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Abstract 
The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for 
the 3 year mission life. Therefore, GMI must be very precisely balanced about the spin axis and CG to 
maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control 
on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and 
is used to make calibrated radiometric measurements at multiple microwave frequencies and 
polarizations. The GPM mission is an international effort managed by the National Aeronautics and 
Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through 
more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation 
(BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI 
instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be 
brought into simultaneous static and dynamic spin balance after the entire instrument was already 
assembled and before environmental tests began. The focus of this contribution is on the analytical and 
test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The 
novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy 
and precision is presented together with the prediction of the optimal balance masses and their locations. 

Introduction 
 
The GMI instrument is one of the payload instruments on the GPM core spacecraft and must be spun 
continuously at 32 revolutions per minute (rpm) +/- 0.1% on-orbit for the 3 year operational life of the 
instrument and to provide the desired geo-location for the science data. Details pertaining to the GMI 
design and testing were presented in references [1, 2]. The GMI instrument had to be spun balanced to 
less than 0.032 kg-m (2.77 lbm-in) static imbalance and less than 0.055 kg-m2

 (188 lbm-in2) dynamic 
imbalance, total imbalance, for the 123 kg spinning portion of the instrument payload. The design and 
development of the spin balance method, analytical solution, test setup, design, calibration, and 
measured test results are described. The verification and validation of the GMI instrument to demonstrate 
compliance of performance through environmental testing and spin balance has been successfully 
completed. At the writing of this contribution, GMI has been fully integrated onto the GPM spacecraft, and 
the GPM spacecraft has been shipped to the launch site in Tanegashima, Japan for launch in Feb. ‘14. 
 
The static and dynamic balancing approach consists in spinning GMI on top of an accurately calibrated 
dynamometer, designed specifically for GMI to measure the imparted forces due to imbalance. This 
device continues a long tradition of building precision balancing machines, vibration input benches and 
force measurement instruments for space hardware at Ball Aerospace & Technologies Corporation [5,6]. 
 
The dynamometer measures all forces and moments and consists of three force transducers mounted to 
an aluminum base-plate and a corresponding top-plate that functions as the mounting interface for the 
GMI instrument (Figure 1). The calibration of the dynamometer showed that the total measurement error 
of this technique and dynamometer were much smaller, by an order of magnitude, than the imbalance 
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requirements. Since the balance requirements were tight and the spin balance to be measured was so 
small, the structural resonances of the GMI instrument, as well as, the spin balance test fixture and 
support structure also required detailed modeling and design to meet stiffness requirements dictated by 
the imbalance accuracies to be measured. Figure 2 shows the finite element model (FEM) of the GMI  

Figure 1. Dynamometer Assembly Setup in Calibration and GMI without RDA and MR Assys 
Integrated

 
Instrument, the model of the Thermal Vacuum (TVAC) support structure with the dynamometer assembly 
used for the spin balance, and locations of balance masses available on the GMI instrument.  

Figure 2. (a) Structural Model of the GMI Instrument Assembly, (b) Dynamometer 
with the Spin Balance Test Fixture, and (c) Balance mass locations on GMI  
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Multiple test setups, shown in part in Figures 2 & 3, were developed for balancing GMI at room 
temperature and in a vacuum chamber to eliminate error terms associated with forces imparted to the 
dynamometer due to air-drag of the GMI instrument spinning in air. A MatLab computer program was 
developed to process the resultant forces imparted on the dynamometer, together with position encoder 
data to derive the magnitude and direction of static and dynamic imbalances, and subsequently perform a 
linear optimization to predict the optimal balance mass solution. This optimal solution which meets the 
static and dynamic imbalance requirements consists of the values of 21 ‘balance’ masses that can be 
added and accounts for design constraints specific to each of the balance mass locations, and at the 
same time minimizing the overall total mass of balance masses to be added simultaneously. The 
optimization can account for order of preference in the choice of masses by assigning higher weights for 
particular ones to reflect certain particularities such as ease of access, volume or other situational 
constraints or preferences. Finally, It has been possible to achieve preliminary balancing of GMI before 
achieving full integration. The software is capable of balancing a partially integrated GMI while the 
instrument is being assembled (e.g. before the integration of the RDA – Reflector Deployment Assy and 
MR –  Main Reflector) by assigning negative inertial properties to the missing subassemblies which were 
subcontracted elsewhere and would not be integrated for the spin balance testing until late in the 
environmental test program. 

