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The Orion GNC entry team is analyzing the performance of Orion flight software in part 

by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance 

is checked for conformance with flight requirements, expressed as performance constraints. 

Flight requirements include guidance (e.g., touchdown distance from target) and control 

(e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte 

Carlo simulations disperse hundreds of simulation input variables, for everything from mass 

properties to date of launch. 

We describe in this paper a sensitivity analysis tool ("Critical Factors Tool" or CFT) 

developed to find the input variables or pairs of variables which by themselves significantly 

influence satisfaction of requirements or significantly affect key performance metrics (e.g., 

touchdown distance from target). Knowing these factors can inform robustness analysis and 

where engineering resources are most needed, and could even affect operations. The 

contributions of this paper include the introduction of novel sensitivity measures, such as 

estimating success probability, and a technique for determining whether pairs of factors are 

interacting dependently or independently.   

The tool found that input variables such as moments, mass, thrust dispersions, and date of 

launch are significant factors for success of various requirements. Examples are shown in 

this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool 

found. 

Nomenclature 

Cm = Aerodynamic coefficient of pitching moment 

Cn = Aerodynamic coefficient of yawing moment 

CD = Aerodynamic coefficient of drag 

CL = Aerodynamic coefficient of lift 

dCm/dq = Derivative of aerodynamic coefficient of pitching moment with respect to pitch rate 
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CFT =  Critical Factors Tool 

EFT = Exploration Flight Test 

FBC = Forward Bay Cover (covers the parachutes) 

GNC =  Guidance, Navigation, and Control 

L/D =  Aerodynamic lift over drag ratio 

KDE = Kernel Density Estimation 

MSE = Mean Square Error 

RBF = Radial Basis Function 

RCS =  Reaction Control System 

Ycg = Y-axis center of gravity offset. The X-axis is the axial centerline of the vehicle. 

Zcg = Z-axis center of gravity offset. 

 

I. Introduction 

 

HE  performance of Orion flight software, especially its GNC software, is being analyzed in part by running 

Monte Carlo simulations of Orion spacecraft flights. The simulated performance is checked for conformance 

with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g., 

touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load 

constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass 

properties to date of launch (the latter as proxy for weather). 

We describe in this paper a sensitivity analysis tool ("Critical Factors Tool" or CFT) developed to find the input 

variables or pairs of variables which by themselves significantly influence satisfaction of requirements or 

significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can 

inform robustness analysis, can inform where engineering resources are most needed, and could even affect 

operations. The tool produces several measures of the relationship of input variables to both satisfaction of 

requirements and the key performance metrics. The tool can then sort the input variables by these measures and thus  

produce a ranking of the independent variables according to their influence on the various requirements and key 

performance metrics. This paper also describes in Section V preliminary experiments with some regression methods 

for determining driving factors; otherwise the methods used are rather unsophisticated, relying on deviation of 

moving averages from the overall mean. 

The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success 

probability, and a technique for determining whether pairs of factors are interacting dependently or independently.  

The tool found that input variables such as moments, mass, thrust dispersions, and date of launch are significant 

factors for success of various requirements. Section VI discusses the main driving factors that were found by these 

techniques for Exploration Flight Test 1 (EFT-1) and their physical understanding. Sections III and IV present the 

kinds of analysis that the tool performs and will explain each of the figures it generates and how to interpret them. 

We now discuss related work. 

 

 

 

 

II. Related Work 

Sensitivity analysis is used across disciplines wherever models are used, from economics to epidemiology to 

aerospace. The goal is to find input factors that significantly drive the output of a system. Factor Mapping
1
 finds 

input factors that drive the output of the system into specified areas, for example, where requirements are violated. 

Monte Carlo Filtering
1
 is a general approach to factor mapping where Monte Carlo simulations are performed and 

the sets of inputs that drive the output into the specified areas are compared with each other. One suggested 

sensitivity analysis measure
1
 is the expected variance of an output conditioned on knowing the value of an input 

variable. If knowing the value of the variable reduces the expected variance, then the factor can be considered 

influential. To efficiently evaluate the conditional variance, special sets of input test vectors are constructed.
1
 

However, in the Orion setting, we want to make use of  the same randomized Monte Carlo input data sets used for 

GNC analysis. There is a tool set for sensitivity analysis called SimLab
2
 available from the Joint Research Centre of 

the European Commission at http://ipsc.jrc.ec.europa.eu/?id=756; that site has links to other routines as well. A 

T
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Figure 1. Success/Failure Plots. The X-

coordinate is the value of the  input 

variable. The 1
st
 and 2

nd
  plots are scatter 

plots where the point is colored green if 

the run satisfied a requirement about 

touchdown orientation and red if not, and 

the Y-axis is random. The 3rd plot shows 

the estimated probability density of all 

inputs (blue), successful inputs, and failure 

inputs; the 4
th
 plot is a histogram. The 5th 

plot shows the success probability 

confidence intervals as well as a line at the 

overall mean success probability. A 

measure of sensitivity is the mean absolute 

deviation of this line from the success 

probability confidence intervals. The 6
th
 

plot shows the cumulative probability 

distributions, where the two-sample 

Kolmogorov-Smirnov test compares 

against the maximum  difference 

(indicated by the black arrow). 

