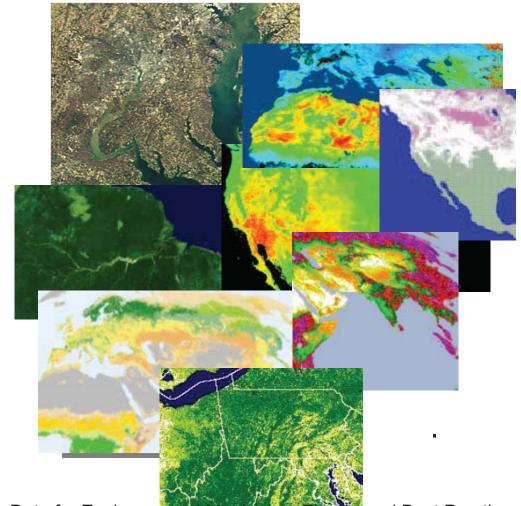


Introduction to atmospheric correction over land (Optical Domain)

Dr. Eric Vermote
NASA GSFC Code 619
Eric.f.vermote@nasa.gov

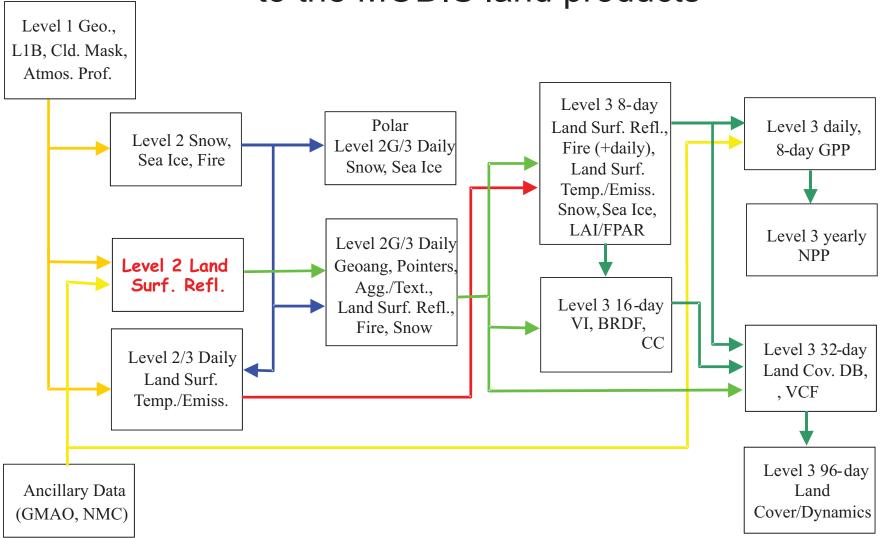
MODIS Land Products

Energy Balance Product Suite


- Surface Reflectance
- Land Surface Temperature, Emmisivity
- BRDF/Albedo
- Snow/Sea-ice Cover

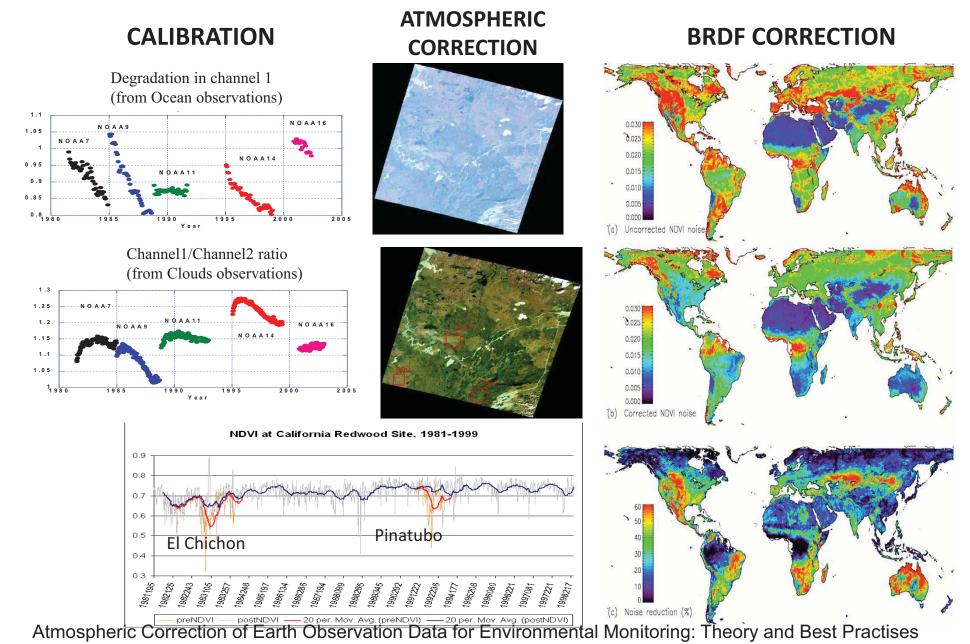
Vegetation Parameters Suite

- Vegetation Indices
- LAI/FPAR
- GPP/NPP


Land Cover/Land Use Suite

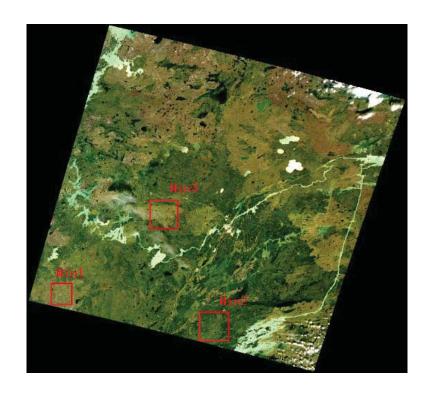
- Land Cover/Vegetation Dynamics
- Vegetation Continuous Fields
- Fire and Burned Area

MODIS Land Data Production Processing Chart


Atmospheric Correction Product (MOD09) crucial input to the MODIS land products

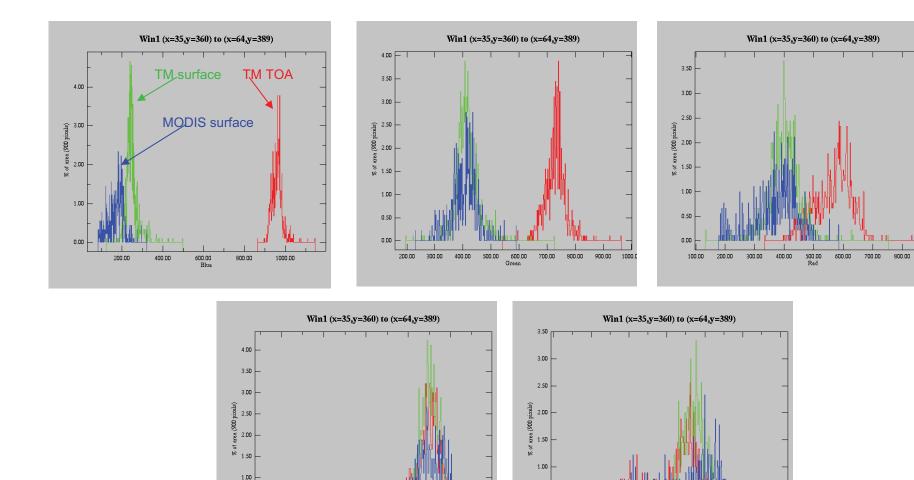
Land Climate Data Record

Needs to address calibration, atmospheric/BRDF correction issues



The need for Surface Reflectance BOREAS ETM+ scene

Scene: p033r021 Date: 09/17/2001



Top-of-atmosphere TOA

Surface Reflectance

Window 1

0.50

400.00

800.00

1200.00

1600.00

2000.00

Atmospheric Correction of Earth Observation Data for Environmental Monitoring: Theory and Best Practises

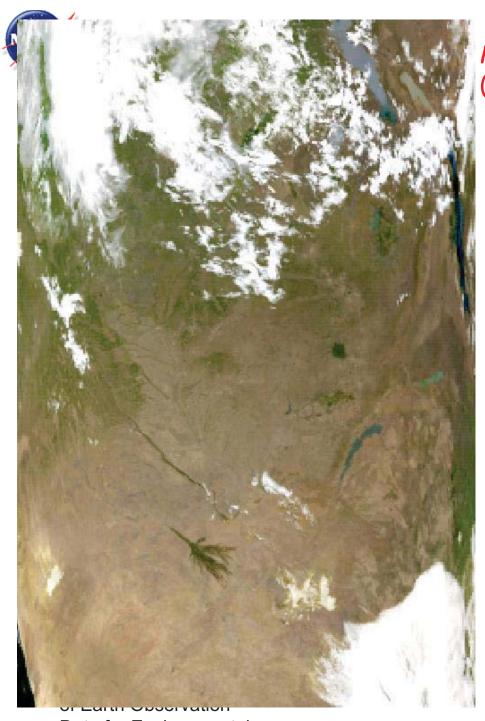
0.50

0.00

200.00

400.00

1000.00


MODIS Granule over Southern Africa (Sept 13,2001, 8:45 to 8:50 GMT)

Red, Green, Blue MODIS top of atmosphere reflectance

No atmospheric correction

Surface Reflectance: Atmospheric effect has a strong impact on remotely sensed data

Data for Environmental

Data for Environmental

MODIS Granule over Southern Africa (Sept 13,2001, 8:45 to 8:50 GMT)

Red, Green, Blue MODIS surface reflectance

With atmospheric correction

Goals/requirements for atmospheric correction

- Ensuring compatibility of missions in support of their combined use for science and application (example Climate Data Record)
- A prerequisite is the careful absolute calibration that could be insured by crosscomparison over specific sites (e.g. desert)
- We need consistency between the different AC approaches and traceability but it does not mean the same approach is required – (i.e. in most cases it is not practical)
- Have a consistent methodology to evaluate surface reflectance products:
 - AERONET sites
 - Ground measurements
- In order to meaningfully compare different reflectance product we need to:
 - Understand their spatial characteristics
 - Account for directional effects
 - Understand the spectral differences
- One can never over-emphasize the need for efficient cloud/cloud shadow screening

Surface Reflectance (MOD09)

The Collection 5 atmospheric correction algorithm is used to produce MOD09 (the surface spectral reflectance for seven MODIS bands as it would have been measured at ground level if there were no atmospheric scattering and absorption).

Goal: to remove the influence of

- atmospheric gases
- NIR differential absorption for water vapor
 - EPTOMS for ozone
 - aerosols
 - own aerosol inversion

Home page: http://modis-

sr.ltdri.org

Movie credit: Blue Marble Project (by R. Stöckli) Reference: R. Stöckli, E. Vermote, N. Saleous, R. Simmon, and D. Herring (2006) "True Color Earth Data Set Includes Seasonal Dynamics", EOS, vol. 87(5), 49-55.

www.nasa.gov/vision/earth/features/blue marble.

