Ballistic Entries at Venus

A study sponsored by the NASA ISPT/EVT Program

Dinesh Prabhu,* Gary Allen,* Helen Hwang, ${ }^{\text {§ }}$ Mina Cappuccio@ NASA Ames Research Center, Moffett Field, CA
Thomas Spilker*
Solar System Science \& Exploration, Monrovia, CA
Robert Moses\%
NASA Langley Research Center, Hampton, VA
\$Principal Investigator
@Project Manager
\%Systems Engineer
*Mission and Science Consultant/Advisor \#Staff Support Contractor, ERC, Inc.

Prologue

- Current Venus mission concepts have:
- Entry masses much larger (>3-5x) compared to Pioneer-Venus Large Probe
- Plans to land as much as 1000 kg on the surface of the planet
- An instrument suite (inside the lander) for atmospheric and surface science
- We would like to explore the Venus entry (ballistic) trajectory space:
- With a 45° sphere-cone rigid aeroshell
- Legacy shape from Pioneer Venus
- Used in proposed mission concepts
- For a range of entry velocities, entry flight path angles, and mass-diameter combinations
- The experience base for Venus entries:
- Pioneer Venus Multiprobe Mission (USA)
- Numerous Venera missions (Russia)

Our entry trajectory space exploration is from a thermal protection perspective

Thermal Protection 101

- We know
- Peak heat flux helps select appropriate thermal protection material
- Total heat load \& bondline temperature constraint sizes the select material
- Total heat load depends on how steep or shallow the entry is
- Steep entries: high heat fluxes, pressure \& deceleration loads, but low heat loads
- Shallow entries: low heat fluxes, pressure \& deceleration loads, but higher heat load than steep entries
- Heat flux might be lower but the heat pulse is wider (in time)
- High heat loads require thicker thermal protection (mass inefficiency) to keep the bondline temperature below assumed constraint value
- Material's ablative efficiency is low at low heat flux

> Exploration of entry trajectory space is: To find how steep one can enter without violating a deceleration load constraint (Science imposed) and
> To find how shallow one can enter without compromising ablative efficiency (Material imposed)

Approaches \& Inquiry

- The "standard" approach with "trades"
- 3-DoF trajectory analysis for a given entry mass and capsule size
- Entry flight path angle is the primary variable of interest
- This "standard" approach assumes thermal protection materials
- Are readily available (or can be manufactured)
- Can be tested and qualified for flight
- Materials development is somewhat disconnected from early trade studies
- Can we add notional materials performance parameters of pressure (and heat flux) to the "standard" approach ?
- Operational pressure limits (not always known) vary from material to material
- Materials are usually not subject to comprehensive tests to establish "failure" boundaries and/or mechanisms

45° Sphere-cone Rigid Aeroshell - A Legacy Config

 Basis for Present StudyEntry Systems and Technology Division

- Entry type: Prograde
- Heading angle $\left(\psi_{E}\right)$: Not particularly relevant at Venus
- Entry velocity $\left(V_{E}\right)-10.8,11.2$, and $11.6 \mathrm{~km} / \mathrm{s}$ (inertial)
- Interplanetary trajectories assumed available
- Ballistic coefficient $\left(\beta_{E}\right)$ - Mass and Diameter combinations
- Attempt to cover VME, VCM, VITaL-class entry capsules
- Entry flight path angle $\left(\gamma_{E}\right)$ - Between skip out and -30°
- Steep entries
- Best for extracting performance from ablating materials
- Shallow entries
- Ablative materials are less mass efficient
- Increased sensitivity of heat shield mass to entry flight path angle

Entry Trajectory Space Ballistic Coefficient (β_{E})

Ballistic coefficients, $\mathbf{k g} / \mathbf{m}^{2}$
Table entries assume $C_{D}=1.05$ for a 45° sphere-

Pioneer-Venus Large Probe

- Entry mass $=316.5 \mathrm{~kg}$
- Entry velocity $=11.54$ km/s
- Entry flight path angle $=-32.4^{\circ}$
- Probe type $=45^{\circ}$ sphere-cone
- Probe diameter = 1.42 m
- Entry BC = 190 kg/m²
- Heatshield material = FDCP

Diameter, m

	Diameter, m		
Mass, kg	$\mathbf{2 . 5}$	3.5	$\mathbf{4 . 5}$
$\mathbf{1 5 0 0}$	291	148	90
$\mathbf{1 7 5 0}$	340	173	105
$\mathbf{2 0 0 0}$	388	198	120
$\mathbf{2 2 5 0}$	437	223	135
$\mathbf{2 5 0 0}$	485	247	150
$\mathbf{2 7 5 0}$	534	272	165

2000 kg case is the basis of discussion
β_{E} of $198 \mathrm{~kg} / \mathrm{m}^{2}$ similar to Pioneer Venus probes \& current mission concepts Some mass and diameter combinations are perhaps not physically realizable

