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1. Introduction 

The conditions that characterize aerospace flows are so varied, that a single diagnostic 

technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity 

to help categorize and focus on different flow conditions. For example, the Reynolds number 

represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length 

scales, and gas density are large and the magnitude of the molecular viscosity is low, the 

Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), 

fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in 

water), or flows with low dynamic viscosity (e.g. skydiver in air).  In each of these cases, the 

inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow 

variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-

particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows 

with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of 

viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous 

forces become very important and often the flows can be steady and laminar. The Mach 

number, which is the ratio of the velocity to the speed of sound in the medium, also helps to 

differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster 

than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). 

As the object speed approaches the speed of sound, the gas density can become variable (e.g. 

flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 

1), the presences of shock waves and other gas dynamic features can become important to the 

vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large 

changes in temperature begin to affect flow properties, causing real-gas effects to occur (e.g. 

X-43 Scramjet). At even higher Mach numbers, chemistry and nonequilibrium effects come 

into play (e.g. Startdust re-entry capsule), further complicating the measurement. These limits 

can be predicted by calculating the ratio of chemical and thermal relaxation time to the flow 

time scales. Other non-dimensional numbers can be used to further differentiate types of 

aerospace flows. 

In the development of a new aerospace vehicle, flow data obtained from ground-testing 

facilities is critical. Ground tests are often performed to verify operation at realistic flight 
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conditions and/or to validate computation predictions of the flows. Optical measurement 

techniques are often used in ground tests since they can provide non-intrusive, quantitative 

data to validate the computational models and also improve understanding of the flows. Force 

and moment measurements, while extremely useful, only provide integrated quantities (i.e. 

total wall pressure and total wall shear stress). Physical probe measurements, which provide 

quantitative information pertaining to the state of the flowfield (examples include Pitot 

pressure probes, hot wires, etc.), can potentially influence the very flowfield property under 

study. This is especially a concern at conditions for Ma > 1, where the presence of a probe is 

particularly intrusive (i.e. can generate flow disturbances such as shock waves).  Flow 

visualization techniques, including schlieren and shadowgraph, provide useful information 

about flow structures, but are qualitative.
1 , 2

 Spectroscopic measurement techniques can 

provide large amounts of quantitative, off-body data, which can help explain results obtained 

from conventional measurement techniques (e.g., lift, drag, or heating).  

A large body of research is devoted to the study of incompressible (Ma < 0.3), single 

phase flows with negligible heat transfer and without any heat sources (e.g. chemistry).  

These types of flows can be accurately predicted through the solution of the incompressible 

momentum and mass conservation laws.
3
  Of course, the presence of turbulence makes the 

solution of the momentum equation difficult, often requiring additional equations (i.e. 

turbulence models) and/or large computational resources.
4
  In gaseous flows, the force due to 

gravity is often neglected, leaving a partial differential equation relating the velocity and 

pressure fields. As a result, non-intrusive, off-body measurements of velocity and pressure 

are usually the main sought-after quantities in low-speed, incompressible flows. Recently, 

van Oudheusden provided a review of velocimetry-based pressure measurements based on 

exploitation of this pressure-velocity relationship.
5
  Pressure is typically calculated from 

either a direct spatial integration of the pressure gradient in the momentum equation, or 

through a Poisson formulation. Since 3D velocimetry measurements that are both temporally 

and spatially resolved are difficult to perform, direct pressure measurements from 

conventional techniques (e.g. pressure probes) are still valued in these types of flows. Note 

that if the gas density is known, the pressure can also be determined from temperature data by 

using the appropriate equation of state.   