Basis of the AC algorithm

The Collection 5 AC algorithm relies on

- the use of very accurate (better than 1%) vector radiative transfer modeling of the coupled atmospheresurface system
- the inversion of key atmospheric parameters (aerosol, water vapor)

Vector RT modeling

The Collection 5 atmospheric correction algorithm look-up tables are created on the basis of RT simulations performed by the 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum, Vector) code, which enables accounting for radiation polarization.

May	200	5: t	he	rel	eas	е	of	a (3-v	ers	sio	n (of t	he	ve	ctc	r (6S	(6	SV	/1.	0B)
	ext	е	n s	iv	е	V	а	l i	d a	t i	0	n	8	n	d	t e	e s	t	i n	g			
May	200	7 : t	he	rel	eas	е	of	ve	rsi	on	1.	1 (of t	he	ve	cto	r 6	S	(6	SV	/1.	1)	

6SV Features

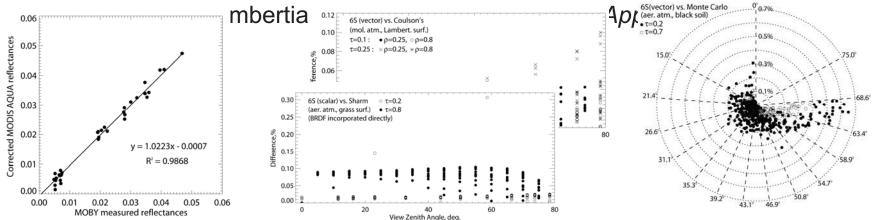
Spectrum: 350 to 3750 nm

Molecular atmosphere: 7 code-embedded + 6 user-defined

models

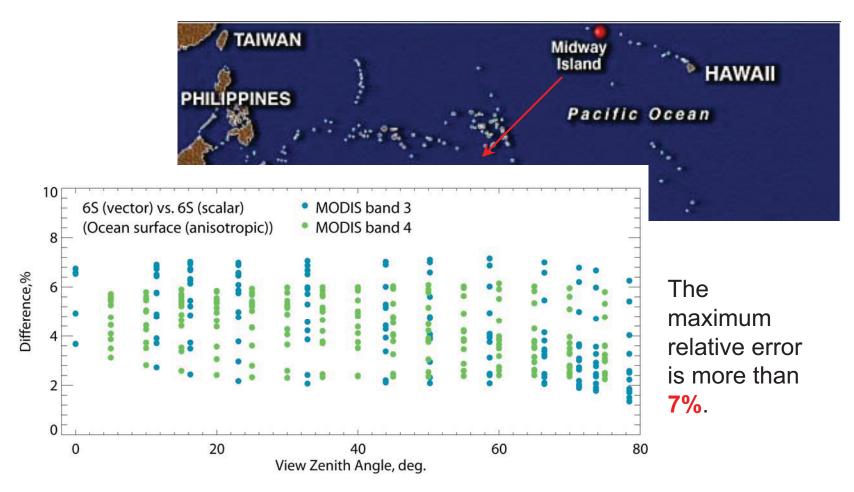
Aerosol atmosphere: 6 code-embedded + 4 user-defined (based on components and distributions) + AERONET

Ground surface: homogeneous and non-homogeneous with/without directional effect (10 BRDF + 1 user-defined)


Instruments: AATSR, ALI, ASTER, AVHRR, ETM, GLI, GOES, HRV, HYPBLUE, MAS, MERIS, METEO, MSS, TM, MODIS, POLDER, SeaWiFS, VIIRS, and VGT

6SV Validation Effort

The complete 6SV validation effort is summarized in two manuscripts:


- S. Y. Kotchenova, E. F. Vermote, R. Matarrese, & F. Klemm, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance, Applied Optics, 45(26), 6726-6774, 2006.
- S. Y. Kotchenova & E. F. Vermote, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II:

Effects of Polarization

Example: Effects of polarization for the mixed (aerosol (from AERONET) + molecular) atmosphere bounded by a dark surface.

Atmospheric Correction of Earth Observation Data for Environmental Monitoring: Theory and Best Practises 7

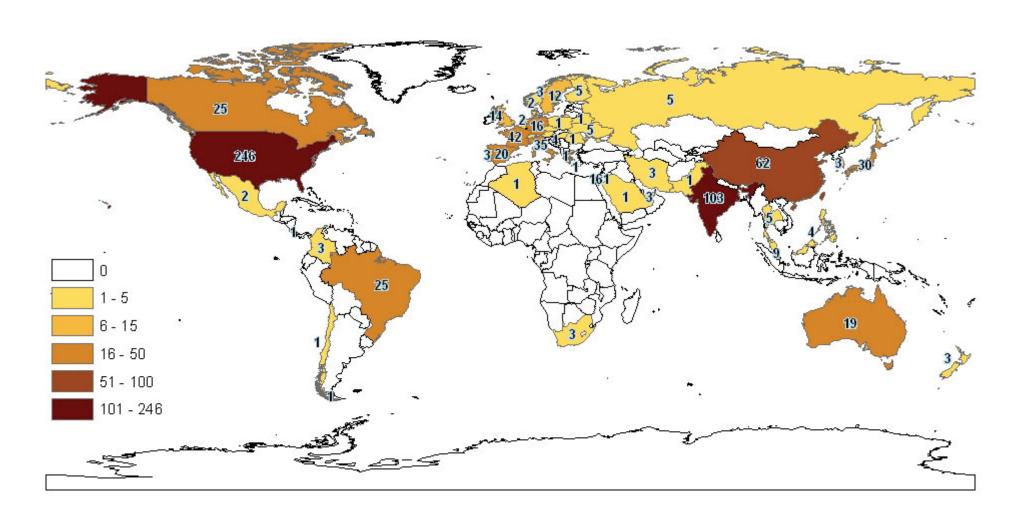
6SV Web page

6SV Interface

We provide a special Web interface which can help an inexperienced user learn how to use 6SV and build necessary input files.

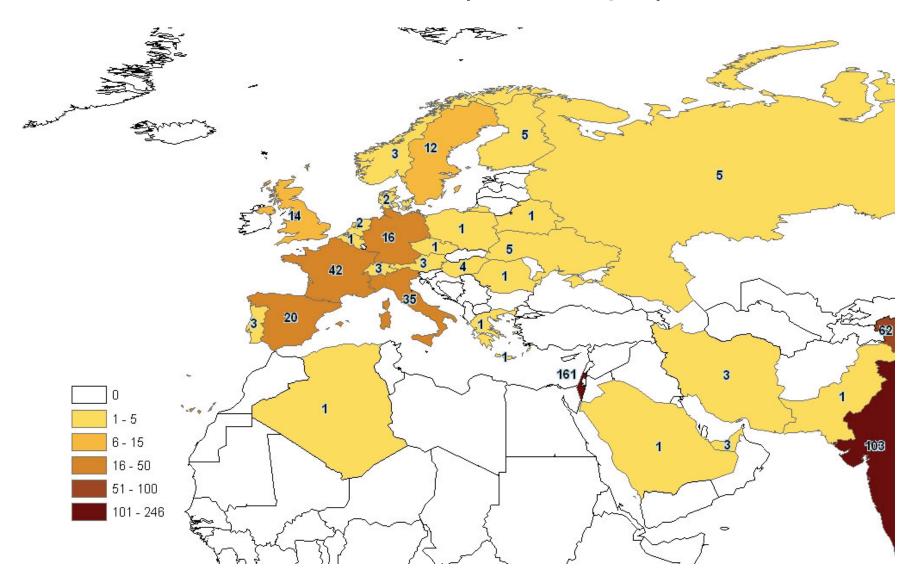
Make your own atmospheric correction

The 6s code predicts the satellite signal from 0.25 to 4.0 microns assuming cloudless atmosphere. The main atm account. Non-uniform surfaces may be considered as well as bidirectional reflectances as boundary conditions.

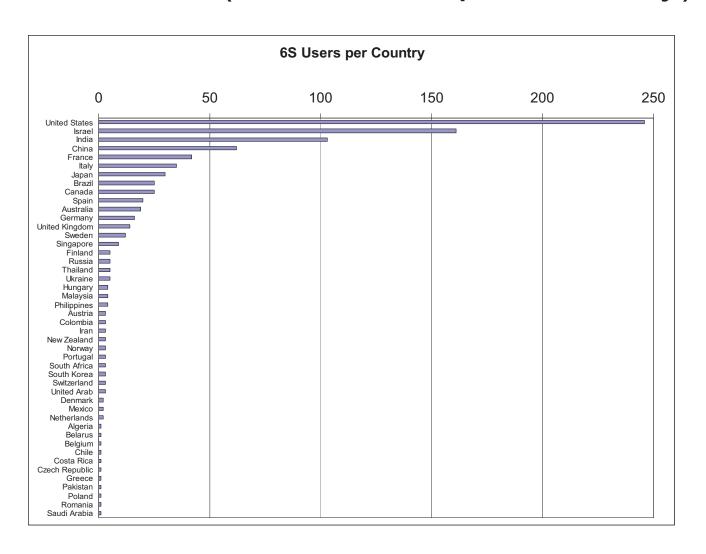

The following input parameters are needed

- 1. Geometrical conditions
- 2. Atmospherical Model
- 3. Target & Sensor Altitude
- 4. Spectral Conditions
- 5. Ground Reflectance

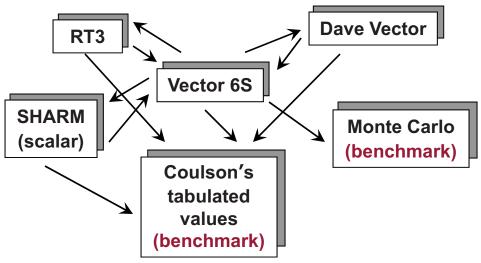
At each step, you can either select some proposed standard conditions (for example, spectral bands of satellite


6SV Users (over the World)

Total: 898 users



6SV Users (in Europe)


6SV Users (Distribution per Country)

