 18 W/cm2 was predicted, which is significantly
larger than the value of 5 W/cm2 predicted in previous studies.
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Appendix

A. Simplified Mars Entry Radiation Transport

The radiative flux emitted from a Mars entry shock layer at conditions of present interest is the result
of two fundamental regions through the shock layer. These two regions are identified as “A” and “B” in
Fig. 34. Region A is the thin high temperature thermochemical nonequilibrium region directly behind the
shock, while region B is the thicker, lower temperature region containing the remainder of the shock layer.
From the flowfield shown in Fig. 34, temperatures and species number densities were chosen from two points
representative of layers A and B. These properties are listed in Table 18 and will be used for examples
throughout this section. The contribution of these two regions to the radiative flux reaching the surface may
be studied by approximating both layers with constant properties. This allows an analytic solution to the
radiative transport equations, which enables the influence of each layer on the radiative flux to be clearly
interpreted.

Table 18: Properties for a simplified Mars entry shock layer at 7 km/s (ΔzA = 1.5 cm, ΔzB = 15 cm.)

Layer Ttr Tve CO CN CO2 N2 O2 NO C O N e−

A 7836 8035 1.83e+16 2.95e+13 6.53e+13 4.82e+14 1.32e+14 6.51e+13 1.53e+15 2.11e+16 6.11e+14 1.78e+13

B 6280 6280 2.12e+16 1.77e+13 3.76e+11 1.11e+14 3.78e+12 1.81e+13 3.38e+15 2.80e+16 1.79e+15 2.97e+13
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Figure 34: Identification of layers A and B for the 7 km/s, 1e-4 kg/m3

case.

Figure 35: Schematic of layers A and B.

Following the schematic of Fig. 35, the radiative flux reaching the surface, or location 3, may be written in
terms of the constant properties in layers A and B as follows:

qν,3 = qν,AΦB + qν,B (18)

where qν,A is the radiative flux emitted by layer A (at location 2) towards the wall, which is written as:

qν,A = π
jν,A

κν,A
(1 − ΦA) (19)

and the absorption of flux as it moves through each layer, or transmissivity, is written as

ΦA = exp(−2κν,AΔzA) (20)

ΦB = exp(−2κν,BΔzB) (21)

These terms are dependent on the absorption coefficient (κν) and thickness (Δz) of each layer. Figure 36
presents ΦB for the current example and compares it with ΦA. The CO 4th Positive band system, located
between 6 and 10 eV, is seen to result in a significant reduction in ΦB (note that atomic lines, which
contribute less than 3%, are ignored for clarity in this appendix). The reduction is not as great for ΦA

because ΔzA is only 1.5 cm, while ΔzB is 15 cm. The radiative flux leaving layer A (qν,A) and that reaching
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the surface after passing through layer B (qν,AΦB) are presented in Fig. 37. It is seen that nearly 75% of
flux emitted from layer A is absorbed in layer B. The ΦB values below 0.1 seen in Fig. 36 are responsible for
the nearly complete absorption of the flux above 8 eV, while both layers are seen to be optically thin below
6 eV.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hν (eV)

T
ra

ns
m

is
si

vi
ty

 

 

Φ
A

Φ
B

Figure 36: Spectral transmissivity of Layers A and B for the simplified
shock layer defined in Table 18.
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Figure 37: Radiative flux components for Layer A of the simplified
shock layer defined in Table 18.

The emission from only layer B that reaches the surface is represented by qν,B , which is written as

qν,B = π
jν,B

κν,B
(1 − ΦB) (22)

Figure 38 presents qν,B for the current example. Comparing the spectrally integrated qν,B value of 6 W/cm2

from this figure to the spectrally integrated qν,A value of 12 W/cm2 from Fig. 37, it is apparent that the
lower temperatures present in layer B result in significantly less emission than layer A (even considering the
order of magnitude larger path length). However, Fig. 37 shows that the integrated qν,A value of 12 W/cm2

is reduced to 3.8 W/cm2 after passing through layer B. Therefore, the emission contributions of layers A
and B to the total radiative flux reaching the surface is nearly equal, although the net flux from layer B
is negative (-2.2 W/cm2) as a result of its strong absorption. The total radiative flux reaching the surface
(qν,3) for this case is also presented in Fig. 38. As indicated by Eq. (18), this spectrum is the sum of the
qν,B spectrum shown in this figure and the qν,AΦB spectrum shown in Fig. 37.