Spin Balance Verification

The GMI instrument underwent an initial spin balance in the clean room in July ’11 and initial balance 
masses were added prior to GMI instrument environmental testing. Final spin balance and requirement 
verification and validation was completed in TVAC in Feb. ’12 after the GMI instrument had successfully 
completed all environmental testing, see Figure 3. The methods and steps successfully accomplishing 
this spin balance of the GMI instrument and showing the requirement was verified via test measurements 
will be discussed below and presented in this paper. 
 

Figure 3. GMI Instrument in Spin Balance Test Facility on Dynamometer 
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Evaluation of Imbalance Forces 
Bringing GMI into balance started from early on in the design phase.  As the design progressed, there 
has been a continuous effort to keep the rotating hardware as close as possible to static and dynamic 
balance in order to minimize overall total mass of the instrument, with a plan for three separate axial and 
radial locations to place balancing masses as shown in the Figure 2-c. While a minimum of two axial 
planes for balance masses are required to achieve dynamic balancing, provision to use the RDA/MR  for 
a third location was necessary to maintain lower added masses, because the RDA does not have axial 
symmetry, is distant from the mounting plane, and due to other production and schedule constraints. 
  
The basic idea is to determine the static and dynamic imbalances from the measurements of the moving 
imbalance forces imparted at the mounting plane while spinning GMI at some angular velocity.  Load cells 
are ideal for the task as they only pick variations in load magnitudes.  In the absence of other 
disturbances, such as, structural resonances, air-drag, etc. it can be easily shown that the loads imparted 
by a non-perfect rotating device on a mounting plane are the result of the centrifugal forces and moments 
of the imperfection. Assuming an imbalance mass m centered at a position (x,y,z) in the GMI reference 
frame of Figure 4, the reactions are given by the following radial force fr and the radial moment Mr

Figure 4: GMI and Dynamometer Coordinate systems

(1)

(2a)

where  is the radial distance from the spin axis,  is the angular velocity, g is the magnitude 
of gravitational acceleration and t is the time in seconds. Note that we replaced the products m yz and m 
xz by the cross products of inertia   and  , respectively in the last equality of Equation (2a) accounts 
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for pure dynamic imbalance situations and therefore addresses the general case of an arbitrary combined 
static and dynamic imbalances. All forces and moments are functions of time. For example   should be 
written as but the time symbol is omitted for readability. From the dynamometer we can read the 
exact forces but the moments will be different due to the height , between the mount interface and the 
elevation of the load cells. On the dynamometer, the readings for the moments are given by: 

(2b)

The resultant force in the Z direction is independent of time and therefore would not show on the 
dynamometer readings since the load cells measure only a change in force. The radial load remains 
unchanged but the lever arm of the moment is increased by the distance between the mounting surface 
and the plane of the dynamometer load cells.  

 
Using the expression for the radial load from Equation (1), the magnitude of the radial load is related to 
the static imbalance me via 

(3)

In order to address the dynamic imbalance requirement, we use equation (3). The dynamic imbalance is 
related to the imbalance forces and moments as following: 

The requirements for static and dynamic balancing have to be compared to the values obtained from the 
product me and Jrz computed from Equations (3) and (4) respectively.  In addition to the magnitudes of 
the static and dynamic imbalances, of practical interest are their corresponding directions. To find the 
precise directions, two coordinate systems can be set on the test setup. One is stationary relative to the 
dynamometer, while the second rotates with the GMI unit. These two coordinate systems share an origin 
and the z-axis and initially both x-axes and y-axes are co-linear. Since the angle at which GMI has rotated 
is known, we can subtract that from the direction of the resultant force to find the physical direction of the 
imbalance via 

(5)

(6)

We have just established that the static and dynamic imbalances form a pair of vectors which may be 
plotted in a three-dimensional graph to graphically pinpoint the directions of the imbalances together with 
the physical locations of the balance masses to visually help the technical team understand  which 
masses will be most effective.  