6SV e-mail distribution list: 142 users

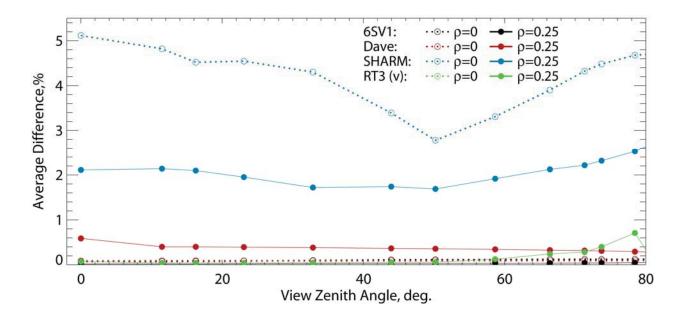
Code Comparison Project (1)

All information on this project can be found at

http://rtcodes_ltdrj.0

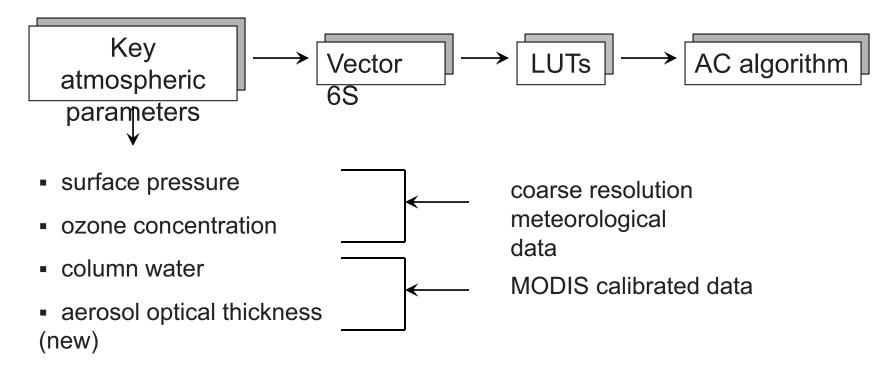
Welcome!

This is an official code comparison site of the <u>MODIS</u> atmospheric correction group at the University of Maryland. Our group is responsible for the development, further improvement,



Code Comparison Project (2)

Goals:


- to illustrate the differences between individual simulations of the codes
- to determine how the revealed differences influence on the accuracy of atmospheric correction and aerosol retrieval algorithms

Example: Results of the comparison for a molecular atmosphere with $\tau = 0.25$.

Input Data for Atmospheric Correction

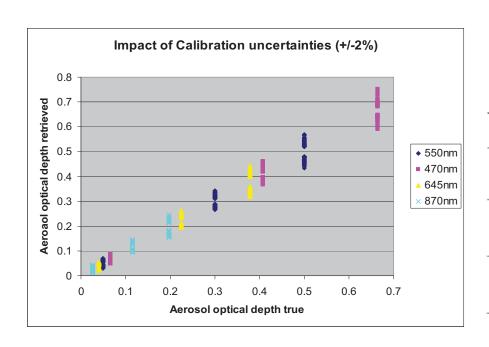
Reference: Vermote, E. F. & El Saleous, N. Z. (2006). Operational atmospheric correction of

MODIS visible to middle infrared land surface data in the case of an infinite Lambertian target, In: Earth Science Satellite Remote Sensing, Science and Instruments, (eds:

Qu. J. et al), vol. 1, chapter 8, 123 - 153. Atmospheric Correction of Earth Observation Data for Environmental Monitoring: Theory and Best Practises 15

Error Budget (collection 4)

Goal: to estimate the accuracy of the atmospheric correction under several scenarios


Input parameters	Values
Geometrical conditions	10 different cases
Aerosol optical thickness	0.05 (clear), 0.30 (average), 0.50 (high)
Aerosol model	Urban clear, Urban polluted, Smoke low absorption, Smoke high absorption (from AERONET)
Water vapor content (g/cm ²)	$1.0, 3.0, 5.0$ (uncertainties ± 0.2)
Ozone content (cm · atm)	$0.25, 0.3, 0.35$ (uncertainties ± 0.02)
Pressure (mb)	1013, 930, 845 (uncertainties ± 10)
Surface	forest, savanna, semi-arid

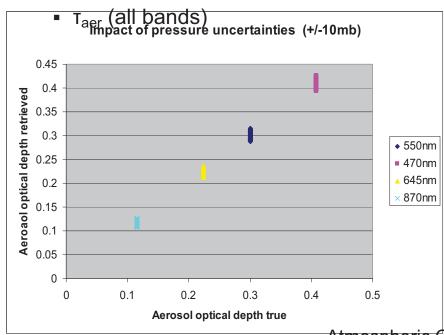
Calibration Uncertainties

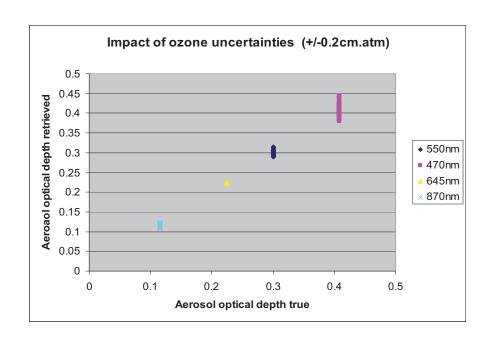
We simulated an error of ±2% in the absolute calibration across all 7 MODIS bands.

Results: The overall error stays under 2% in relative for all τ_{aer} considered. (In all study cases, the results are presented in the form of tables and graphs.)

Table (example): Error on the surface reflectance (x 10,000) due to uncertainties in the absolute calibration for the Savanna site.

Central		470	550	645	870	1,240	1,650	2,130
Wavelength (nm)							
Surface Reflectance ×10,000	,	400	636	800	2,226	2,880	2,483	1,600
Maximum	Clear	0013j	0013b	0024i	0065i	0080i	0080i	0080i
Error	Avg.	0015i	0015i	0030i	0074i	0079i	0070i	0054i
×10,000	High	0013d	0011a	0049i	0101i	0098i	0088i	0071i
Minimum	Clear	0008a	0009j	0016c	0045c	0056f	0048f	0031f
Error	Avg.	0006c	0004j	0016c	0046c	0058c	0049c	0032c
×10,000	High	0001e	0005j	0018c	0048c	0058c	0050c	0032c
Average	Clear	9	11	17	49	61	56	45
Error	Avg.	8	11	19	53	63	54	37
×10,000	High	6	9	24	63	68	59	42


Atmospheric Correction of Earth
Observation Data for
Environmental Monitoring: Theory



Uncertainties on Pressure and Ozone

The pressure error has impact on

- molecular scattering (specific band)
- the concentration of trace gases (specific band)

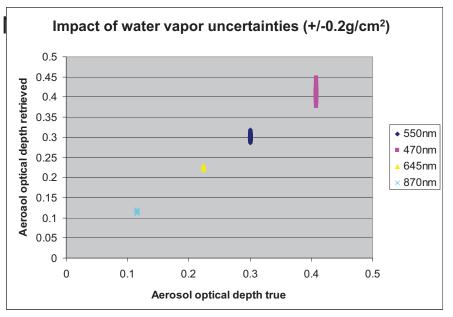
The ozone error has impact on

- the band at 550 nm (mostly)
- the band at 470 nm → the retrieval of → all bands

Atmospheric Correction of Earth
Observation Data for
Environmental Monitoring: Theory

Uncertainties on Water Vapor

Retrieval of the column water vapor content:

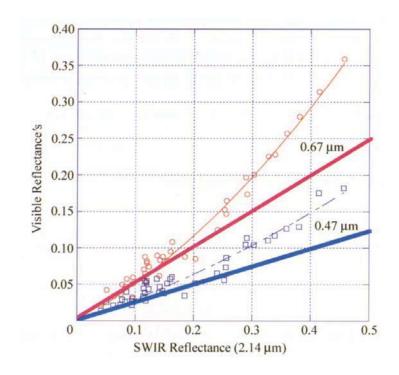

• if possible, from MODIS bands 18 (931-941 nm) and 19 (915 – 965 nm) by using

the differential absorption technique. The accuracy is better than 0.2 g/cm².

• if not, from meteorological data from **Table (example):** Error on the surface reflectance (x 10,000) due to uncertainties in the water vapor content

for the Sami arid site

Central Wavelength (1	nm)	470	550	645	870	1,240	1,650	2,130
Surface Reflectance ×10,000		700	1,246	1,400	2,324	2,929	3,085	2,800
Maximum	Clear	0004d	0024j	0011i	0030i	0024i	0018i	0014i
Error	Avg.	0004d	0024j	0011i	0030i	0024i	0018i	0014i
$\times 10,000$	High	0004d	0024j	0011i	0030i	0024i	0018i	0014i
Minimum	Clear	0001a	0005a	0008c	0005c	0000c	0000a	0015c
Error	Avg.	0001a	0004a	0006a	0004c	0000f	0000a	0010c
$\times 10,000$	High	0001a	0003a	0004c	0003c	0000c	0000a	0008c
Average	Clear	3	7	11	9	4	1	21
Error	Avg.	2	4	7	6	2	0	13
$\times 10,000$	High	1	3	5	4	2	0	10

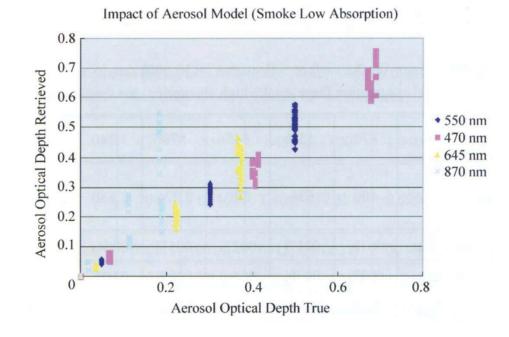

Retrieval of Aerosol Optical Thickness

Original approach: "dark and dense vegetation (DDV) technique" a linear relationship between ρ_{VIS} and ρ_{NIR} limitation to the scope of dark targets

Current approach: a more robust "dark target inversion scheme"

a non-linear relationship derived using a set of 40 AERONET sites representative of different land covers

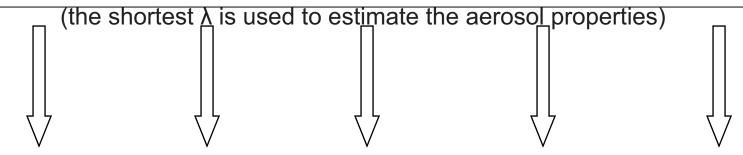
can be applied to brighter targets


Uncertainties on the Aerosol Model

In the AC algorithm, an aerosol model is prescribed depending on the geographic location. We studied an error generated by the use of an improper model.

Prescribed: urban clean

Additional: urban polluted, smoke low absorption, smoke high absorption


The choice of the aerosol model is critical for the theoretical accuracy of the current product (in particular, for the accuracy of optical thickness retrievals).