When particles are seeded into the flow to facilitate a velocity (and/or pressure) 

measurement technique, there are several requirements that need to be satisfied from a fluid-

dynamic standpoint. The particles must be dispersed uniformly, must faithfully follow the 

flow, and must not adversely affect the velocity field.
6
 Using established seeding techniques, 

small diameter particles (i.e. low Stokes number), and low particle mass loadings can satisfy 

these requirements. In higher Mach number flows, these tasks are more difficult. When 

particles are seeded from the wall, it is often not possible to achieve penetration into a high-

speed core flow without producing large flow disturbances downstream.
7
  Particle seeding 

uniformity presents a special challenge in short duration or “impulse” facilities (detailed 

below) because the run durations are usually on the order of milliseconds and the test gas is 

initially at rest.  Furthermore, as the gas velocity increases, the requirements of the imaging 

system also increase (e.g. temporal resolution, exposure time, etc.)  Flow discontinuities, such 



as shock waves, present additional challenges with regards to the ability of the particles to 

faithfully follow the flow. Tedeshi et al. (1999) performed an experimental study to quantify 

the particle lag of micron-sized particles through an oblique shock wave.
8
 

In addition to the challenges associated with particle seeding in higher Mach number 

flows, compressibility effects also inhibit the computation of the pressure field from velocity 

measurements alone, as can be done in low-speed flows. The conservation of energy, 

equation of state, chemical reactions, and the transport of multiple species also need to be 

considered. As a result, non-intrusive measurements of temperature and density are also 

desired. Even in low Mach number flows when heat transfer or heat release (e.g. combustion) 

occurs, measurements of temperature are also needed. In extreme cases, where the flow 

experiences rapid changes in temperature, thermal and chemical nonequilibrium can occur. 

This can result in the need to measure different types of temperatures such as rotational, 

vibrational, and translational components. In many of the cases described above, 

spectroscopic techniques are required.  

A variety of different molecular-based optical measurement techniques exist and are 

commonly used to study aerospace flows. A few of these methods – planar laser induced 

fluorescence (PLIF), Rayleigh and Raman scattering, and coherent anti-Stokes Raman 

spectroscopy (CARS) – will be detailed in this manuscript.  Several textbooks and review 

papers provide detailed literature and technical reviews of these methods.  Many of these 

books and papers will be referred to below but a primary important textbook is that of 

Eckbreth
 9

 which will be referred to extensively in this manuscript.  In the following 

paragraphs, we provide a brief but broader review of molecular based spectroscopic 

techniques to provide context for the more detailed sections. 

Optical emission spectroscopy (OES) is a method that disperses naturally emitted light to 

provide quantitative flow field information.
10

  However, OES can only be used to study 

luminous environments. Also, it is difficult to determine spatially-specific information using 

OES since the collection optics average all the light along its optical path.  These limitations 

can be overcome by using a light source such as a lamp or a laser. If a light source is incident 

upon a gaseous medium the incident photons can either be absorbed, scattered, or can 

transmit through the medium. These different possible light paths present opportunities for 

different methods to probe and measure the gas.  Absorption spectroscopy
11

 uses the 

transmitted light to diagnose the sample: the method compares the transmitted intensity with 

a sample present to a reference thereby determining the sample’s absorption integrated along 

the optical path.  Rayleigh scattering, Raman scattering and laser induced fluorescence (LIF) 

(detailed below in this manuscript) collect scattered light at an angle to the incoming light.  

This localizes the measurement point at the intersection between the incoming light and the 

optical path of the detection optics.  Measurements can be made at a single spatial location or, 

using a camera, measurements can be made along a line or in an image plane.  Whereas 

Rayleigh scattering is an elastic scattering process, Raman scattering is inelastic, with a small 

amount of energy either gained from or lost to the surrounding medium. LIF is a two-step 

process wherein a photon from the incident beam is absorbed and then is subsequently 

emitted.  These scattering processes emit light approximately isotropically in three 



dimensions (into 4 steradians) so that the intensity of the light drops off as one over the 

distance from the measurement point squared (inverse square law).  Consequently, using 

conventional lenses, only a small fraction (typically ~1%) of the scattered light can be 

collected.
9
 The abovementioned scattering techniques do not require the coherence property 

of a laser and are known as incoherent measurement techniques. 