 

couple of the techniques we use appear to be implemented in the 

tool set (Smirnov two-sample
1
 and main effect analysis) and future 

work could experiment with the other tools available there. 

 Sensitivity analysis has been used in aerospace contexts. The 

analysis of variance mentioned above was used in an aerospace 

design context in Ref. 3. Previous work
4
 on sensitivity analysis in 

an Orion context used the “treatment” learner TAR3
5,6
 to find 

critical factors. TAR3 finds n-dimensional boxes in the input 

parameter space in which the desired constraint is particularly 

success or failure prone. CFT uses TAR3 as well, mostly to confirm 

the results of CFT’s other techniques. Related work
7
 to Ref. 4 also 

used a support vector machine to find hyperplanes in the input 

space that separate successful from failed runs. Other work
8
 in the 

area of aerospace sensitivity analysis compared estimates of the 

success and failure probability densities versus an input variable, 

estimated using Kernel Density Estimation (KDE), to find single 

influential factors. CFT uses KDE as well (the MATLAB “kde” 

script
9
 at 

http://www.mathworks.com/matlabcentral/fileexchange/14034). 

The KDE method is akin to a method for Monte Carlo filtering that 

computes the maximum absolute deviation of the success 

cumulative probability distribution from the failure cumulative 

probability distribution.
1
 This enables application of the two-sample 

Kolmogorov-Smirnov (two-sided) test
10
 for whether the success 

and failure cumulative probability distributions are statistically 

different. CFT includes this as well, though we found it is easier to 

interpret visually the curves for probability densities and success 

probability than the curves for cumulative probability distribution. 

The KDE work referenced above
8
 also had techniques for finding 

higher-dimensional relationships. It used k-nearest neighbors to 

color, based on the number of nearby successes and failures, a grid 

versus a pair of factors and then searched for pairs of factors that 

induced high-contrast regions of success/failure. That work can 

even find higher than 2-d relationships because the set of factors is 

expanded to include composite variables, such as the ratio or 

difference of independent input variables.  Instead of k-nearest 

neighbors, CFT uses the mean absolute deviation, as described in 

the next section, but does not consider composite variables, whose 

number can grow quadratically with the number of input variables. 

 

III. Measures of Sensitivity 

Each Monte Carlo sample run has recorded with it the success 

or failure of flight requirements and the values of key performance 

metrics. As the GNC system matured, the simulations produced 

fewer requirements failures. To have enough failure data to find 

input/output success probability sensitivities, the requirements were 

made more stringent, by strengthening them so that about 10% to 

30% of the sample runs failed the more stringent constraint.The 

assumption is that a trend to failure of the more stringent constraint 

will carry over to the actual requirement failing. This is not always 

the case; for an example, see the last paragraph of Section VI and 

Fig. 6. 

The one-dimensional sensitivity measures include: 1) the TAR3 

treatment learner’s measure of “lift”; 2) the Pearson product-
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moment correlation coefficient; 3) the average absolute deviation of the success probability density from the failure 

probability density; 4) the mean absolute deviation of the success probability versus an input variable from the 

overall mean success probability; 5) the maximum absolute difference between the success and failure cumulative 

probability distributions (Smirnov); and 6) the mean absolute deviation of the moving average of a key performance 

metric from its overall mean. The latter is a measure of what has been referred to
11
 as the main effect, E(Y | Xi = xi) – 

E(Y); here E(Y | Xi = xi) is estimated by the moving average. All but the first two of the above measures are “model-

free” in that they do not measure goodness of fit to some model, such as an interval or rectangle or linear 

relationship. On the other hand, discussion of application of regression methods is in Section V. 

As mentioned above, one of the tools that CFT employs is TAR3, a "treatment” learner. It finds n-dimensional 

boxes (in the one-dimensional case, intervals; in the two-dimensional case, rectangles) in the input variable space 

that are particularly success or failure prone, success meaning relative to meeting the specified flight constraint. 

TAR3 has its own measure, called "lift", which is related to how success or failure prone the entire interval is 

relative to the overall success/failure rate.  

We also measure the Pearson product-moment coefficient of correlation of each input variable with success or 

failure, and the coefficient with each key metric. This coefficient measures the strength of a linear relationship, but 

can indicate no correlation when in fact there is a U-shaped input/output relationship. It also measures the strength 

of the linear relationship as opposed to the slope of the relationship. 

As mentioned above, the probability densities of the success runs and failure runs as a function of each 

independent variable are estimated using Kernel Density Estimation and compared; if significantly different, the 

single input variable has an influence on success. The KDE measure appears to work well no matter how the input 

variable was dispersed (e.g., from a Gaussian or uniform distribution). An example is shown in Fig 1. The fact that 

the failure density (in red) is offset to the right of the success density (in green) indicates that higher values of the 

input variable lead to more failures. 

