
POLYIMIDE CELLULOSE NANOCRYSTAL COMPOSITE AEROGELS 

Abstract

Polyimide (PI) aerogels are highly porous solids having low density, high porosity and 
low thermal conductivity with good mechanical properties.  They are ideal for various 
applications including use in antenna and insulation such as inflatable decelerators 
used in entry, decent and landing operations.  Recently, attention has been focused on 
stimuli responsive materials such as cellulose nano crystals (CNCs).  CNCs are 
environmentally friendly, bio-renewable, commonly found in plants and the dermis of 
sea tunicates, and potentially low cost.  This study is to examine the effects of CNC on 
the polyimide aerogels.  The CNC used in this project are extracted from mantle of a 
sea creature called tunicates.  A series of polyimide cellulose nanocrystal composite 
aerogels has been fabricated having 0-13 wt of CNC.  Results will be discussed. 

https://ntrs.nasa.gov/search.jsp?R=20140005394 2019-08-29T14:26:02+00:00Z
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What are aerogels? 

Sol    Gel      Aerogel 
• Highly porous solids made by removing liquid portion of a wet gel 
• Nanometer scale pore size (10 – 40 nm) 
• High porosity (> 90%) and surface area (200 – 650 m2/g) 
• Low density (< 0.3 g/cm3) 

Cosmic dust collector 
Stardust Mission 

Rover battery insulation 
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Possible applications 

Insulation for EVA suits, habitats 
and rovers 

Ultra-lightweight, multifunctional structures 
for habitats, rovers 

Inflatable Decelerator 

Cryotank Insulation 
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Aromatic polyimide aerogels 

• Low thermal conductivity 
• High temperature stability (short term) 
• Moisture resistance depending on 

backbone chemistry 
• Improved mechanical properties 
• Flexible and durable 
• Easy to manufacture into thin film 

 
Objective: 
• Crosslinked polyimide aerogels 
• Incorporation of a nano filler to further 

enhance physical and mechanical 
properties - cellulose nanocrystals 
(CNCs) 
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Cellulose nanocrystals (CNCs) 
• Bio-renewable, potentially low cost 
• Exist in most plants and can be found in dermis of some mammals 
• Can easily be modified with different charge densities or functionalities  

- make them compatible with different solvents and polymers 
• Possibility to gain further mechanical strength and/or stimuli 

responsive behaviors 
– Flexible in water, rigid in air, etc 

• CNC extracted from the mantles of a sea creature called a tunicate 
(tw-CNC) with aspect ratio of 80:1 
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Chemical imidization at room temperature 

Chemical Imidization  TAB, AA, Py
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Compositions 

Concentration of total solids in solution: 
• Solid concentration = (g total solid)/(g solution) = 7.5 wt% 
• Total solid weight = g polymer + g CNC 
• Repeat units, n = 30 
 
Diamine variation on the backbone: 
• 100 mol% DMBZ 
• 100 mol% ODA 

 
CNC loading: 
• 0 – 13.33 wt% of total solid 
• CNC concentration = (g CNC)/(g CNC + g polyimide) 
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NMRs and TGAs: Evidence of CNC in the matrix 

• CNC can be detected using NMR 
• Can be quantified by TGA 
• Same wt. loss in both sets of aerogels 
• Low calculated CNC wt loss than formulated  

� interaction between CNC and PIs 
• Higher Tds of CNC � effect of aromatic PIs 
• Lower Tds of PIs � effect of aliphatic CNC 
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Scanning Electron Micrographs (SEMs): 
No difference in pore structure 

DMBZ 

ODA 

0% CNC  6.67% CNC 13.33% CNC 

Aerogels with DMBZ in the backbone are more porous 
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Incorporation of CNC improves physical properties 

At higher CNC loading and more 
rigid backbone: 
• Lower %shrinkage  
• Lower density 
• Higher % porosity 
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Brunauer-Emmet-Teller (BET) surface area 
 

At higher CNC loading: 
• Lower BET surface area 
• Larger pore diameter 
• Wider pore diameter distribution 
DMBZ vs. ODA: 
• Higher pore volume 
• Narrower pore diameter distribution 
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Improves mechanical properties  
at high CNC loading 

Higher CNC loading: 
• Slight decrease in compression 

modulus (density dependent) 
• Higher tensile modulus  
• Lower % elongation 
More rigid backbone: 
• Higher modulus (density independent) 
• Lower % elongation 
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CNC, wt%
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Aging Study: CNC diminishes at 200oC 
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• Aged at 150oC for 30 h and 200oC for 24 h 
• CNC is stable at 150oC for 30 h � no wt. 

loss during the aging period 
• CNC starts to decompose at 200oC  
� Slowly diminishes over 24 h of aging 
� Higher decomposition rate at higher CNC 

content (less PI in the matrix composite) 
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Aging study: higher CNC loading reduces 
shrinkage and lowers density 

• At higher CNC content � lower shrinkage and 
density 

• At elevated temperature   
� higher shrinkage and higher density 
� Higher shrinkage and density for DMBZ-
base aerogels 
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Conclusion 

With the incorporation of CNC: 
• Good CNC-polyimide interaction 
• Retained pore size and structural integrity 
• Improved both physical and mechanical properties 

At higher CNC loading: 
• Lower shrinkage and density (both at RT and elevated temperatures) 
• Higher porosity 
• Lower BET surface area 
• Little change in compression modulus 
• Higher tensile modulus 
• Lower % elongation 

More rigid backbone, DMBZ vs. ODA: 
• Better physical properties at room temperature 
• Physical properties suffered more at elevated temperature 
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