Process

- VenusGRAM model for atmosphere with entry interface at 200 km
- 3-DoF trajectories constructed using TRAJ (in-house tool)
- Simulations terminated at Mach 0.8 (parachute deployment)
- For each $V_{E}-\beta_{E}$ combination generate flight trajectories for range of γ_{E}
- For each flight trajectory, record:
- Peak deceleration load
- Peak pressure load (stag. point, correlation)
- Peak heat flux (stag. point, correlations for conv. \& rad. heating)
- Total heat load (time-integrated stag. point total heat flux)
- No margins for uncertainties in environments
- The process is independent of thermal protection material
- We can choose a material with a calibrated thermal response model and size it for the estimated total heat loads

From the databank of trajectories, determine steep \& shallow entry flight path angle limits based on performance constraints

Constraints

Deceleration load: Examine sensitivity to $\mathbf{1 0 0} \mathrm{g}$ and $\mathbf{2 0 0} \mathrm{g}$

- Deceleration load limit determines steepest entry angle for a $V_{\mathrm{E}}-\beta_{\mathrm{E}}$ combination

Pressure load: Examine sensitivity to 5 bar and 10 bar

- Pressure load limit also determines steepest entry angle for a $V_{E}-\beta_{E}$ combination
- Are g load and pressure load limits mutually exclusive?

Total heat load: Determine "knee in the curve"

- "Knee in the curve" of the heat load distribution is point of max. curvature
- Tie "knee in the curve" idea to "mass inefficiency" of TPS
- Heat load limit determines shallowest entry angle for a $V_{E}-\beta_{E}$ combination

The $\mathbf{2 0 0} \mathbf{g}$ deceleration load limit assumes centrifuges are available The 10 bar pressure limit is from Pioneer Venus Large \& Day Probes There is subjectivity in choice of constraints and limit values

Deceleration Loads
 2000 kg Entry Mass - β_{E} varying, V_{E} varying

Entry Systems and Technology Division

- Each point on a curve is a 3-DoF trajectory
- For fixed V_{E}, pk. dec. load decreases with increasing β_{E}
- For fixed β_{E}, pk. dec. load increases with increasing V_{E}
- For $\gamma_{E}>-10^{\circ}$, pk. dec. load insensitive to V_{E} and β_{E}

The highest V_{E} bounds peak deceleration loads for each β_{E} Sufficient to look at $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ case

Deceleration Loads - 100 \& 200 g Limits 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Pressure Loads

2000 kg Entry Mass - β_{E} varying, V_{E} varying

Entry Systems and Technology Division

- Each point on a curve is a 3-DoF trajectory
- For fixed V_{E}, pk. pres. load increases with increasing β_{E}
- For fixed β_{E}, pk. pres. load increases with increasing V_{E}
- For $\gamma_{E}>\mathbf{- 1 0} 0^{\circ}$, pk. pres. load insensitive to V_{E} \& β_{E}

The highest V_{E} bounds peak pressure loads for each β_{E} Sufficient to look at $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ case

Pressure Loads - 5 \& 10 bar limits 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Are the deceleration load and pressure load constraints mutually exclusive? The answer is, "Yes. For some ballistic coefficients, pressure is the key"

Pressure Load Limit vs Deceleration Load Limit 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

Entry Systems and Technology Division
4 Cases to examine

The possibilities represent "what if" scenarios with combinations of assumed peak deceleration and pressure load limits

Case 1: 200 g and 10 bar Limits 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Case 1: 200 g and 10 bar Limits 2000 kg Entry Mass, $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ (bounding case)

2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

For 2.5 m dia., steepest entry is determined by the pressure limit (10 bar) For 3.5 m and 4.5 dia, steepest entry is determined by g load limit

Peak Heat Flux

2000 kg Entry Mass - β_{E} varying, V_{E} varying

Entry Systems and Technology Division

- Each point on a curve is a 3-DoF trajectory
- For fixed V_{E}, pk. heat flux increases with increasing β_{E}
- For fixed β_{E}, pk. heat flux increases with increasing V_{E}

The highest V_{E} bounds peak heat fluxes for each β_{E} Sufficient to look at $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ case

Peak Heat Flux
 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

2.5 m dia. case has high peak heat flux and pressure at steepest entry Heat fluxes greater than $2.5 \mathrm{~kW} / \mathrm{cm}^{2}$ are hard to achieve in current arc jets

Total Heat Loads

2000 kg Entry Mass - β_{E} varying, V_{E} varying
Entry Systems and Technology Division

- Each point on a curve is a 3-DoF trajectory
- For fixed V_{E}, total heat load increases with increasing β_{E}
- For fixed β_{E}, total heat load increases with increasing V_{E}

The highest V_{E} bounds peak heat fluxes for each β_{E} Sufficient to look at $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ case Determine "max. curvature" of total heat load distributions