Coherent measurement approaches involve the use of multiple laser beams, which are 

directed into and interact with the flowfield.  These techniques make use of the coherence of 

laser light to perform nonlinear wave-mixing, which generates coherent signal beams.  The 

resulting laser-like beam does not follow the inverse square law.  Instead, it can propagate 

long distances without loss.  It can also be spatially filtered to reject flow luminosity (which 

does follow the inverse square law) without losing signal intensity.  For coherent 

measurement techniques, the measurement volume is determined by the location of the 

crossing of the laser beams.  Unfortunately, these coherent techniques are much more 

complicated to set up and harder to keep aligned than incoherent techniques.  Also, these 

methods are nonlinear and are therefore generally more difficult to analyze and interpret than 

incoherent techniques.  However, coherent techniques, such as coherent anti-Stokes Raman 

spectroscopy (CARS), provide high signal-to-noise ratio data in applications with limited 

optical access and/or flow luminosity.   

The wide variety of aerospace facilities present many challenges to the implementation of 

optical measurement techniques. Facilities range from those which operate at lower Mach 

number but large physical scale and/or high pressure (to obtain high Reynolds number) to 

those capable of producing high-enthalpy flow.  Such flow facilities can often have hazards 

that must be accommodated in order to make measurements. Such hazards include those 

associated with high pressure, explosives, high voltage, high acoustic noise and toxic gas 

generated by the facility and the measurement system.  Consequently, in many facilities the 

operator cannot be near the facility during operation so the equipment must be operated 

remotely or must operate autonomously.  To reduce costs and increase test section size and 

operating pressure range many hypersonic facilities operate for very short duration, for 

example 100 msec or less.  These are known as impulse facilities. For laser systems operating 

at 10 Hz only one measurement can be acquired in these facilities per tunnel run.  Since some 

impulse facilities can operate only once per day it is difficult to obtain a statistically 

significant number of measurements with some measurement techniques.  In such facilities 

higher-speed measurement systems that can obtain data at kHz or MHz rates are desirable.  

Large impulse facilities can move a few centimeters during operation, complicating 

measurement technique alignment.  The flow through longer-run-duration facilities induces 

vibrations that can misalign optical measurement systems and changes in the model position 

may occur via thermal expansion of the support system.   Furthermore, many large facilities 

have poor or no optical access; if there is optical access the window material may not be 

suitable for the desired measurement technique. Aerospace flow facilities are often located in 

dirty operating environments and for practical considerations the lasers often are placed far 

from the test section requiring long path lengths resulting in misalignment and reduced laser 

energy delivered to the test section.  Finally, some hypersonic facilities produce very 



luminous flow, making difficult the detection of weak light signals. In such flowfields, 

coherent optical measurement techniques are desirable.   

The next section of this chapter reviews some of the equipment commonly used to 

perform the different measurement techniques. The following sections introduce and develop 

the theory behind four important measurement techniques used to study aerospace flows: 

PLIF, Rayleigh and Raman scattering and CARS.  Theoretical developments are limited to 

introductory material with references provided for more detailed analysis. Following this, 

selected measurement examples are described.  These examples do not provide an exhaustive 

review, but are meant to illustrate typical applications.  

2. Equipment Used for Molecular-Based Optical Measurement  

There are similarities in the hardware used in most optical spectroscopic measurement 

systems.  Some of the more common lasers and detection systems will be summarized here.  

References for commercially available equipment described are not cited to avoid preferential 

treatment to certain vendors.  It is difficult to capture all possible types of lasers and optical 

detection systems in a few paragraphs. This section is intended to provide an introduction and 

overview to the uninitiated and is not a comprehensive discussion. The various specifications 

described are approximate and are presented only to provide rough orders of magnitude. 

Laser systems can be classified as continuous wave or pulsed, though hybrid systems also 

exist. Continuous wave (CW) lasers operate continuously and are specified by their operating 

power in Watts.  CW lasers can be made to operate with very narrow spectral resolution 

suitable for high-resolution spectroscopy where the spectral width of the laser is negligible 

compared to the spectrum being measured. Inexpensive, low powered diode lasers having 

power on the order of 1 mW are used for absorption measurements. Higher powered CW 

lasers on the order of 10 W are used for Rayleigh scattering measurements. These higher 

powered CW lasers are generally not broadly tunable, so for resonant techniques like laser-

induced fluorescence only coincidental spectral overlaps between available laser frequencies 

and atomic or molecular transitions can be exploited.  To perform spectroscopic 

measurements at arbitrary wavelengths, high-powered CW lasers can be converted to tunable 

light using dye lasers and/or other energy conversion systems such as doubling or mixing 

crystals, sometimes in combination with other CW lasers.   Currently, high-resolution (i.e. 