Collection 5 Aerosol Inversion Algorithm

Pioneer aerosol inversion algorithms for AVHRR, Landsat and MODIS (Kaufman et al.)

Refined aerosol inversion algorithm

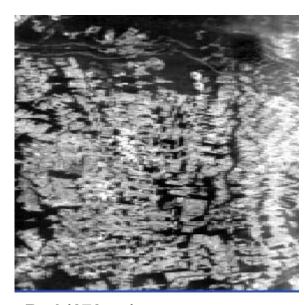
- use of all available MODIS bands (land + ocean e.g. 412nm as in Deep Blue)
- improved LUTs
- improved aerosol models based on the AERONET climatology
- a more robust "dark target inversion scheme" using Red to predict the blue reflectance values (in tune with *Levy et al.*)
- inversion of the aerosol model (rudimentary)

Example 1:Alta_Floresta 2003197 14:30 (SCF)

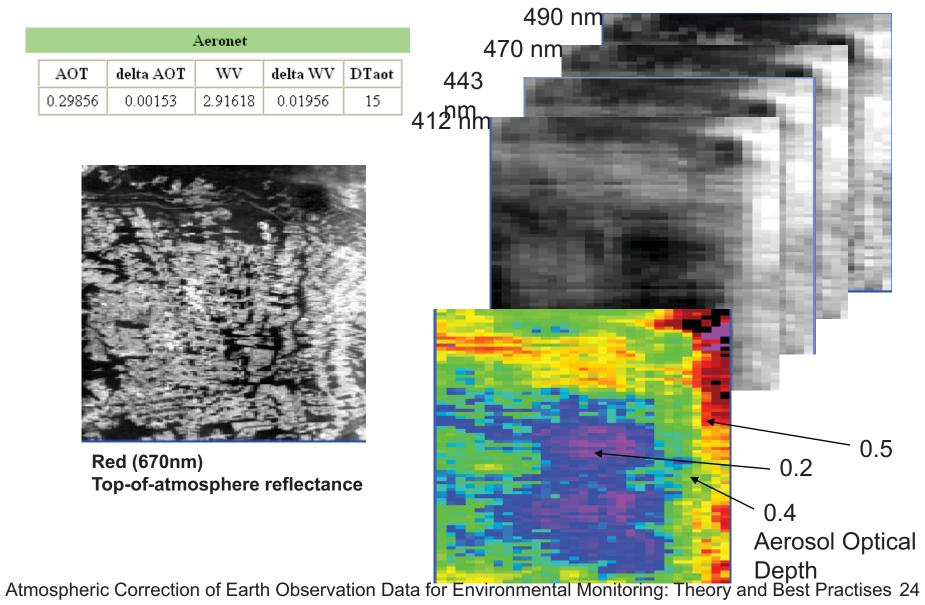
Aeronet										
AOT	delta AOT	WV	delta WV	DTaot						
0.29856	0.00153	2.91618	0.01956	15						

MOD09											
avg AOT std AOT avg WV std WV nb obs											
0.22569	0.02469	3.08241	0.06199	46							

RGB (670 nm, 550 nm, 470 nm) Top-of-atmosphere reflectance



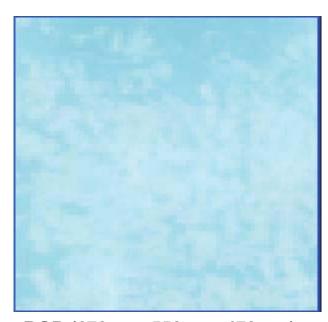
RGB (670 nm, 550 nm, 470 nm) Surface reflectance



Example 1:Alta_Floresta 2003197 14:30 (SCF)

Aeronet											
AOT	delta AOT	wv	delta WV	DTaot							
0.29856	0.00153	2.91618	0.01956	15							

Red (670nm) Top-of-atmosphere reflectance



Example 2: **Alta_Floresta 2003256 14:10 (SCF)**

Aeronet										
AOT	delta AOT	WV	delta WV	DTaot						
0.86180	0.01204	5.94636	0.00395	14						

MOD09											
avg AOT	std AOT	avg WV	std WV	nb obs							
0.95974	0.26412	3.67405	0.06463	0							

RGB (670 nm, 550 nm, 470 nm) Top-of-atmosphere reflectance

AOT= 0.896 (7km x 7km)

Model residual:

Smoke LABS:

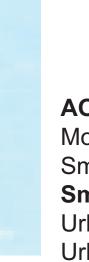
0.003082

Smoke HABS: 0.004978

Urban POLU: 0.04601

Urban CLEAN:

0.006710


RGB (670 nm, 550 nm, 470 nm) Surface reflectance

Example 3: Mongu 2003257 08:20 (SCF)

	Aeronet										
AOT delta AOT WV delta WV DT											
	0.98179	0.01919	2.18265	0.00130	14						

	MOD09											
avg AOT	std AOT	avg WV	std WV	nb obs								
0.98953	0.04857	1.87310	0.04040	0								

RGB (670 nm, 550 nm, 470 nm) Top-of-atmosphere reflectance

AOT= 0.927 (7km x 7km)

Model residual:

Smoke LABS: 0.005666

Smoke HABS: 0.004334

Urban POLU: 0.004360

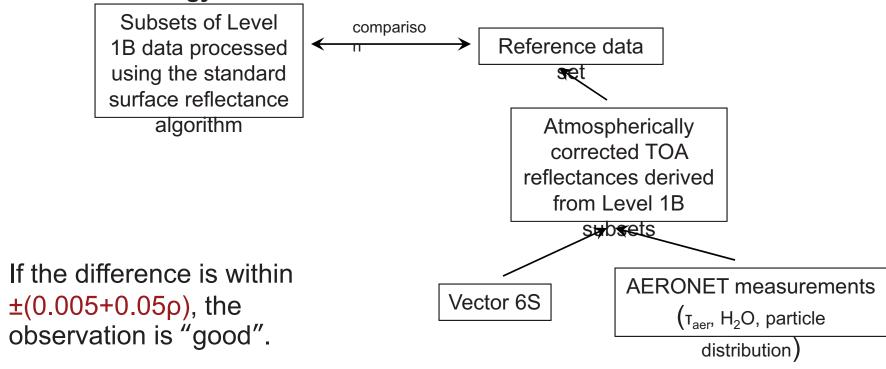
Urban CLEAN: 0.005234

RGB (670 nm, 550 nm, 470 nm) Surface reflectance

Overall Theoretical Accuracy

Overall theoretical accuracy of the atmospheric correction method considering the error source on calibration, ancillary data, and aerosol inversion for 3 taer = {0.05 (clear), 0.3 (avg.), 0.5 (hazy)}:

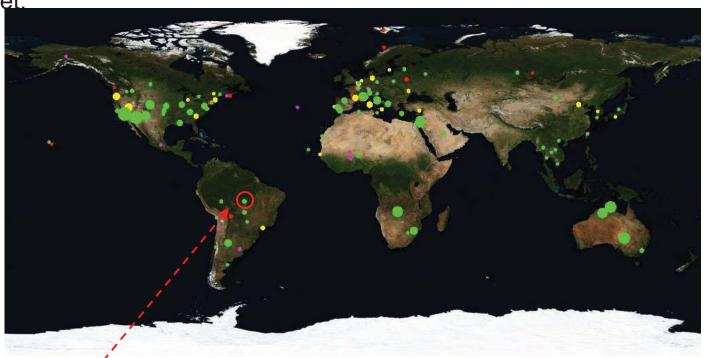
	Forest					Sava	anna			Sem	i-arid	
Reflectance/	value	Aerosol (Optical De	pth	value	Aerosol (Optical De	pth	value	Aerosol (Optical De	pth
VI		clear	avg	hazy		clear	avg	hazy		clear	avg	hazy
ρ 3 (470 nm)	0.012	0.0052	0.0051	0.0052	0.04	0.0052	0.0052	0.0053	0.07	0.0051	0.0053	0.0055
ρ 4 (550 nm)	0.0375	0.0049	0.0055	0.0064	0.0636	0.0052	0.0058	0.0064	0.1246	0.0051	0.007	0.0085
ρ 1 (645 nm)	0.024	0.0052	0.0059	0.0065	0.08	0.0053	0.0062	0.0067	0.14	0.0057	0.0074	0.0085
ρ 2 (870 nm)	0.2931	0.004	0.0152	0.0246	0.2226	0.0035	0.0103	0.0164	0.2324	0.0041	0.0095	0.0146
ρ 5 (1240 nm)	0.3083	0.0038	0.011	0.0179	0.288	0.0038	0.0097	0.0158	0.2929	0.0045	0.0093	0.0148
ρ 6 (1650 nm)	0.1591	0.0029	0.0052	0.0084	0.2483	0.0035	0.0066	0.0104	0.3085	0.0055	0.0081	0.0125
ρ 7 (2130 nm)	0.048	0.0041	0.0028	0.0042	0.16	0.004	0.0036	0.0053	0.28	0.0056	0.006	0.0087
NDVI	0.849	0.03	0.034	0.04	0.471	0.022	0.028	0.033	0.248	0.011	0.015	0.019
EVI	0.399	0.005	0.006	0.007	0.203	0.003	0.005	0.005	0.119	0.002	0.004	0.004


The selected sites are Savanna (Skukuza), Forest (Belterra), and Semi-arid (Sevilleta). The uncertainties are considered independent and summed in quadratic.

Performance of the MODIS C5 algorithms

To evaluate the performance of the MODIS Collection 5 algorithms, we analyzed 1 year of Terra data (2003) over **127** AERONET sites (**4988** cases in total).

Methodology:


http://mod09val.ltdri.org/cgi-bin/mod09 c005 public allsites onecollection.cgi

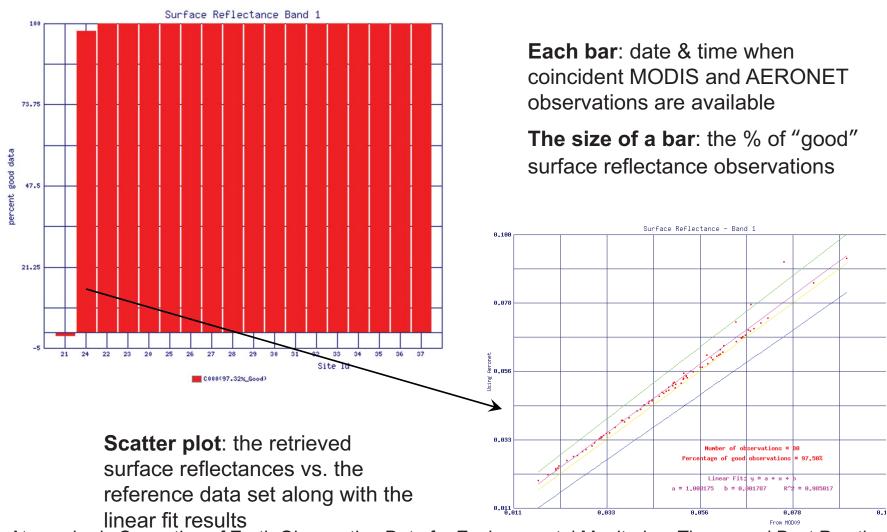
Validation of MOD09 (1)

Comparison between the MODIS band 1 surface reflectance and the reference

data set.