Optimal Balancing Using Linear Programming  
Having determined the levels of static and dynamic imbalances, we now determine the optimal balance 
masses that would simultaneously make the radial force and moment on the dynamometer nil. In order 
for GMI to be statically balanced, its center of mass must reside on the axis of rotation. This can be done 
by creating equal and opposite forces to the resultant x and y forces imbalance forces, expressed through 
the following equality constraints

2 2

2 2

1  or                                        (4)

1 where  and .
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(7)

(8)

where  is the  balancing mass of coordinates ., and  is the angle of the 
imbalance radial force. Similarly, the moments created by the dynamic imbalance must be counteracted 
by the added balancing masses making the combined cross product of inertia nil resulting in the following 
additional two constraint equations  

(9)

(10)

Because the locations of the balancing masses are known, we have a system of four linear equilibrium 
Equations (7-10) to n unknown mass values . For the case of GMI, we have n = 21. There is 
no unique solution to this over-determined problem. However an optimal unique solution may be found by 
writing a linear programming problem in which we minimize the sum of the balance masses while meeting 
the static and dynamic balance equality constraints (7-10) and introducing inequality constraints on the 
balance masses that take into account the feasibility of actual mass placement with respect to size/mass 
constraints of the balance mass for a given location and the positive nature of the balance masses. The 
objective function to be minimized is expressed as 

(11)

 
And the optimization problem is written formally as  

(12)

The matrix equation  is the set of four equality constraints described above and is set up as 
shown below 

(13)

The expression  represents a set of 2n inequality constraints that set the lower and upper 
bounds on the balance masses. The lower bound must be set to zero, as we are adding mass, and the 
upper bound must be a set of mass values that can be handled given the physical reality of space 
available at each balance mass location. They could also turn off certain masses that are difficult to 
access due to some practical envelope constraints. The linear problem given by Equation (12) is solvable 
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using Matlab’s linear programming function “linprog” using the same software that collects dynamometer 
sensor data and encoder position as the test unit spins atop of the dynamometer. 

Calibration of the Dynamometer Setup 

The calibration entails three parts. In the first part, the dynamometer is shown to have the necessary 
sensitivity to accurately make the necessary measurements needed to process the imbalance data. The 
noise floor of the dynamometer is identified and compared to the requirements on forces and moments 
that are derived to meet GMI’s static and dynamic balancing requirements.  
 
In the second part of the calibration, the forces measured by the dynamometer are checked using two 
separate data acquisition systems and two loading methods. This was performed to isolate and quantify 
the sources and magnitudes of systematic and random measurement errors. Finally, the third part in the 
calibration program evaluates  data collected from auxiliary risk mitigation tests which used the GMI SMA 
(Spin Mechanism Assembly) and simulated payloads with off-axis known masses precisely located on a 
rotating disk (see Figure 4). These mitigation tests were planned to assess the performance of the tools 
to be used in the actual balancing of GMI.  Three test cases were performed: the first one has a moderate 
imbalance, while the second test case is intended to achieve extreme static and dynamic imbalances. 
Finally, the third test case is intended to produce a balanced state from which we demonstrate the 
capability of the system to meet the required level of balance measurements for GMI.  
 
Specified and Derived Requirements 
The two GMI balancing requirements are expressed in terms of the product me  0.032 Kg.m (2.77 lb.in) 
for static imbalance and Jrz  0.055 Kg.m2 (187 lb.in2) for dynamic imbalance. We derive two equivalent 
requirements that provide the equivalent limits on the static and dynamic imparted forces and moments 
that GMI needs to meet in order for the balancing effort to be successful. These requirements are shown 
to be for the radial force  0.08 lb and the radial moment  10 in.lb. In addition, a requirement on the 
noise floor is set so that accurate and reliable measurements of the balanced state are performed. The 
noise floor of the dynamometer is checked against 1/10 th of the requirement levels, padded by a 50 % 
uncertainty levied to account for unknown error contributions to the measurements. The noise floor is 
found to be  0.004 lb for reliable measurements to occur. 
     