A comparison of the radiative flux profile through the shock layer for the approximate 2-layer model
and the actual shock layer is presented in Fig. 39. This figure shows that the 2-layer model captures
the fundamental nature of the radiative environment, with the strong emission from layer A and strong
absorption in layer B both clearly apparent in the actual flowfield result. The understanding of the radiative
environment obtained in this appendix using the 2-layer model may therefore considered applicable to the
actual flowfield radiation.
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Figure 38: Radiative flux components for the simplified shock layer
defined in Table 18.
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The equations presented in this appendix are applicable to equilibrium and nonequilibrium radiation, or
Boltzmann and Non-Boltzmann radiation, hence the Planck function is not used in these equations. Instead,
the more general ratio of the emission (jν) and absorption (κν) coefficients is applied. This term is of interest
in the optically thick region of the spectrum, which is identified in Fig. 36 as the region above 8 eV where
ΦB is less than 0.1. In this spectral region, Eqs. (19) and (22) shows that the radiative flux reaching the
surface reduces to the following form

qν,3 = π
jν,B

κν,B
(23)

For a spectral region dominated by a single band system, this equation may be written as

jν

κν
=

2hν3

c2

1
NiNj,boltz

NjNi,boltz
exp

(
hν

kTve

)
− 1

(24)

which may be simplified to following for spectral regions above around 3 eV

jν

κν
=

(
Nj

Nj,boltz

)
2hν3

c2
exp

(
− hν

kTve

)
=

(
Nj

Nj,boltz

)
Bν (25)

where Bν is the Planck function. Equations (23) and (25) show that the apparent “blackbody limited” region
of a nonequilibrium spectrum is modified from its equilibrium radiation value, which is the Planck function,
by the ratio of the radiating state number density to its Boltzmann value. These values are evaluated in
layer B only. For the conditions listed in Table 18 for layer B, the value Nj/Nj,boltz is equal to 0.29 for the
CO 4th Positive band system. Figure 40 shows the reduction in the radiative flux below Bν by this factor.
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Figure 40: Example of “blackbody limiting” for non-Boltzmann radi-
ation and identification of vibrational band heads.

B. Details of Treating Radiative Processes for Non-Boltzmann Modeling

The evaluation of the radiative production rate for the Master equation, Eq. (6), is the focus of this
Appendix. The radiative production rate represents the change in the number density of an electronic level
j due to radiative processes, which may be written as(

∂Nj

∂t

)
rad

= −
∫ ∞

0

4πjν,ij − κν,ij

∫
4π

IνdΨ
hν

dν (26)

This equation assumes the electronic level j is the upper level of a radiative transition with a lower electronic
level i. The absorption and emission coefficients due to this radiative transition only are written as κν,ij

and jν,ij , respectively, while the radiative intensity Iν is due to all radiative transitions occurring in the gas.
The first term in this equation represents the depopulation of level j due to spontaneous emission to level i.
This term, which will be divided by Nj (for future convenience) and referred to as Gem, may be evaluated
as follows for a molecular band system

Gem =
1

Nj

∫ ∞

0

4πjν,ij

hν
dν =

Qe

Qint

∑
v′,v′′

Av′v′′exp(− hc

kTv
Ev′)

kTr

hcBv′
(27)
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Note that Gem is dependent on only the local temperatures. This term is often referred to as the radiative
lifetime, and has often been approximated using a constant value that ignores the temperature dependence
in this equation. The internal partition function Qint is written as

Qint =
∑

j

ge,jexp(− hc

kTv
Ee,j)

∑
v

exp(− hc

kTv
Ev,j)

kTr

hcBv,j
(28)

This term cannot be written as the product of an electronic, vibrational, and rotational partition function
because the vibrational energy term Ev,j is dependent on the electronic level j and the rotational energy
term Bv,j is dependent on both the vibrational quantum number v and j. As a result, the electronic partition
function (Qe) is in the numerator of Eq. (27) to divide out the Qe component from Qint.

The second term in Eq. (26) represents the repopulation of level j due to absorption in level i of the
incoming radiative intensity resulting from the entire flowfield. This term will be referred to Gab and written
as

Gab =
∫ ∞

0

κν,ij

∫
4π

IνdΨ
hν

dν (29)

Unlike Gem, which depends on only the local temperatures, this term depends on the incoming radiative
intensity resulting from the entire flowfield. This dependence on the incoming radiative intensity complicates
the evaluation of Gab significantly. Not only does it require the solution of the radiative transport equations,
but it also causes the solution of the Master equations to become an iterative process. Iterations are required
because the incoming intensity at a point is dependent on the local emission, which is in turn dependent on
the incoming intensity. The iteration procedure applied in this work will be discussed later.

The evaluation of the incoming intensity integral in Gab is simplified in this work by making use of the
tangent-slab approximation, which allows it to be written as
∫

4π

Iν(z)dΨ = 2πRν(Tw)E2[τν(0, z)] + 2π

∫ s=z

s=0

jν(s)
∣∣∣∣dE2[τν(s, z)]

dτν

∣∣∣∣ ds + 2π

∫ s=zs

s=z

jν(s)
∣∣∣∣dE2[τν(z, s)]

dτν

∣∣∣∣ ds

(30)
where z is the distance normal to the body (with the surface at z = 0 and the bow shock at z = zs), E2 is
the second-order exponential integral, and τν is the optical depth, which is defined as

τν(s, z) =
∫ z

s

κνdz (31)

Following Johnston,83 the function E2 may be closely approximated as follows

E2(x) = 0.2653e−8.659x + 0.7347e−1.624x (32)

which allows for the straightforward evaluation of Eq. (30) along rays normal to the body.
Using the definitions of Gem and Gab in Eqs. (27) and (29), the change in the number density of an

electronic level j due to radiative processes in Eq. (26) may be rewritten as
(

∂Nj

∂t

)
rad

= −GemNj + Gab (33)

This form of the equation is applied to the Master equations for the solution of Nj at every point in the
flowfield. Note that the Gab term is moved to the right hand side of the system of linear equations that form
the Master equations.