The circle color indicates the % of comparisons within the theoretical MODIS 1-sigma error bar:

green > 80%, 65% < yellow <80%, 55% < magenta < 65%, red <55%.


The circle radius is proportional to the number of observations.

Atmospolicing Garectionticularisite will various destantone delication by the contraction of the contraction

Validation of MOD09 (2)

Example: Summary of the results for the Alta Foresta site.

Validation of MOD09 (3)

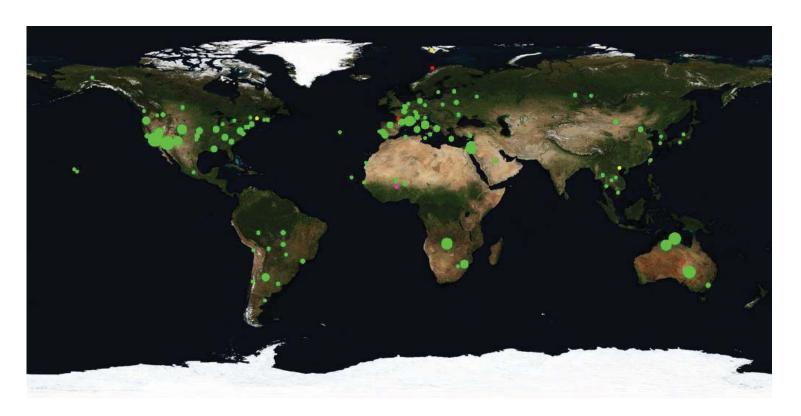
In addition to the plots, the Web site displays a table summarizing the AERONET measurement and geometrical conditions, and shows browse images of the site.

MOD09-SFC

Similar results are available for all MODIS surface reflectance products (bands 1-7).

Percentage of good:

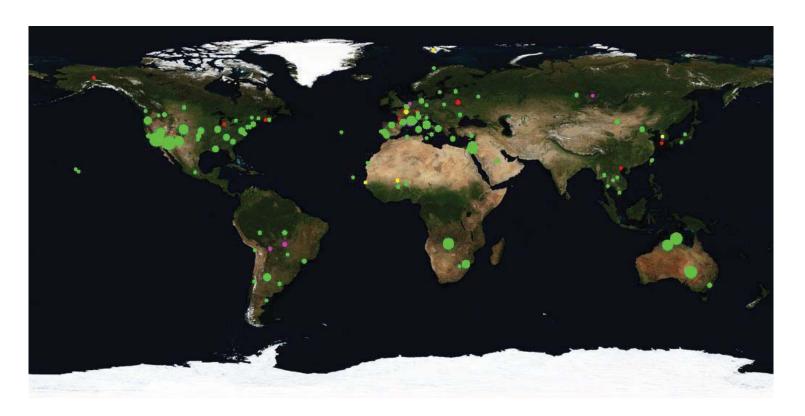
band 1 – 86.62% band 5 – 96.36% band 2 – 94.13% band 6 – 97.69%


band 3 – 51.30% band 7 – 98.64%

band 4 - 75.18%

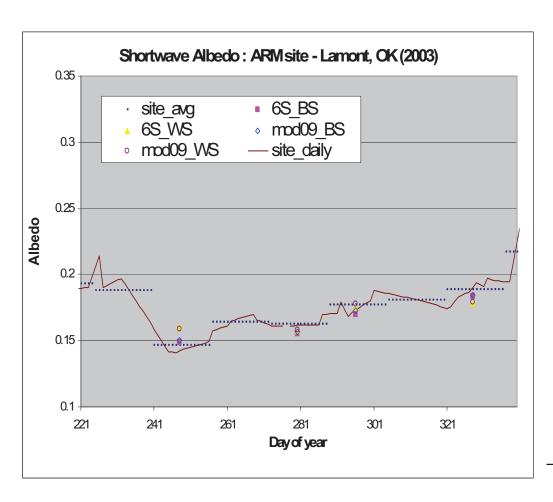
Validation of MOD13 (NDVI)

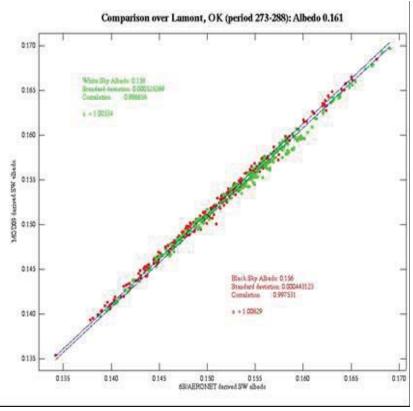
Comparison of MODIS NDVI and the reference data set for all available AERONET data for 2003. Globally, 97.11% of the comparison fall within the theoretical MODIS 1-sigma error bar (±(0.02 + 0.02VI)).



green > 80%, 65% < yellow <80%, 55% < magenta < 65%, red <55%

Validation of MOD09 (EVI)


Comparison of MODIS EVI and the reference data set for all available AERONET data for 2003. Globally, 93.64% of the comparison fall within the theoretical MODIS 1-sigma error bar (±(0.02 + 0.02VI)).

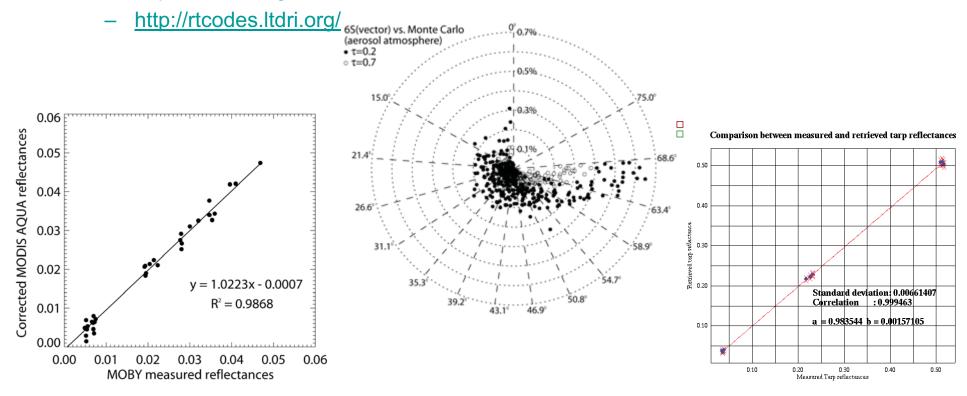


green > 80%, 65% < yellow <80%, 55% < magenta < 65%, red <55%

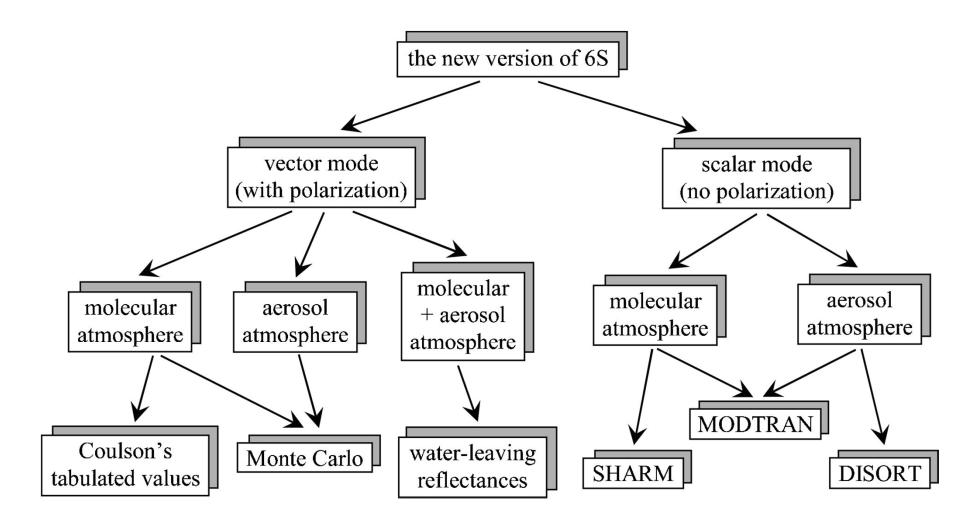
Generalization of the approach for downstream product (e.g., Albedo)

Collection 5

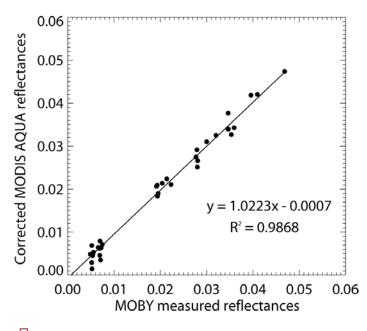
Collection 5:	Terra	Aqua
Surface Reflectance Daily L2G Global 250 m	MOD09GQ	MYD09GQ
Surface Reflectance Daily L2G Global 500 m and MYD09GA	1 km MOD09GA	
Surface Reflectance 8-Day L3 Global 250 m MYD09Q1	MOD09Q1	
Surface Reflectance 8-Day L3 Global 500 m	MOD09A1	MYD09A1
Surface Reflectance Quality Daily L2G Global 1km MYD09GST	MOD09GST	
Surface Reflectance Daily L3 Global 0.05Deg CMC MYD09CMG	G MOD09CMG	i


Description: http://modis-sr.ltdri.org
Availability: February 2000 through December 2000, Terra only

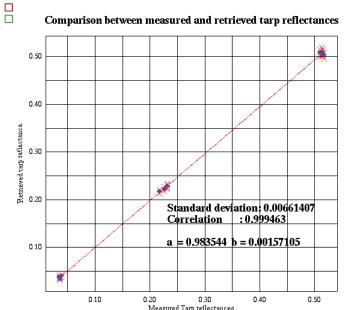
* CMG - Climate Modeling Grid


Approach for the surface reflectance product

- Atmospheric correction consistent with the MODIS, AVHRR and NPP-VIIRS approach, ensuring consistent reflectance data across resolutions based on rigorous radiative transfer
 - http://6s.ltdri.org