Using the expression for the radial load from Equation (1) and using an angular frequency of 0.533 Hz (32 
rpm), the magnitude of the radial load is related to the imbalance me via 

2 2
2    0.032 (2  0.533) 0.36  (0.08 lb)r

r

f
me f me N

Furthermore, de-rating this level by 50 % to account for unknowns in the setup, we need to bring the 
radial load to less than 0.04 lb if we want to show that GMI is statically balanced. Thus, we need to have 
a noise floor level less than 0.004 lb. In order to address the dynamic balance requirement, we use 
Equation (3). We have the magnitude of the radial moment given by: 

Again, de-rating this level by 50 % to account for unknowns in the setup, we need to bring the radial 
moment to less than 5 in.lb, if we want to show that GMI is statically balanced. Thus, we need to have a 
noise level less than 1/10 th of 5 in-lb or 0.5 in.lb. Considering the forces in the sensors from which we 
compute the moments and the geometry shown in Figure 5, the noise floor needs to be less than 0.5 
in.lb/(26.035/2.54) or 0.05 lb. Accounting for three sensors, we have to have a noise floor better than 
0.016 lb. In summary, the requirement imposed on the noise floor of the radial force is 0.004 lb and the 
one imposed on the moments is 0.5 in.lb (that is 0.016 lb in force sensors). The smaller value of the two 
is 0.004 lb and is kept for comparison with the performance of the dynamometer. 

2 2 2
2 2 2

2 2 2 2

     +  

   0.055(2 0.533) 0.032(9.81 16.455 0.0254(2 0.533) )
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Figure 5: Noise floor showing measurements filtered using low bandpass of 10 Hz 

 
To measure the noise floor, the dynamometer was placed on four blocks at the four corners of the lower 
plate.  This configuration was chosen instead of the fully clamped one to simulate the actual balancing 
configuration in which the dynamometer’s own mode is in the vicinity of 30 Hz versus the 120 Hz + in the 
fully clamped configuration. Three measurements were taken. In the first measurement, the data from the 
load cells is channeled only to an independent secondary data acquisition system (VXI system).  In the 
second test, the data from the load cells is channeled to the BDMS data acquisition (processor to be used 
for balancing) and simultaneously to the VXI through a set of “T” connections. The third test has both data 
acquisition systems in place except that the data acquisition card of the BDMS was turned off. A digital 
filter of 10 Hz was applied to the data sets. An example of dynamometer noise floor measurement for the 
Y-axis is shown in Figure 5. The maximum noise of 0.00175 lb is measured and is found to be less than 
the 0.004 lb needed to carry out accurate measurements to meet GMI spin balance requirements. 

Harmonic stinger test 
This test is intended to calibrate the measurements performed by the dynamometer as a system. The 
dynamometer is excited at a frequency of 10 Hz using an MTB 50 lb stinger. A calibrated load cell is 
placed at the interface between the stinger and the dynamometer to measure the input force. The latter 
was also measured using the dynamometer as the sum of the contributions of all load cells. The load is 
applied along the Y direction of the dynamometer. The input loads matched the output load. The Spectral 
Dynamics Data Acquisition System of BATC’s Vibration Lab was also used to further check the response 
and the results. They were found to be identical to the reference load.  

Frequency response function (FRF) tests 
The FRF shows that the data is unaffected by the fundamental modes of the dynamometer either in a 
clamped or a simply supported configuration. The difference in loads is negligible in the vicinity of 0.5 Hz. 
While the results of the excitation illustrated in Figures 6-7 are for the Y-axis, similar results are recovered 
for the X-axis. The FRF was also measured prior to balancing GMI either in the clean room or in the 
vacuum chamber BRUTUS where additional modes are present due to the mounting equipment. The 
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mount and fixture hosting GMI during spin balance testing in the BRUTUS vacuum chamber is analyzed 
using the finite element method incorporating a GMI model to ensure that we have no interference from 
the added structural resonance modes. The mounting beams in BRUTUS (Figure 2b) were stiff enough 
and produce no modes that interfere with measurements.  
 
Speaker tests 
The goal of the dynamic calibration using a speaker load input is to verify that we are reading the correct 
dynamic loads while balancing the GMI instrument, no matter where these loads are applied over the 
dynamometer. The calibration consists in applying known forces using a speaker precisely oriented and 
located at different elevations over the dynamometer and measure the reaction forces and moments 
imparted on the surface of the dynamometer. The speaker is attached to a fixture through an 
encapsulated load cell to ensure a precise knowledge of the magnitude and location of the excitation. The 
speaker is actuated using a form generator to deliver an accurate input frequency. The test shows the 
input load from the speaker force transducer and the measurement from the dynamometer are the same 
in different orientations. In particular, this test is required to verify the correctness of the measured 
moments which are crucial for dynamic imbalance predictions. 