Our new plot shows the success probability of a run satisfying a requirement versus an independent variable (see 

second to last plot in Fig. 1). This probability can be computed from the success and overall probability density 

estimates derived using KDE by dividing the success density by the overall density and then multiplying by the 

overall success probability (for a derivation, see Appendix A). It can also be computed using a moving average by 

moving a window over the characteristic function that is 1 for success and 0 for failure. Each error bar that is plotted 

represents a confidence interval around the estimated probability of success, based on how many samples were in 

the window. It is evident that, at the extreme ends where there are few runs, the confidence interval is large. The 

confidence interval helps in deciding whether a plot is really showing an effect or one that could be explained by 

statistical variation. The intuition for calculating the confidence interval 

is: suppose there are 100 runs in the window, and 80 are successes, 

leading to an estimate of 80% probability of success. If that really is the 

success probability, and if we have a coin that has 80% probability of 

coming up heads, and we flipped it 100 times, what is the range of 

number of heads we would come up with 95% of the time (for a 95% 

confidence interval)? This is a binomial statistics problem. A frequentist 

approach to finding this confidence interval
12
 is to approximate

12
 the 

binomial distribution as a Gaussian distribution with mean p and 

standard deviation � � ��� �⁄  where the number of samples n in the window is the number of successes plus the 

number of failures, p is #successes/n, and q = 1-p. The height of the confidence interval is then 

2�norminv(0.975,0,1). The approximation fails, however, when, in the window, there are few samples, or there are 
no failures. 

A Bayesian approach to finding a confidence interval
13
 on the probability computed in a window can be derived 

by assuming the binomial distribution’s conjugate prior, which is the beta distribution, and then updating with the 

number of success and failure samples in the window. The beta distribution is parametrized by two variables alpha 

and beta corresponding to the number of successes and failures. It being a conjugate prior to the binomial 

distribution means that if the prior distribution on the probability is a beta distribution, then the posterior distribution 

after Bayesian update is also a beta distribution. We use a prior beta distribution where alpha_prior = p and 

beta_prior = 1-p, where p is the overall probability of success. This means that in the absence of other evidence , the 

estimated probability will tend towards the overall probability of success. The posterior beta distribution for a 

window has alpha_posterior = alpha_prior + #successes and beta_posterior = beta_prior + #failures, where 

#successes is the number of successes in the window and #failures is the number of failures within the window. The 

95% confidence interval is then derived by the inverse beta distribution function from 

 
Figure 2. Success probability. 
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Figure 3. Key Metric Plots.  The Y-axis is RCS propellant 

consumed, and the X-axis is Cn in the top plot and dCm/dq in the 

bottom plot. The overall mean and the moving average are 

shown in blue; the two outer lines are each two standard 

deviations from the moving average. Runs that violated the 

propellant-consumed constraint are colored red. The magenta 

lines were found by the LASSO  regression discussed in Section 

V. 

 

betainv(0.025,alpha_posterior,beta_posterior) and betainv(0.975,alpha_posterior,beta_posterior). The posterior 

mean mu is alpha_posterior / (alpha_posterior + beta_posterior).  

Given the confidence interval, one sensitivity measure is the interval's mean absolute deviation from the overall 

mean success probability, taking into account the confidence interval. More precisely, at each point, we add the 

distance from the mean success probability to the lower value of the confidence interval when the lower value is 

above the mean success probability and add the distance to the upper value of the confidence interval when the 

interval is below the mean success probability. Another measure is the absolute deviation of the overall mean 

success probability from the success probability weighted by the number of samples in the window used to calculate 

the success probability. This alleviates a problem in tails of normally-distributed variables of not having sufficient 

support to justify that the success probability at that point is different from the mean success probability.  We found 

that, compared with comparing probability 

densities, this success probability method 

is still somewhat confused by Gaussian-

dispersed input variables in that Gaussian-

distributed input variables that weren't 

driving factors would still be ranked 

highly. 

Figure 2 simply maps the success 

probabilities in Fig. 1 to color, where blue 

is the highest probability, down to red and 

then brown for lowest probability. For 

each such color plot, the overall success 

probability is mapped to a light green 

color. If most of the plot is greenish, then 

there is not much variation from the 

overall success rate in that variable. The 

row of colors marked "High" is the color 

mapping for the tops of the confidence 

intervals in the success probability figure, 

and "Low" is for the bottoms of the 

confidence intervals. 

 An example of information gleaned 

from key metrics is in Fig. 3. The X-axis 

of each mark in the top plot is the value for 

that run of Cn and in the bottom plot 

dCm/dq--clearly both were uniformly 

dispersed--and the Y-axis is the amount of 

reaction control system propellant 

consumed by touchdown. The mark is a 

red x if the run did not satisfy the more 

stringent constraint on propellant used. The 

figure shows the overall mean propellant 

used, and a moving average of propellant 

used, calculated using the same windowing 

approach previously described. We have 

used a window width of 10% of the range of the input interval (except at the endpoints), sampled at 26 equally 

spaced locations. Dividing the range into quantiles based on the number of samples and then using the midpoint of 

the quantile as suggested in Ref. 1, pp. 119 might be better for Gaussian-distributed input variables. It is clear that 

increasing dCm/dq leads to on average increased propellant usage, up to the tank capacity. Also computed for each 

sampled point at which the moving average is calculated is the standard deviation of the samples in the window, 

which is plotted as a line above and below the moving average. If the lines for the standard deviation have a 

different slope than the moving average line, then that means that the output dispersion is changing with the value of 

the variable. It is possible for the moving average line to be horizontal with the dispersion varying, though we have 

not come across such a situation in practice. 