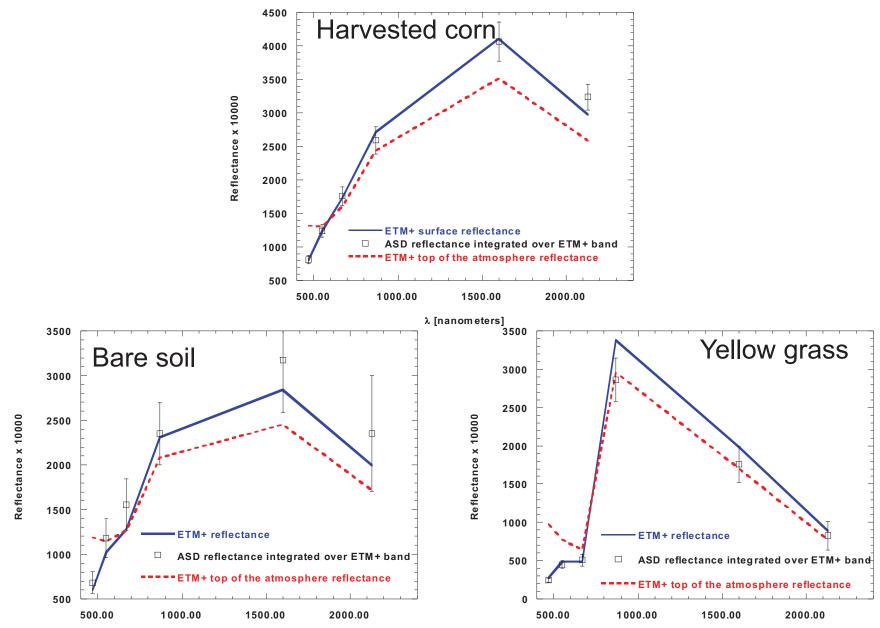
Validation of the 6S code



6SV Validation from ground measurements

The corrected MODIS AQUA water-leaving reflectances using AERONET and 6SV vs. the MOBY-measured water-leaving reflectances for $\lambda = \{412; 443; 490; 530; 550\}$ nm. The MOBY data were collected off the coast of Lanai Island (Hawaii) during the year 2003 (From Kotchenova et al., 2006).

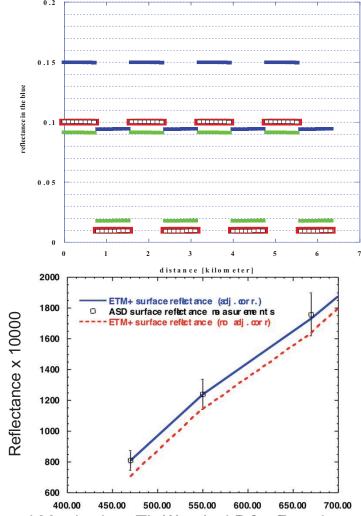
The corrected IKONOS reflectance's using AERONET and 6SV (including adjacency effect correction) vs. the reference tarp reflectance's. The data were acquired over Stennis Space flight Center on February, 15, 2002.



6S Radiative transfer code validation (Landsat)

- Using AERONET sun photometer measurements, the atmospheric correction was performed over site where simultaneous measurements of the surface reflectance over selected sites (Bare soil, Harvested corn, Yellow grass) using a ASD spectrometer were performed.
- Despite strong heterogeneity of the sites showed by the measured standard deviation the agreement between the LANDSAT surface reflectance and the surface measurements is very good especially in the visible where the aerosol effect is the strongest.

6S Radiative transfer code validation (Landsat)



6SV Radiative transfer code validation (Landsat) Using the Harvested corn site (bright surrounded by dark

 Using the Harvested corn site (bright surrounded by dark forest) we were able to show that the adjacency effect correction tested theoretically was improved the agreement between measurement and Landsat surface reflectance

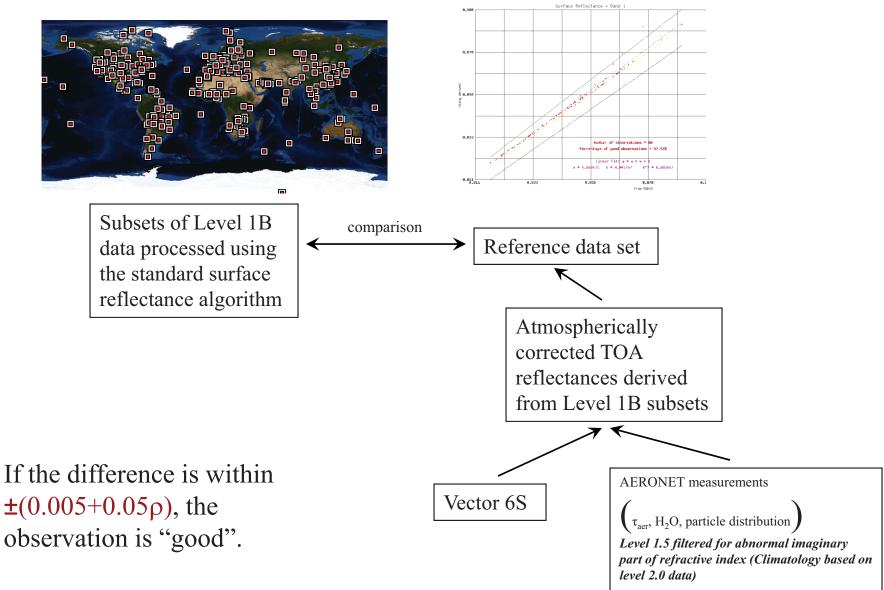
Baltimore/Washington Parkway Harvested Corn field

Reflectance's observed over a horizontal transect on the checkerboard. The red bars are the "true" surface reflectance, the blue bars correspond to the top of the atmosphere signal including adjacency effect. The green bars correspond to the corrected data using the infinite target assumption. The open square correspond to the data corrected for the adjacency effect using the operational method developed.

Atmospheric Correction of Earth Observation Data for Environmental Monitoring: The day already Best Practises

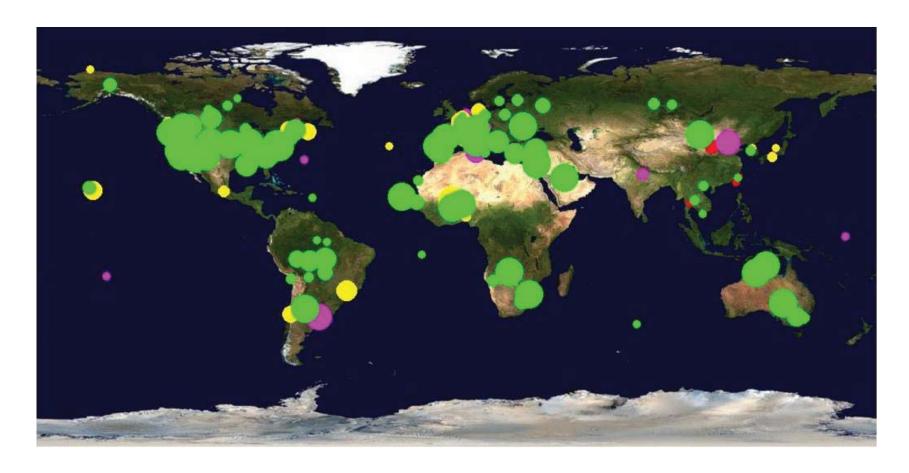
Theoretical uncertainties for the surface reflectance MODIS product

 Validation and uncertainties estimates. Theoretical error budget, comprehensive evaluation.


FOREST SAVANNA SEMI-ARID

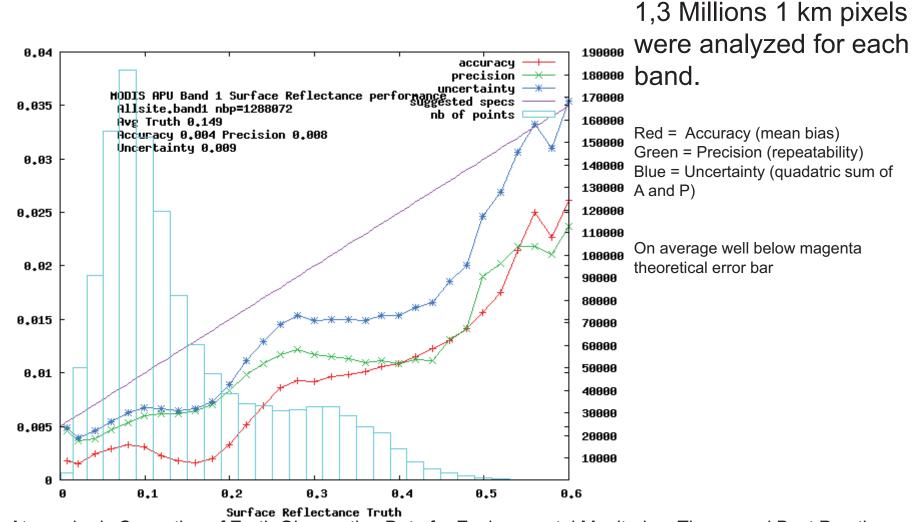
Belterra				Skukuza				Sevilleta						
		Clear	Average	Hazy			Clear	Average	Hazy			Clear	Average	Hazy
λ [nm]	ρ x10000		$\Delta \rho$ x10000		λ [nm]	$^{\rho}\text{x10000}$		$\Delta \rho_{\rm X}$ 10000		$^{\lambda}$ [nm] $^{ ho}$	x10000		$\Delta \rho_{\rm X}$ 10000)
470	120	52	51	52	470	400	52	52	53	470	700	51	53	55
550	375	49	55	64	550	636	52	58	64	550	1246	51	70	85
645	240	52	59	65	645	800	53	62	67	645	1400	57	74	85
870	2931	40	152	246	870	2226	35	103	164	870	2324	41	95	146
1240	3083	38	110	179	1240	2880	38	97	158	1240	2929	45	93	148
1650	1591	29	52	84	1650	2483	35	66	104	1650	3085	55	81	125
2130	480	41	28	42	2130	1600	40	36	53	2130	2800	56	60	87
ND\	/lx1000	2	NDVI x100	0	NDVIx	1000	Δ	NDVI x100	00	NDVI	<1000	Δ	NDVI x100	00
	849	30	34	\40	47	1	22	28	33	24	18	11	15	19