Risk Mitigation Balance Tests 
In order for the GMI balancing task to run smoothly, a risk reduction set of tests were carried using the 
SMA drive and a flywheel on which known masses are placed in well-known locations on the flywheel as 
shown in Figure 8. The first test consists of the placement of an imbalance mass of about 1.1 lb at the 
edge of the flywheel. The second test is an extreme case created by a 16 lb imbalance, also placed at the 
edge of the flywheel.  Finally, the last case is of a situation in which an attempt was made to balance the 
flywheel and the SMA to the best available capabilities. The results of this test points to how a balanced 
situation results in very small shear and moment loads exported to the mount of the SMA. The data from 
the dynamometer is compared to the mass tally data. It is found that accurate estimates of the imbalance 
can be made using the dynamometer. In addition, a balanced state can be easily identified once the 
shear force and moment become small.
In the first test case, a set of known imbalance masses were placed on the bare flywheel. Knowing the 
location of the masses, a static imbalance of 13.491 in.lb and a dynamic imbalance of 139.077 lb.in2 are 
computed. The total mass of the added hardware consisting of studs, washers and spacers weighs 
1.1075 lb and its center of mass is located at a radius of 12.18 in. The radial force and radial moment 
maintain a nearly constant value as the SMA and its payload rotate. The mean static and dynamic 
imbalances given by Equations (4) and (5) are computed over a period of 70 seconds at a rate of 1KHz. 
These values are within 1 % of the expected values as shown in Table 1. The second test is an extreme 
case in which 18.20 lb is placed at the edge of the flywheel to produce an imbalance which is about 100 
times the imbalance requirement. The static and dynamic imbalances are about 270 lb.in and 2900 lb.in2 
respectively. The total mass of the added hardware consisted of two dumbbells, studs, washers and 
spacers is 18.2025 lb.  Again, the radial force and radial moment maintained constant values as the SMA 
and its flywheel payload with imbalance mass rotate and the system recovered the static and dynamic 
imbalances with errors of 0.41 % and 1.8% respectively. In the third test case, the measured mean 
resultant radial load of 0.015 lb is below the requirement of 0.08 lb, and the measured mean resultant 
moment of 0.51 in.lb is below the 10 in.lb equivalent requirement. This last test provided the necessary 
argument that the system is capable of predicting a balanced state. 
 

Table 1: Comparison of measured imbalance to correction magnitudes 
Dynamometer Matlab Percent Error

Static
(lb in)

Dynamic
(lb in2)

Static
(lb in)

Dynamic
(lb in2) Static Dynamic

13.491 139.077 13.371 138.868 0.89% 0.15%
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Figure 6: Frequency Response Function of clamped dynamometer (without GMI) 

Figure 7: Frequency Response Function in configuration with GMI installed  
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Figure 8: Spin Balance Risk Mitigation Test Setup 

Spin Balancing Verification of GMI  

It is shown that GMI was adequately balanced to meet both static and dynamic balancing requirements. 
The measured imbalances in BRUTUS vacuum testing where found to be 0.017 Kg.m and 0.022 Kg.m2, 
meeting the requirements of 0.032 Kg.m static and 0.055 Kg.m2, dynamic imbalances, respectively. The 
results of Table  show the average of three separate measurements of forces, moments and computation 
of static and dynamic imbalances. Three tests are averaged to give imbalances in vacuum and three 
other tests carried in open air are averaged to determine final balancing values. All tests are run at 32 
RPM and results show all tests met the requirements. Other test runs, performed to acquire spin balance 
data at 28 RPM and 33 RPM, were also successful in showing that GMI successfully meets the balancing 
requirement. 
 
The balancing of GMI takes place in two steps. In the first step, GMI is brought to a pseudo-balanced 
state, prior to assembling the RDA, MR, and final MLI layers in air in a cleanroom environment. In this 
configuration, analytical estimates of the RDA, MR, and MLI inertial properties are adopted while 
computing the balance masses, thus accounting for the future installation of these components. In the 
second step, the final balancing task is carried out while the fully assembled GMI in its final configuration 
in a vacuum chamber.  
 