Each one-dimensional sensitivity measure imposes a ranking of variables as to influence, and an overall ranking 

is produced by intersecting the top-ranked input variables according to the one-dimensional rankings. The tool 
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produces an HTML document with the rankings and has links to summary plots containing graphs for the KDE, 

success probability confidence intervals, and a key metric plot where the latter shows the overall mean, the moving 

average, and color codes each run as satisfying or not the requirement constraint. At present, the user examines the 

summary plots in order of rank and develops a subjective impression as to the influence of the input variables. 

 

IV. Two-dimensional Analysis 

 

A two-dimensional sensitivity measure is the mean absolute deviation of the success probability (computed 

using a moving square window) from the mean success probability. We used a window whose width was 25% of the 

variable’s range (except at 

the endpoints), sampled by 

dividing the range into 10 

equally spaced intervals. It 

is important, however, to 

discern whether the two 

variables are in fact acting 

independently, in which 

case no new information is 

provided by the 2-d 

success probability map. 

We derive in Appendix B 

a 2-d success probability 

map based on the product 

of the two 1-d success 

probabilities and compare 

this with the actual 2-d 

success probability map; 

this highlights where 

interactions are occurring. 

Figure 4 shows an example 

of 2-d plots for satisfaction 

of an entry stability 

requirement where there 

appears to be little 

interaction between the variables. The Y-axis is Month, and the X-axis is dCm/dq. From the plots in the 1
st
 row, 1

st
 

and 2
nd
 columns (the 1

st
 row, 1

st
 column is oriented vertically because it is for the Y-coordinate), it is clear that both 

variables have a major effect on whether the requirement was satisfied. The top right plot shows a green “+” where 

the run is successful and has a Month Y-coordinate and dCm/dq X-coordinate. The larger red squares in the lower 

right-hand corner of the top right plot indicate that the treatment learner reported that these two variables are 

interesting together because of the failure prone nature of that area. If we map that figure into colors indicating 

probability of success, we get the colored square in the 3
rd
 row, 2

nd
 column labeled “Actual Mu”. However, if we 

look at the 1
st
 row 2

nd
 column scatter plot, we expect the failures to be to the right. If we look at the 1

st
 row, 1

st
 

column scatter plot, we expect the failures to be at the top and bottom, and in fact the failures in the plot on the top 

right are only to the right, top and bottom. One can calculate what the success probability surface would look like if 

the variables were truly independent (see Appendices B and C), and that gives the colored square in the 4
th
 row, 2

nd
 

column labeled “Independent Mu”. It looks about the same as the figure above it, indicating the variables probably 

don't interact much, though there is a slightly higher probability of success in the middle than might be expected if 

the variables were truly independent.  

Figure 5 shows an example where there is a dramatic dependence on a pair of variables of an aerothermal 

requirement on the backshell. The Y-axis is Cm and the X-axis is Zcg. The plot in the 2
nd
 row, 1

st
 column indicates 

that there should be fewer failures near the bottom of the 2-d plot, and the plot in the 3
rd
 row, 1

st
 column indicates 

that not much change should be visible left to right; just a slight  improvement at the left and right ends. The 

“independent mu” plot in the 3
rd
 row 2

nd
 column indicates what would be expected if the variables were truly 

 
Figure 4. 2-d Independence Analysis.  The Y-axis is Month, and the X-axis is 

dCm/dq. The “low” and “high” plots show the bottom and top, respectively, of 

the confidence interval around mu. 
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independent. Instead, the plot in  the 1
st
 row, 1

st
 column and the “Actual” plots show a concentrated diagonal band of 

failures and a cluster in the lower left. 

 

The Pearson chi-square  independence test
10
 for categorical variables (that is, variables that take on discrete 

values) produces a 

measure of whether 

two variables are 

independent.  A 

continuous variable 

can be made 

categorical by 

dividing the 

variable’s range 

into intervals. We 

found that the test 

was very sensitive 

to the granularity 

used to make the 

variables 

categorical (i.e., 

how many intervals 

into which the 

range was divided) 

so the measure 

turned out to be not 

very indicative of 

interesting 2-d 

relationships. 