The iterative solution procedure for the Master equations is as follows. The first solution is obtained
by assuming Gab is equal to zero at every point along z. This provides initial values for Nj and allows
the radiative emission and absorption coefficients to be computed. With these initial values, Eqs. (29) and
(30) are evaluated to obtain Gab. The Master equations are then solved again using this Gab to obtain new
values for Nj . The process is then repeated until the Nj values are not changed by more than 1% between
iterations. This approach allows for a well converged solution in cases with strong absorption and weak
emission, where Gab is larger than GemNj . This is not the case if Eq. (33) is written in terms of an escape
factor (Λj,i) as follows (

∂Nj

∂t

)
rad

= −Λj,iGemNj (34)
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where the escape factor is written as

Λj,i = 1 − Gab

GemNm−1
j

(35)

and Nm−1
j represents the value of Nj from the previous iteration. This formulation does not converge for

cases with strong absorption and weak emission because Λj,i becomes negative, which changes the sign of
Eq. (34) and causes the resulting Nj value to be negative.

Although it is not applied directly in solving the Master equation, it is convenient to present converged
Λj,i values to show the influence of absorption, or Gab, on the computed electronic state number densities.
From Eq. (35), it is seen that Λj,i is equal to 1.0 for optically thin cases (meaning Gab = 0), while it is equal to
0.0 for cases where emission and absorption balance each other exactly (meaning Gab = GemNj). However,
for regions with stronger absorption than emission (Gab > GemNj), Λj,i becomes negative. As indicated
by Eq. (35), as Gab becomes larger than GemNj there is no limit to how negative Λj,i may become. Large
negative Λj,i values are seen consistently in the boundary layer and free-stream, where the local emission is
negligible (meaning Gem is small) but the intensity from the strongly emitting regions on the shock layer is
absorbed locally (meaning Gab is large)

The escape factor for the CO 4th Positive band system is presented in Fig. 41 along the stagnation line
of the ρinf = 1e-4 kg/m3 case. A peak value of 0.9 is seen directly behind the shock, while further into
the shock layer the escape factor decreases to negative values. The significant optical thickness of the CO
4th Positive band system is indicated by these values being noticeably less than 1.0 throughout the entire
shock layer. The radiative lifetime, Gem, is also presented in Fig. 41. The temperature variation of the
radiative lifetime, indicated in Eq. (27), is seen to be minimal, with values ranging from 2.2e+8 to 1.6e+8
s−1. Note that these values are significantly different than the constant values of 3.3e+7, 1.0e+8 and 2.0e+9
s−1 applied by Gorelov,15 Zalogin,16 and Dikalyuk,5 respectively. The impact of the radiative emission and
absorption terms on the Master equation for the upper level of the CO 4th Positive band system, CO(A1Π),
is shown in Fig. 42. The radiative emission component represents the first term in Eq. (33), while the
radiative absorption component represents the second term. Radiative emission is seen to depopulate the
CO(A1Π) level while radiative absorption and collisional excitation are seen to repopulate the level.
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Figure 41: Stagnation line escape factor and radiative lifetime profiles
of CO 4th Positive for the ρinf = 1e-4 kg/m3 case.
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Figure 42: Stagnation line production rates profiles of the CO(A1Π)
state for the ρinf = 1e-4 kg/m3 case.

For comparisons with the optically-thick CO 4th Positive case, Figs. 43 and 44 present the escape factor,
radiative lifetime, and production rates for the nearly optically-thin CN Violet band. The escape factor is
seen in Fig. 43 to be near 1.0 along most of the stagnation line, which indicates that the radiative absorption
of this band system is small. The sharp decrease of the escape factor in the boundary layer (below 1.0
cm) is a result the low temperatures and weak emission in this region, as mentioned previously. The small
contribution of radiative absorption on the Master equation is seen in Fig. 44, which shows a near zero
contribution along the entire stagnation line. It is found that for all band systems in Mars entry shock
layer, CO 4th Positive is the only band that contains enough absorption to noticeably influence the Master
equation.
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Figure 43: Stagnation line escape factor and radiative lifetime profiles
of CN Violet for the ρinf = 1e-4 kg/m3 case.
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Figure 44: Stagnation line production rates profiles of the CN(B2Σ)
state for the ρinf = 1e-4 kg/m3 case.

43 of 43

American Institute of Aeronautics and Astronautics