Total Heat Loads
 2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Entry angles correspond to max. curvature in heat load curves for highest β_{E} These entry angles close the entry flight path angle interval at the shallow end

Putting it All Together

2000 kg Entry Mass, $V_{E}=11.6$ km/s, 200g, 10 bar
Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Large entry flight path angle window across all three ballistic coefficients

Summary and Some Findings
 Observations are strictly for a 45° sphere-cone Rigid Aeroshell

Entry Systems and Technology Division

- Sufficient to examine just ballistic coefficient-entry angle space ($\beta_{E}-\gamma_{E}$ space) for the highest entry velocity
- Hypothesized that pressure load can be constraining
- The actual limit value varies from material to material
- Two values - 5 bar and 10 bar - used to determine impact on steep entries
- Entry flight path angle windows established for 4 combinations of deceleration load and pressure load limits
- Highest ballistic coefficient ($388 \mathrm{~kg} / \mathrm{m}^{2}$) clearly limited by pressure load limit
- Suggests existence of a critical ballistic coefficient above which pressure becomes the driver in the steep entry limit

Other Lines of Inquiry

- Is there a heatflux threshold that could be used as constraint?
- Below the threshold the material's ablative "efficiency" drops
- Could use this constraint to determine shallowest entry angle?
- How about arc jet test envelopes?
- No single arc jet can provide complete coverage of heating along a trajectory
- Might have to resort to piecewise testing of material in different facilities
- Max. test pressure could be used to determine steepest entry angle?
- Despite systematization, the procedure misses
- Acreage environments - required for shear (an important component)
- Structural material and sizing instead of a one-size-fits-all approach used
- High fidelity flow field analyses will be necessary to address these issues

Epilogue

- Retain rigid aeroshell idea, but change L/D (angle of attack or geometry)
- This includes Aerocapture
- Retain rigid aeroshell idea, but change thermal protection material
- Can the results of this study help guide the development of new materials?
- Improved mass efficiency through tailoring of material thermal properties
- Move away from rigid aeroshell idea and use deployable decelerator

Last two ideas are currently funded by the NASA Space Technology Program

Acknowledgments

- Support of the ISPT/EVT program is gratefully acknowledged
- Gary Allen and Dinesh Prabhu were supported by Contract NNA10DE12C to ERC, Inc.
- We thank Raj Venkatapathy, the late Bernie Laub, Joseph Garcia, Kathy McGuire, Loc Huynh, John Karcz, Kristina Skokova for technical discussions
- Thanks are also due Don Ellerby, Paul Wercinski, Brandon Smith, David Saunders, and Raj Venkatapathy for thorough and thoughtful reviews of the manuscript

Backup

Case 2: 100 g and 10 bar Limits

 2000 kg Entry Mass, $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ (bounding case)Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Case 2: 100 g and 10 bar Limits 2000 kg Entry Mass, $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

[^0]
Case 3: 100 g and 5 bar

2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Case 3: 100 g and 5 bar Limits

2000 kg Entry Mass, $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Results are similar to those of Case 1
For 2.5 m dia., steepest entry is determined by the pressure limit (5 bar)
For 3.5 m and 4.5 dia, steepest entry is determined by g load limit

Case 4: 200 g and 5 bar Limits

2000 kg Entry Mass, $V_{E}=11.6$ km/s (bounding case)

2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Case 4: 200 g and 5 bar Limits

2000 kg Entry Mass, $V_{E}=11.6 \mathrm{~km} / \mathrm{s}$ (bounding case)

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

For 2.5 m and 3.5 dia., steepest entry is determined by the pressure limit (10 bar) For 4.5 m dia, steepest entry is still determined by \mathbf{g} load limit

Putting it All Together, II
 2000 kg Entry Mass, $V_{E}=11.6$ km/s, $100 \mathrm{~g}, 10$ bar

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Slightly narrower entry flight path angle window
Window determined only by g load limit and heat load curvature

Putting it All Together, III

2000 kg Entry Mass, $V_{E}=11.6$ km/s, $100 \mathrm{~g}, 5$ bar
Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Very narrow ($<0.5^{\circ}$) entry flight path angle window for highest ballistic coeff. Narrowing of window is due to pressure load limit

Putting it All Together, IV
 2000 kg Entry Mass, $V_{E}=11.6$ km/s, 200 g, 5 bar

Entry Systems and Technology Division
2.5 m dia: $\beta_{\mathrm{E}}=388 \mathrm{~kg} / \mathrm{m}^{2}, 3.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=198 \mathrm{~kg} / \mathrm{m}^{2}, 4.5 \mathrm{~m}$ dia: $\beta_{\mathrm{E}}=120 \mathrm{~kg} / \mathrm{m}^{2}$

Pressure load limit still limits entry flight path angle window for highest ballistic coefficient

[^0]: Steepest entry angle is determined solely by g load limit Along the lines of "standard" analysis, where pressure load limit is not factored in