 

 

 

 

 

 

 

V. Regression Methods 

 

Finally, a variety of regression methods were tested to obtain the best fit to data generated from the Monte Carlo 

simulations. The original motivation was to use the resulting model as a data-driven proxy; i.e., an equivalent 

simulation to the physics-based Monte Carlo method at a greatly reduced computational burden; this is called meta-

modelling in Ref. 1. However, fitting the Monte Carlo data to a model is useful for sensitivity analysis. For example, 

a linear fit would yield the coefficients for the input variables; the coefficient’s magnitude (when normalized
1
) 

indicates the sensitivity of the output to the input variable. To facilitate selection of the best performing regression 

method, the MSE (Mean Square Error) metric was used. Some of the regression methods are parameterized by 

hyperparameters (for example, the number of hidden units in a single layer perceptron). The MSE metric aided 

selection of the hyperparameters of the regression methods in order to optimize the MSE as a function of the 

hyperparameters. One of the regression methods tested was linear ridge regression, in which the associated 

regularization coefficient was used as a hyperparameter to optimize both the MSE and how numerically well-

conditioned the solution is. In statistical learning, a regularization coefficient is added to the measure of error of fit 

to optimize not just the error but other goals as well; for example, the number of non-zero coefficients of a linear fit 

(see LASSO below). 

 
Figure 5. 2-d Independence Analysis.  This is data for an aerothermal constraint. The 

Y-axis is Cm, and the X-axis is Zcg. Note that “Independent mu”, which is what is 

predicted if the variables are independent, does not show the band that is shown in 

Actuals. The top right plot shows reddish squares corresponding to regions where the 

actual success probability is worse than predicted, and in yellow through blue squares 

where the actual success probability is better than predicted. The top middle plot shows 

squares in red for the worse area and squares in green for areas that are better. 
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 Both linear and quadratic regressors were used, 

where the use of  quadratic regressors include the xi
2
 

regressors as well as all �	
2� quadratic pairs of 

parameters, xixj. Other regression methods included 

nonlinear methods such as support vector regression 

(SVR), k-nn (nearest neighbor) regression, and neural 

networks (bnet). The hyperparameters used for these 

methods were, respectively, the kernel width of a 

Gaussian RBF (Radial Basis Function), the number of 

nearest neighbors, and the number of hidden units in a 

single layer perceptron. More details on SVR can be 

found in other work
14
 and details on the other methods 

can be found in Ref. 15 and 16. However, the resulting 

MSE for all of the methods was not small enough to 

use as proxy for the physics-based Monte Carlo 

method, as shown in Table 1 for a total alpha at FBC 

jettison constraint. The normalized mean-square 

error
17
 (NMSE) 

 
is the mean-square error divided by 

the variance of data; this allows for comparing 

regression techniques because it compensates for the difficulty of fitting the data (low variance means the data 

would be easier to fit). Low values of NMSE indicate better fit. 

The main regression method investigated here is a regularized sparse linear regression method known as LASSO 

(Least Absolute Shrinkage and Selection Operator)
18
. Its hyperparameters are already implicitly optimized as part of 

its algorithm. A valuable benefit which can be derived from using lasso regression is that it can be used to find 

influential variables due to the nature of its l1 sparsity  “regularization” penalty. LASSO optimizes the sum of the 

regularization penalty and the measure of the error of the fit. The sparsity penalty penalizes non-zero coefficients 

associated with the linear regression, meaning that “sparse” solutions will be preferred. Due to the nature of the 

inequality constraint associated with the regularization penalty, the solution is achieved by appealing to the use of 

quadratic programming in an iterative fashion, which yields a regularization path of candidate solutions until the 

algorithm runs to completion based upon the imposition of a convergence or termination criterion.  It has been 

shown
19
 that LASSO regression is equivalent to a simple linear correlation analysis, which can be used to select the 

linearly influential variables as well.  

Our findings indicate that preselecting the 

variables to fit based on a linear correlation 

analysis via the Pearson product-moment 

correlation coefficient yields reasonable MSE 

performance, when using the regression 

methods shown in Table 1, although it is still 

insufficient for acting as a data-driven proxy to 

provide an equivalent simulation to the physics-

based Monte Carlo method. However, using  

LASSO on the entire variable set rather than the 

ones selected with correlation analysis did not 

cause any substantial degradation in MSE 

performance of LASSO. 

We tested LASSO regression on several 

different performance requirements, specifically 

the total alpha at FBC jettison, RCS propellant 

used, and range to target at touchdown as 

response variables to be predicted as a function 

of the 192 independently dispersed simulation 

input variables. During experimental testing, it was found that running the optimization to completion, and choosing 

the solution at the tail end of the regularization path  included most of the variables, and so was not very useful for 

finding the most influential variables. However, after further experimentation it was found that cutting off the 

regularization path, based heuristically upon a sufficiency requirement associated with a reasonable approximation 

Regression 

Method 

1 var 2 vars 192 vars 

k-nn 0.13974 0.098609 1.0011 

LASSO 

(only linear 

regressors) 

0.14179 0.098783 0.10426 (183 

variables 

selected) 

bnet 0.13992 0.096983 0.13469 

SVR 0.13984 0.097295 1.0008 

Ridge (only 

linear 

regressors) 

0.14151 0.098823 0.11789 

Ridge 

(including 

quadratic 

regressors) 

0.13983 0.097329 Did not finish 

in 5 days. 

 

Table 1. Normalized mean-square errors of the 

regressions. 

 

 
Figure 6. LASSO regularization path. 
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to the percentage deviance unexplained, leads to the same variables found by using the other sensitivity measures 

such as linear correlation analysis. Figure 6 illustrates this effect by showing the percentage deviance explained and 

number of coefficients selected by LASSO both as a function of the number of iterations in the regularization path. 