Error in ~0.5% in reflectance unit

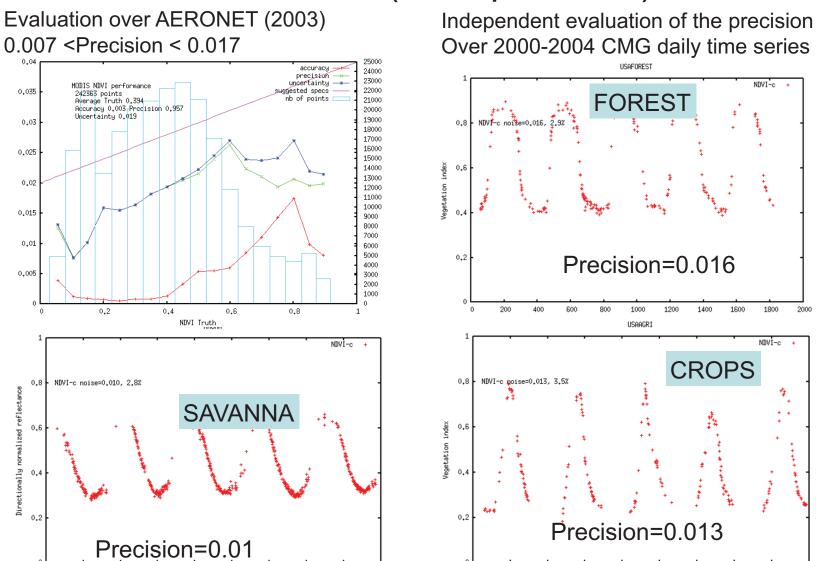


Verification over AERONET sites

http://mod09val.ltdri.org/cgi-bin/mod09 c005 public allsites onecollection.cgi

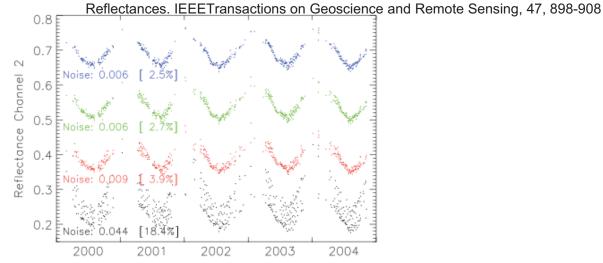

Comprehensive analysis of performance using the AERONET network 2000-2007 Results (25542 cases)

Version 2 AERONET (i.e. with Background correction and spheroid)

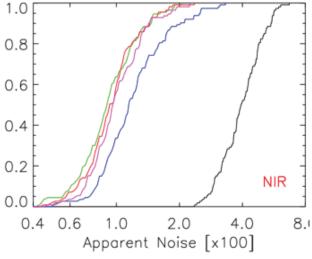


Toward a quantitative assessment of performances (APU)

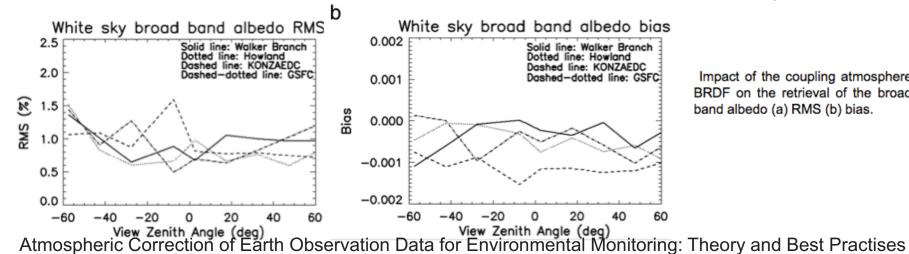
MODIS used as a reference for past and future land data record (example NDVI)


Atmospheric Correction of Earth Observation Data for Environmental Monitoring: Theory and Best Practises

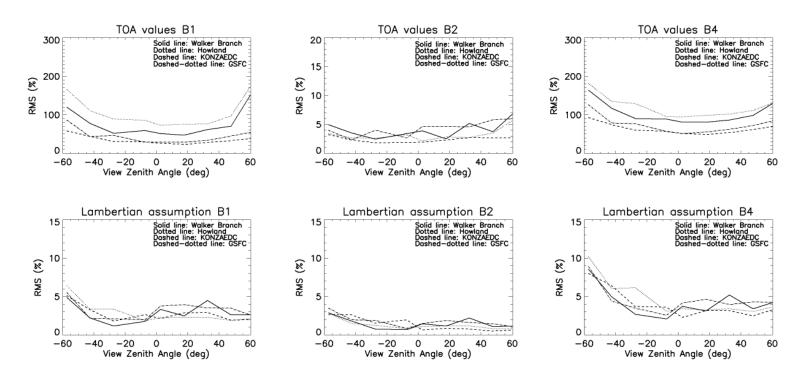
а


BRDF/Atmosphere coupling correction

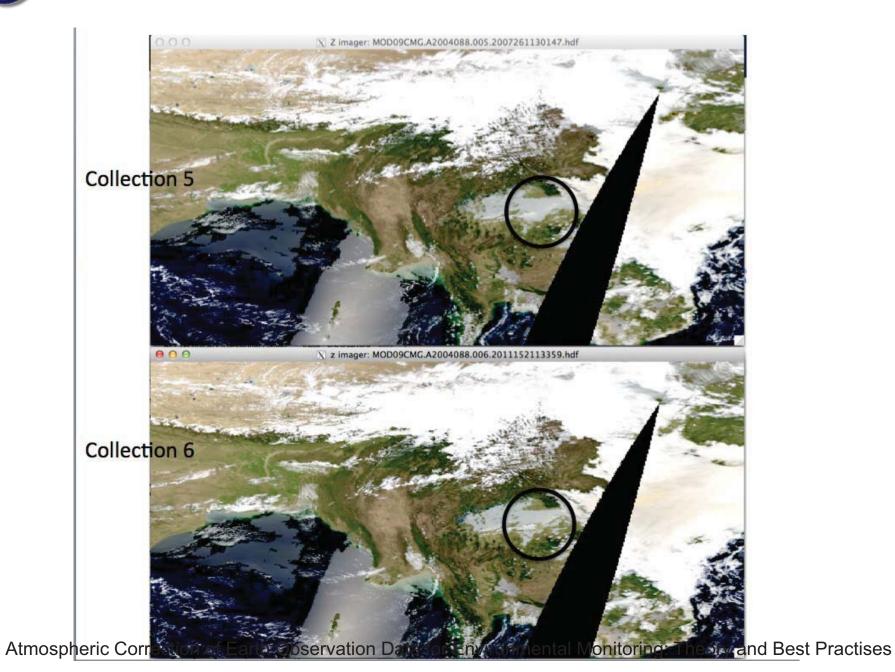
Franch B., Vermote E., Sobrino J.A. and Fédèle E. (2013). Analysis of directional effects on atmospheric correction, Remote Sensing of Envi 128, 276-288.


Breon, F.M., & Vermote, E. (2012). Correction of MODIS surface reflectance time series for BRDF effects. Remote Sensing of Environment, Vermote, E., Justice, C.O., & Breon, F.M. (2009). Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional

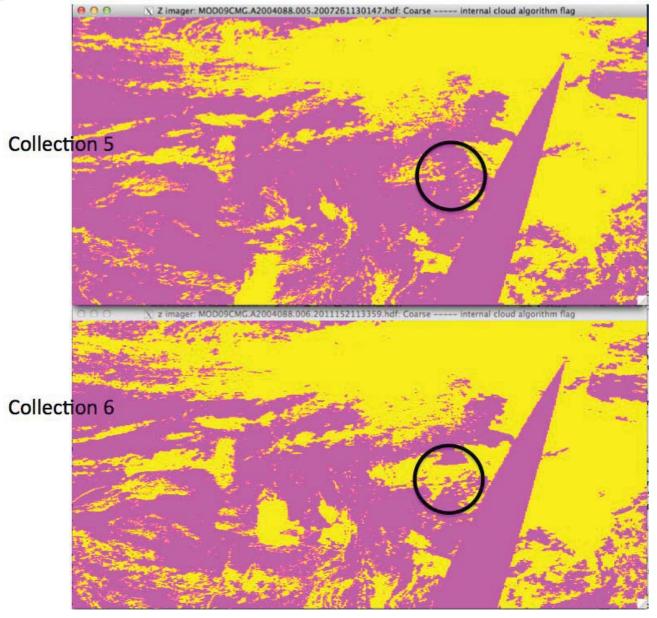
Time series of surface reflectance derived from Terra/MODIS reflectances at Kaoma (Zambia) for different level of processing.


Cumulative histogram of the apparent noise of the reflectance (Black) and corrected reflectance (blue average model, green red and magenta classical and 2009 approach) time series in MODIS Channel 2 (from 2012 paper). Derived from 100 sites over one year.

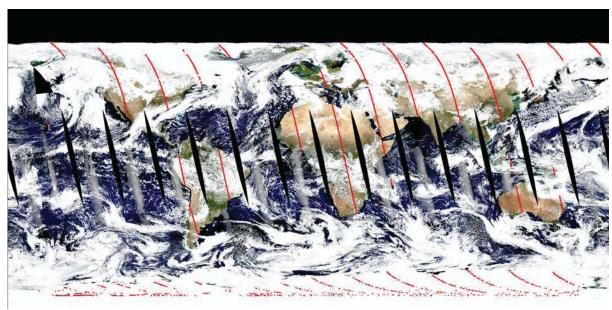
Impact of the coupling atmosphere BRDF on the retrieval of the broad band albedo (a) RMS (b) bias.


BRDF/Atmosphere coupling correction

Error due to atmospheric effect in MODIS band 1,2 and 4, (bottom) residual error for the same bands due to the Lambertian assumption in the MODIS surface reflectance collection 5 algorithm [Franch et al., 2013]. It should be noted than in the visible the residual error is about 20 times lower than the original perturbation. This work confirmed the magnitude of this effect (5%-10%) as previously derived results using a variety of sources of surface BRDF and radiative transfer approach [Lee and Kaufman, 1986] [Hu et al., 1999; Lyapustin, 1999] as the recent work of [Wang et al., 2010] seemed to indicate much higher effect (15%-40%).