The Matlab script reads the raw data file and pulls out the relevant ranges for the forces and resolver 
data. The resolver reading is first converted from the voltage pulse ‘zero-crossing’ point that, signals a full 
rotation, into useable angle data with respect to time. A correction value of 94.35 degrees (sensor 
location) is then added to the angular position to synchronize the zero position on the x –axis of the GICS 
coordinate system with the SMA resolver readings. This makes it possible to pinpoint the direction of the 
imbalance, as well as, to properly place balance masses in locations given in a single reference 
coordinate system. A total of nine forces are read as a function of time once every millisecond, one in 
each coordinate axis from each one of the three force transducers of the dynamometer. The data 
collected prior to the first resolver zero-crossing and after the last resolver zero-crossing time is 
disregarded. The force and moment resultants are then computed, and subjected to a low-pass 
Butterworth filter at 3Hz. For each time station, the magnitude of the radial force and radial moment due 
to imbalance are computed, and plotted together with the static and dynamic imbalance magnitudes and 
directions as shown in Error! Reference source not found.. 

The mean radial force and mean radial moment are then computed and a linear programming solver is 
used to find the minimum set of masses that would simultaneously bring the static and dynamic 
imbalances back to a balanced state. The script has a set of 21 hard-coded mass locations with lower 
and upper bounds. The optimization is carried to satisfy the four constraint equations with an objective 
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function equal to the sum of all masses as explained in the analytical section. As a default, each mass is 
equally favored.  The user may elect to eliminate contributions from individual masses by bounding their 
individual lower and upper bounds to zero. Furthermore, the relevance of some weights can be affected 
through modifying their weights in the objective function. Once the optimization is carried successfully, the 
command window displays the statement “Optimization terminated.” The solution is captured and 
displayed in three tables. The first table documents the magnitudes of the 21 masses, their locations and 
their first and second cross moment magnitudes. The resultant forces and moments due to the balancing 
masses are displayed in the second table. And finally the resultant static and dynamic inertial 
contributions from the balancing masses are shown in the third table. The initial properties of the 
imbalance are shown and compared to the solution. The magnitudes of the 21 balancing masses are also 
displayed in a bar graph for quick visualization. The balancing masses are displayed in their 3D locations 
as weighted, colored spheres together with the resultant mass. Also displayed are the resultant 
centrifugal force and moment produced by the balancing masses along with the imbalance radial force 
and moment. This gives a visual representation that a solution is found in which the balancing radial force 
and radial moment are equal in magnitude and directly opposite to the force and moment generated by 
the imbalances (see Figure 9). 

 

Figure 9:  Plot of Balancing masses, imbalance and balance force and bar graph 
 

The effect of the missing RDA/MR hardware on the static imbalance is based solely on its total mass and 
CG location. Because of this, it can be treated simply as the 22nd balancing mass during the initial 
optimization process. This 22nd presumed unknown mass will have the coordinates of the net CG of the 
missing RDA/MR assembly and its upper and lower mass bounds are set to the known total mass and 
inertial properties of the RDA/MR, so that when a solution is found, the 22nd mass will be constrained to 
be equal to its known value.  

Post Vibration Spin Balance Verification (without RDA/MR) 
Following the completion of GMI vibration tests, the instrument was spun again on 10/05/2011 to 
compare with the pre-vibe imbalance measurements carried on 08/02/2011. The test is intended to check 
for possible shift of cabling and other flexible components.  The difference between the two tests amounts 
to 0.26 % in the radial force and 0.48 % in the radial moment. It has to be noted that in addition to several 
changes to the stationary GMI hardware which theoretically would not affect the measurements (as long 
as we do not excite their modes), there have been slight changes in the configuration of rotating GMI that 
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included the replacement of two 36 GHz flex wave guides, 0.0410 lb each, with two rigid wave guides, 
0.0168 lb each, and the re-machining of mounting shims. The wave guides along with the 36 GHz filter 
were re-staked, and one balance mass was removed, adjusted to account for the change, and then 
reinstalled in the same spot and re-staked. The overall delta is  Wt =   -0.051 lb. The new radial load is 
analytically evaluated and compared well with the measured value, placing all shifts at 0.106 %, that is a 
delta of 0.005 lb, significantly less than the derived requirement of 0.08 lb (or just 6.7 % of the 
requirement). Therefore, it is safe to state that vibration loads due to launch will likely shift the rotating 
mass by  7% , or less, of the requirement of 0.08 lb, on-orbit.  