It is clear that there are diminishing returns beyond a heuristically chosen threshold for a sufficient number of 

iterations to run the optimization. A precedent for this observation had also been explained in other machine 

learning work
20
. In fact, the variables found at 20 iterations were those found by our other techniques. LASSO also 

returns the coefficients of the linear fit which can be plotted (see Fig. 3). Note that, in the upper plot, it fits a line to a 

U-shaped relationship. 

 

 

VI. Results 

 

Monte Carlo data was generated using the Advanced NASA Technology Architecture for Exploration Studies 

(ANTARES) simulation for Orion EFT-1 vehicle atmospheric re-entry analysis
21
.  ANTARES is a six degree of 

freedom simulation with high fidelity flight dynamics models integrated with the flight software for Guidance, 

Navigation, and Control functionality.  Monte Carlo sets of 3000 cases that each disperse about 200 independent 

input variables are used in the analysis discussed here. Each variable was dispersed using either a Gaussian or a 

uniform distribution. 

Table 2 summarizes the influences that dispersed input variables have on various requirements. As mentioned at 

the end of Section III, we developed a subjective impression of the influence of variables by looking at plots in the 

order the tool ranked them. Variables with a subjectively strong influence on a requirement are denoted with “++” 

notation, variables with a undeniable but weaker influence are shown with a “+” notation, and variables with a 

 Body-

rate 

Induced 

FBC 

Jettison 

Total 

Alpha 

at FBC 

Jettison 

Touch- 

down 

Heading 

Success 

Range 

to 

Target 

RCS 

Prop 

Used 

Thrus

ter 

Pulse 

Count 

Instances of 

Simultaneous 

Thruster 

Firing 

Bank 

Satur-

ation 

Aero- 

dynamic 

Load 

Backshell

Temper-

ature 

Month ++ O  ++ O ++ O ++ O  ++ O  ++ O ? O 

dCm/dq ++ ? ?  ++  +    

Cm ++ D ++ D  + D    ++ ++ ++ D 

Cn   + U  ++ U ++  U  + ? D ? 

CD        ? ? + D 

Mass          ++ 

Ycg offset      ?   + ? D  

Zcg offset  ++      +  + D ++ D ++ D ++  

Roll jet trail 

off time 

      + D    

Propulsion 

dispersion 

  +  ?  ?    

Roll jet    

aero 

interaction 

uncertainty 

     + D     

Parachute 

twist 

dispersion 

  + D  ? ?      

Initial body 

rates 

      ++ U    

 

Table 2. Variable Influence.  This table shows the influence of variables (rows) on constraints/requirements (columns).  Two 

plus signs (++) means the effect is visually strong; one plus sign (+) means an undeniable but weaker influence; and a question 

mark (?) means the effect could be questioned. U means U-shaped relationship; D means the metric decreases; O for other. 
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possible weak influence are shown with a “?” sign. Thus the tool identifies variables with both a primary influence 

and a secondary influence A U-shaped relationship is denoted with a U; a relationship where increasing the variable 

decreases the metric is denoted by a D; other relationships are designated with an O; and otherwise the metric 

increases with increasing values of the variable. Prior to using the tool, the Orion Entry team was aware which 

variables were the primary influence on compliance with particular requirements, but the tool revealed secondary 

influences that were not known; some are described in the last paragraph of this section. 

 The Critical Factors Tool identified at least one input variable that is an undeniable influence on compliance with 

each evaluated requirement metric.  The physical understanding of the correlation between the input variables and 

the required performance will be discussed by grouping the inputs by functional area. 

 

A. Launch date 

The atmosphere of the Earth is highly dynamic with significant seasonal variations.  The calendar month of the 

launch date is an input to the simulation atmosphere model and the output characteristics of the atmosphere vary  

strongly by month.  Atmospheric density variation and wind variability are seasonal in nature.  The results show that 

month is the only strong driver for landing range to target.  The ability of entry guidance to steer the capsule during 

hypersonic flight is highly sensitive to density shears in the upper atmosphere.  Calendar month is also the only 

strong influence on touchdown heading accuracy.  Orion flight control must point the capsule heading under the 

main chutes in the direction of the wind velocity at touchdown.  Heading control success is highly dependent on 

wind direction variability.  During subsonic flight just prior to parachute deployment, the aerodynamic rate damping 

is dynamically unstable, so the pitch/yaw body rates are susceptible to wind gusts.  When the pitch/yaw body rates 

reach a certain threshold, the Forward Bay Cover (FBC) jettison command is issued early to deploy parachutes 

before the vehicle can flip over.  Since the level of wind gusts are seasonal in nature, the correlation between launch 

month and early FBC jettison probability is understood.  Greater levels of wind and density variation require the 

flight control system to work harder to steer and stabilize the vehicle.  The strong correlation to propellant usage and 

instances of simultaneous thruster firings can be understood in this context.  Aerodynamic load acceleration is 

strongly correlated to how hard guidance is working to keep the vehicle on a trajectory that will reach the landing 

target.  This can also be seen in the weak correlation for the bank saturation metric and it is related to the same 

reason that range to landing target is sensitive to month.  The launch date shows weak correlations to aerothermal 

indicators such as backshell temperature.  They are likely also correlated to the variation in guided entry trajectory. 