Internal cloud mask improvement


Internal cloud mask improvement

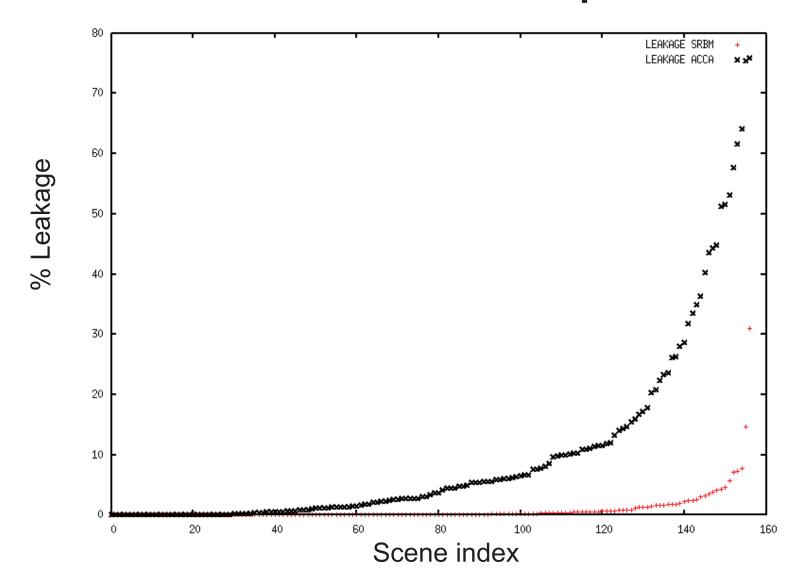
Collection 5 internal Cloud mask flag (yellow) let a substantial amount of cloud go through (leakage)

Monitoring of product quality (exclusion conditions cloud mask)

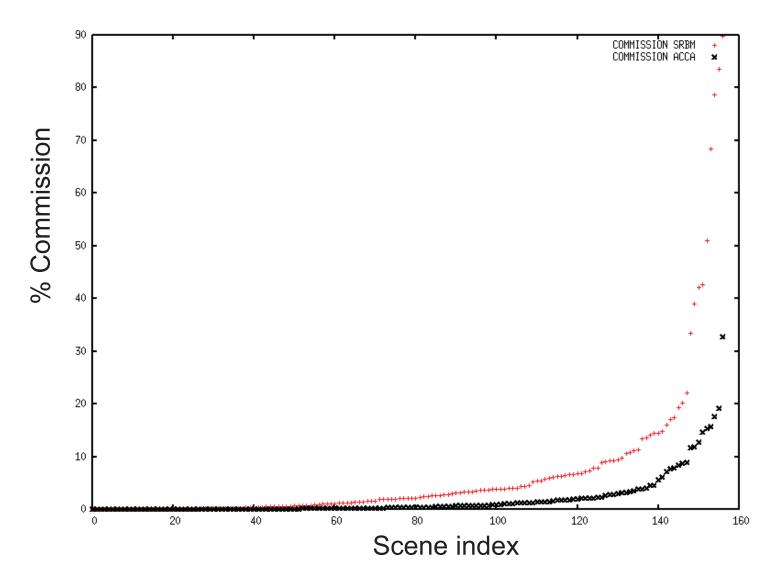
Aqua true color surface reflectance image for March, 2, 2007. The CALIOP track is shown in red, only matchups over Land are selected.

	MOD35	MOD35	ICM	ICM	ICM	ICM
	Global	60S-60N	Global	60S-60N	Global	Global
					Case1	Case2
Leakage	6.1%	5.6%	5.8%	4.0%	2.6%	2.1%
False Det.	6.1%	6.4%	6.5%	6.7%	6.5%	6.5%

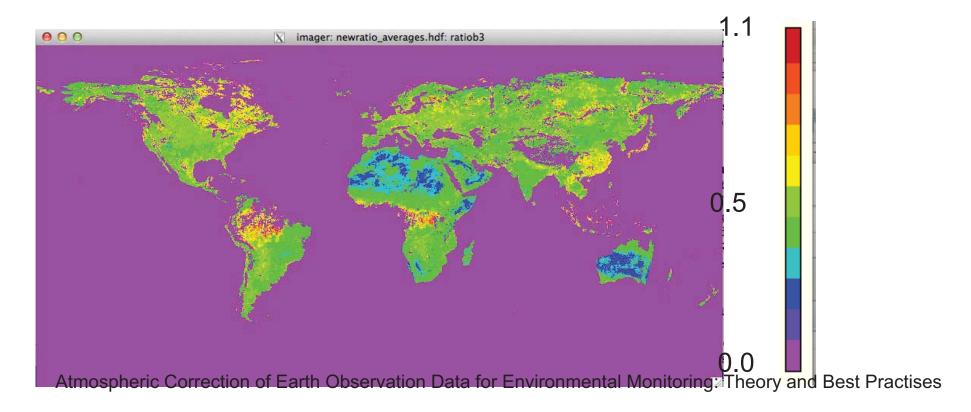
Analysis of the performance of MOD35 and ICM under various scenarios. Global (Global), excluding latitude higher than 60N or lower than 60S (60S-60N), excluding cloud incorrectly detected as snow (ICM Global Case1) using the ICM snow quality flag, and finally further excluding ICM cloud adjacent quality flag (ICM Global Case2).

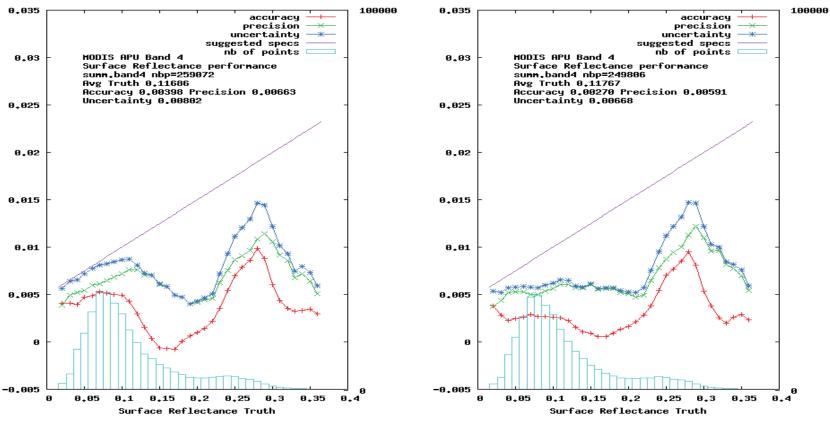


Validation of cloud/cloud shadow mask on TM data

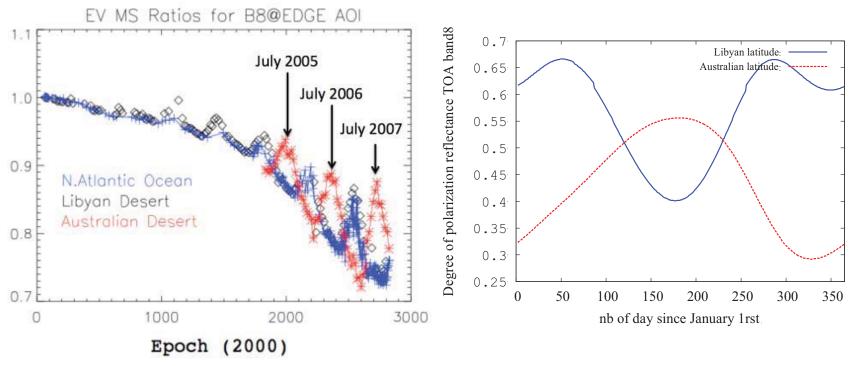

- Evaluated for 157 Landsat scenes covering a variety of conditions
- Cloud mask comparison
 - ACCA cloud mask
 - SRBM (Surface reflectance Based Mask): Internal cloud mask based on SR product
 - VCM :Truth Validation Cloud Mask (operator made)
- Metrics for cloud detection versus VCM
 - Rate of omission of cloud %: Leakage
 - Rate of commission of cloud %: False detection
- As far as leakage the internal cloud mask, SRBM, is superior to ACCA/ In term of commission ACCA has better performance than SRBM
- LEDAPS SRB shadow algorithm needs improvements

LEAKAGE RATE comparison

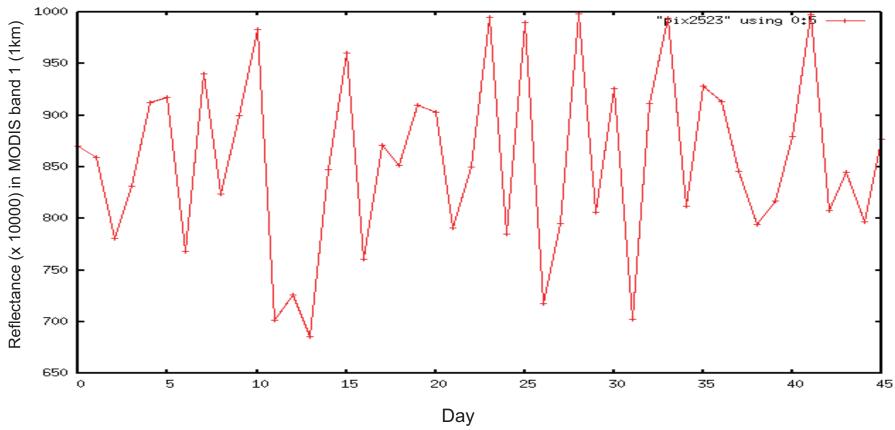

COMMISSION RATE Comparison


Improving the aerosol retrieval

- (a) Revised the aerosol model using the latest result of the AERONET database, in particular the accounting for particles non-sphericity and the version 2, level 2 particles properties inversions. A new model for dust is under development.
- (b) Started Improving the ratio used in the visible and swir used in the inversion. Currently a default value is used globally, that value is adequate for vegetated area but not on sparsely vegetated or desert area, We used the MISR data and the CMG product to produce a spatially explicit CMG climatology of these ratios and will use those in the aerosol inversion.


Improving the aerosol retrieval

The performance of the reflectance product for band 4 (550nm) for the fixed ratio (left side) versus spatially variable (right side), although modest the improvement in the performance of the product is clearly visible especially in the lower range of reflectance's that correspond to vegetation/forest.


Accounting for instrument polarization

Evidence of different polarization sensitivity sensitivities of the two mirror sides of MODIS Terra, (left side, *courtesy of MODIS Calibration Science Team*) the oscillations of the mirror side ratio over Libya/N. Atlantic Ocean and Australia that are offset by ~6 months in phase. This is well explained by the expected degree of polarization (right side, simulated using 6S [Kotchenova and Vermote, 2007; Kotchenova et al., 2006]) that shows the same phase offset between the Atlantic/Libya (blue) and Australia latitudes (red).

Understanding spatial characteristics of different sensors

Using Landsat 30m data we simulate the reflectance observed in the MODIS 1km footprint over 45 days. If MODIS was a perfect 1km footprint always assigned to the same location, the data will show a constant reflectance, however here due to pixel size growth with view zenith angle and other gridding artifacts, we see a substantial variation of the reflectance (+/-0.015) (The site is in BONDVILLE, IL)