In-Vacuum Final GMI Balancing 
Several tests were carried out in vacuum and in air on the dynamometer to show that the requirements 
were met.  It is worth noting that an RDA/MR deployment GSE off-loader structure needed to be removed 
from Brutus to perform clean test measurements. Table  shows the average of three 
separate measurements of forces, moments and computation of static and dynamic imbalances first in 
vacuum and then the averages of three other 32 RPM tests also run in the Brutus but in open air rather 
than in vacuum. Table 3 shows the computed and actual masses that brought GMI to meet requirements.  
 

Table 2:  Average of imbalance measurements (three in vacuum and three in air)
units (lb,in) Fx (lb) Fy (lb) Fr (lb) Mx (lb in) My (lb in) Mr (lb in) me (lbm.in) Jrz (lbm.in2)
Vacuum 0.0021 0.0402 0.0436 0.069 2.805 2.8 1.5 73.5

Air 0.0098 0.037 0.0398 0.86 1.104 1.5 1.4 63.9
Requirement 0.08 10 2.77 187

units (Kg,m) Fx (N) Fy (N) Fr (N) Mx (N.m) My (N.m) Mr (N.m) me (Kg.m) Jrz (Kg.m2)
Vacuum 0.0092 0.1794 0.1946 0.008 0.318 0.318 0.017 0.022

Air 0.0438 0.1651 0.1775 0.097 0.125 0.167 0.016 0.019
Requirement 0.36 1.13 0.032 0.055

         
Table 3:  Added masses used to balance GMI

             
Figure 10. GMI Integrated on the GPM Spacecraft at NASA  
                  Goddard Space Flight Center 
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Conclusion 

The Global Microwave Imager instrument (GMI) was successfully spin-balanced using a dynamometer as 
a mounting fixture. GMI was balanced to less than 0.017 kg.m static imbalance and 0.022 kg.m2 dynamic 
imbalances, meeting the requirements of 0.032 kg.m (2.77 lbm.in) and 0.055 kg.m2 (188 lbm.in2) 
respectively, total for 123 kg spinning portion of the instrument payload.  
 
The successful final precision spin balancing of the GMI instrument in vacuum demonstrated the 
capability of this method to accurately measure the static and dynamic imbalances, and to precisely 
compute the optimal set of minimal balance masses, accounting for various. The ability to precisely 
measure the imbalances before and after environmental testing also enabled us to very accurately predict 
the magnitude of the change in the GMI instrument imbalance on orbit, following launch. 
 
The forces measured by the dynamometer checked well against two other independent measurement 
systems. In addition, the dynamometer is shown to be capable of reproducing the applied loads and 
moments with adequate accuracy. The natural structural frequencies of the dynamometer were mapped 
and their effect on the measurements was identified for the frequency spectrum of interest.  
 
Prior to balancing GMI, both moderate and extreme imbalance risk mitigation tests are shown to be 
accurately measured using the dynamometer and the necessary balancing forces are accurately 
computed. The fully balanced state was also recovered from the time traces of the resultant radial loads 
and radial moments. 
 
Since the successful completion of the final spin balance activity, the GMI instrument was delivered to 
Goddard Spaceflight Center in Mar. ’12, and was successfully integrated onto the GPM spacecraft later in 
Jun. ’12, see Figure 10. The GPM spacecraft just recently completed spacecraft level Thermal Vacuum 
(TVAC) testing in Jan. ’13, vibration testing in July ’13, post-environmental testing in Sept. ’13, and is 
scheduled to be launched in Feb. ’14 from Tanegashima, Japan on a JAXA MHI-H11A rocket. 
 
A special thanks to Sergey Krimchansky**; GMI instrument COTAR at GSFC for his input over-seeing the 
technical work on GMI and for his support in writing these GMI-related technical papers. 
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