B. Aerodynamics 

The Orion capsule atmospheric flight regime encompasses hypersonic aerodynamics to subsonic aerodynamics.  

The aerodynamic coefficients vary by flight regime.  The capability to steer the capsule to a landing target is directly 

dependent on the level of the lift over drag ratio (L/D).  The level of L/D is derived from several factors including 

the aerodynamics coefficients of lift and drag (CL and CD), the aerodynamics pitching moment coefficient (Cm), 

and other factors such as mass properties.  The dispersion uncertainties on the aero coefficients also vary according 

to the difficulty in determining the coefficients from wind tunnel testing or computational fluid dynamics analysis.  

Entry performance will be more sensitive to aero coefficients with larger uncertainties compared to those 

coefficients that are well known. Each aerodynamic simulation input variable directs the placement of the value of 

the corresponding aerodynamic coefficient within its uncertainty bands. Several entry performance metrics show 

strong influence on the pitching moment coefficient Cm.  Cm directly affects the trim angle of attack of the capsule 

which directly affects the L/D ratio.  Guidance steering capability is affected by L/D and indicated in the bank 

saturation, aerodynamic load, and range to target metrics.  Aerothermal indicators for the backshell are strongly 

impacted by trim angle of attack exposing the backshell to the freestream flow.  Changes to trim angle of attack also 

directly impact the total angle of attack at FBC jettison requirement.  Because the vehicle has an offset in its center 

of gravity, the yawing moment coefficient (Cn) acts as a bent airframe inducing body rates into the free bank axis.  

Flight control must work continuously to counter the bank rates to maintain bank control for landing target steering.  

This contributes to a strong correlation to total propellant usage and total thruster pulse count metrics.  Cn also 

affects the trim total angle of attack and weaker correlations that are similar to Cm.  CD directly affects L/D, though 

its performance correlations are weaker since its uncertainties are smaller.  The aerodynamic rate damping 

derivative (dCm/dq) becomes unstable during subsonic flight and carries large uncertainties in its measured value.  It 

strongly influences the probability of generating a pitch/yaw oscillation that will trigger an early FBC jettison.  It 

also directly affects propellant usage because of the effort the flight controller puts into actively stabilizing the 

unstable system during subsonic flight.  dCm/dq also weakly correlates to touchdown heading accuracy because 
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Figure 6. Touchdown Range Constraint.  In the top plot, the Y-axis 

is range to target at touchdown, the X-axis is Cm. The bottom plot 

shows success probability versus Cm. There are increasingly more 

failures from right to left, however the out-of-family cases are at the 

right. 

high rates at parachute deployment tend to persist during parachute descent impacting the ability to point the 

heading at touchdown. 

C. Mass Properties 

Numerous Orion performance metrics are influenced by vehicle mass properties.  Mass has to be constrained to 

the limits of what the launch vehicle can lift and what the parachute loads can handle.  Mass also directly affects 

aerothermal constraints.  A heavier vehicle will experience higher temperatures during atmospheric re-entry.  This 

can be seen from the backshell temperature metrics that are strongly correlated to vehicle mass.  The vehicle center 

of mass directly determines the L/D ratio of the capsule.  The vehicle is designed with a deliberately placed Zcg 

offset with respect to the vehicle centerline to achieve the desired L/D needed to perform the guided entry.  Ycg also 

affects L/D.  Though the vehicle is designed with a zero Ycg offset, the Ycg dispersions do impact performance.  

The Zcg offset affects the vehicle trim angle of attack and has a strong influence on the same metrics discussed in 

the preceding Aerodynamics section associated with the pitching moment coefficient (Cm).  This two dimensional 

correlation was illustrated earlier in Figure 5 for the effect that Zcg and Cm have on a backshell temperature 

aerothermal indicator. In addition, the Zcg offset impacts the thruster pulse count and simultaneous thruster firing 

metrics. 

D. Propulsion 

The Orion capsule uses 12 thrusters as 

effectors for entry flight control.  The 

effector model simulates numerous effects 

such as jet thrust, mass flow rate, aero 

interactions, thrust build-up/trail-off, engine 

temperatures, mounting errors, nozzle scarf 

effects, etc.  The model has numerous 

dispersions.  The dispersions that were 

found to affect entry performance metrics 

generally were tied to reductions in jet 

thrust, especially for the roll jets.  The roll 

jets are the work horses that perform bank 

control during atmospheric flight and 

heading control under the parachutes.  

Correlations were found for propellant 

usage, pulse counts, and simultaneous 

thruster firings.  Touchdown heading 

accuracy is dependent on roll jet control 

authority. 

E. Parachutes 

The Orion system deploys two drogue 

parachutes followed by three main 

parachutes for final descent to landing.  The 

fidelity of parachute modeling is critical for 

analyzing the success of touchdown 

heading control.  One particular dispersion 

stood out in the results as having a strong 

influence: the twist dispersion.  This 

parameter directly affects the mean twist 

torque predicted by the twisting of the main 

parachute suspension lines.  Twist torque subtracts from thruster control authority and therefore directly impacts 

control of heading orientation.  Propellant usage and pulse counts also increase as mean twist torque increases. 

F. Initial Body Rates 

Orion entry flight phase begins when the capsule separates from the launch vehicle.  The dispersion on the initial 

body rates simulates the range of tipoff rates that can be imparted by the separation mechanism.  The flight control 

algorithm has a bilevel deadband design where one jet is fired for small attitude error signals, but two jets are fired 
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for large attitude error signals.  Therefore it comes as no surprise that up to six jets could fire simultaneously after 

separation for cases where large rates are imparted on the capsule in all three axes. 

 

The Orion GN&C team has found value in the Critical Factors Tool to support its design and analysis tasks.  The 

GN&C team is developing expertise in using the tool for ongoing and future analysis.  Previous analysis to identify 

correlations between input dispersions and key performance metrics were usually based on physical understanding 

of the problem.  The methods were ad hoc and varied by working group team.  The Critical Factors Tool formalizes 

the analysis and allows for identifying primary correlations and secondary correlations.  Some of the secondary 

correlations have been enlightening.  For example, the secondary contributions of the RCS jet plume interactions 

with vehicle aerodynamics led to further studies of GN&C sensitivity to this phenomena.  As a direct result of these 

studies, the Orion aerodynamics team is pursuing additional analysis to refine the jet/aero interaction model used in 

the simulation tools. Another interesting example is shown in Figure 6 showing the success probability for range-to-

target accuracy as a function of the aerodynamic coefficient Cm.  GN&C was aware that a high positive dispersion 

on Cm causes low L/D which can result in landing accuracy failures.  The plot shows three cases that are “out-of-

family misses” of the landing accuracy cluster at high Cm dispersion.  However, the interesting nuance is that the 

landing footprint shrinks for higher positive Cm dispersions (except for the cases that fail).  The explanation is that 

lower lift reduces the maximum excursions on crossrange as guidance steers the vehicle toward the landing target.  It 

is this kind of subtlety in the statistical output of the Critical Factors Tool that is interesting to Orion GN&C entry 

analysts.  The Critical Factors Tool will be a valuable addition to the entry analysis team’s toolkit for ongoing Orion 

mission development and design enhancements. 

 

VII. Conclusion 

 

This work shows that simple sensitivity measures can be applied semi-automatically to find critical simulation 

input variables.  This is useful early in the design process, where it is not necessarily known which are the critical 

factors, as well as later in the design process, where the robustness limits of the designed product are sought. 

 

Appendix 

A. Success Probability Derivation 

 

This derives that the success probability at a value x of an independent variable is the ratio of the success 

probability density to the overall probability density times the overall success probability. S is the success random 

variable that depends on the value of the input variable.  The definitions of the overall success probability and the 

overall and success probability densities are: 
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Dividing numerator and denominator by dx and distributing the limit inwards (assuming they exist and are non-zero) 

yields 
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Using the definitions above yields 
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B. Independence Derivation (1) 

 

This derives the probability map derived from the marginal probabilities assuming two variables are independent. 

 

Let the true 2-d probability map be pz(x,y). Then the corresponding 1-d marginal versions are the following, where 

the integrals are defined over appropriate limits. We assume the input variable range is [0..1] so the denominators 

become 1. 
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This implies that 1��1�0 � �. Together, this implies 
�.��, /� �  ������0�/�

�  

C. Independence Derivation (2) 

Let Z(x,y) be a random variable with value 0 or 1 indicating failure or success of the system with input x and y. 

Let N be the number of tests and S be the number of successes. Then E[Z(x,y)] =S/N =µ. We then divide the ranges 

of x and y into equal sized-bins and estimate 

 

;�1� � <$=��, /� | � # �>?�6( 
@��� �  <$=��, /� | / # />?�A( 

 

as the following where Sx(m) is the number of successes in the X bin m and nx(m) is the number of tests in X bin m 

(similarly, Sy, ny). 
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because the expected value of a 0,1 function is its probability. 

Using Bayes rule in the last equation 
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The right factor in the numerator can be estimated as �. 

The denominator can be estimated assuming they are independent; if the samples are uniformly distributed then 
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The left factor in the result of applying Bayes’ rule above, under an assumption of independence, breaks into a 

product of two factors: 
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Each factor can be estimated directly as the proportion of all successes that fall into the specified bins;  

e.g., ���1�/�. Combining our results we get 
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It can be the case that successes are not independent but failures are. In that case, we can estimate the success rate as 
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As an example, assume Z(x,y) is 1 if � K 0.7 B / K 0.8. Then the left factor above is 
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� �� # �>?�6| � K 0.7��/ # />?�A| / K 0.8� 

 

If, on the other hand, the constraint was a disjunction like � K 0.7 O / K 0.8, then factoring into a product above 
would fail, even though the variables’ effect on the condition are “independent” of each other. This is where the 

failure formula applies: 
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