laser linewidth much narrower than the typical absorption linewidths) CW lasers are available 

commercially from the ultraviolet (UV) to the infrared (IR).   The main limitations of CW 

lasers are their relatively low power output which may require long integration times to 

acquire data with sufficient signal-to-noise ratio in some applications. Whereas absorption 

spectroscopy, which detects the full laser beam, can be performed at hundreds of kHz, 

scattering approaches like the Rayleigh, Raman and LIF that use CW lasers typically acquire 

data several orders of magnitude slower because of low signal levels.  For comparison, a 

typical hypersonic flow with a gas velocity of 2000 m/s, a 1 mm resolution would require 500 

ns time resolution, corresponding to 2 MHz data acquisition rate.  



Diode lasers provide CW light in most wavelength ranges of spectroscopic interest from 

the ultraviolet to the far infrared. Wavelengths can be varied over a limited range by 

modulating the temperature or injection current of the diode, at up to MHz scan rates,
12

 

providing extremely high time resolution for wavelength-scanning measurements.  Because 

the lasers and detectors are small, have no moving parts, and the lasers are often coupled to 

optical fibers, these devices can be used to produce relatively robust measurement systems 

that are particularly well suited to the often harsh environments associated with 

nonequilibrium hypersonic flows.  These characteristics have made diode laser absorption 

spectroscopy a particularly desirable technology for hypersonic flight testing programs.
13

   

Pulsed lasers typically producing much higher power (on the order of 10
8
 Watts) for short 

durations, typically over a few nanoseconds, have been commercially available for about 

three decades. Such powers are usually required to perform nonlinear spectroscopic 

measurement techniques like CARS.  These lasers are usually specified in terms of the 

energy per pulse. For example, frequency doubled Nd:YAG laser systems can produce 1 J per 

pulse at 532 nm. Again, this type of laser is not broadly tunable but it can be used to pump a 

dye laser or optical parametric amplifier and together with other conversion devices 

(doubling or mixing crystals) can produce high-energy tunable output from the UV to the IR. 

Ten ns duration pulsed lasers allow measurements to be made with “flow freezing” producing 

time resolution.  Raman, Rayleigh, PLIF and CARS systems based on Nd:YAG lasers 

typically integrate signals over 10 to 500 ns time durations. Unfortunately, commercially 

available high energy pulsed laser systems typically operate at repetition rates of 10 to 100 

Hz, which according to the calculations above, are too slow to resolve unsteady flow 

fluctuations.  Therefore, individual measurements can be considered instantaneous, but 

successive measurements are not correlated in time.  The linewidth of pulsed lasers is 

typically broader than high resolution narrowband lasers because of a number of factors.  A 

consequence of the Heisenberg uncertainty principle is that the shorter the duration of a laser 

pulse, the spectrally broader the laser pulse will be.  Consequently, the spectrally narrowest 

10 ns pulses typically have line widths equal to 0.004 cm
-1

.  These pulses are routinely 

obtained by injection seeding pulsed Nd:YAG lasers so that only a single longitudinal mode 

is amplified.  These injection-seeded pulses are much broader than commercially available 

CW Nd:YAG lasers.  Without seeding, the same Nd:YAG laser would have an even larger 

linewidth of about 1 cm
-1

.  Nd:YAG-pumped narrowband dye lasers typically have line 

widths within the range of 0.03 to 0.5 cm
-1

, though modifications such as injection seeding or 

intercavity etalons can be used to reduce the linewidth of a pulsed dye laser. Conversely, 

spectrally selective elements can be removed to create a broadband (red) dye laser with a 

linewidth of 20 nm (~ 500 cm
-1

) or more.
14

 

There are several new laser technologies that have been developed in the past decade with 

high output power and fast repetition rates. This allows for flow freezing, temporally resolved 

measurements to be obtained with good signal-to-noise levels.  Pulse burst laser technology 

uses Nd:YAG lasers that have been optimized to be pulsed 25-100’s of times in succession at 

frequencies up to 1 MHz.  Pulse burst laser technology is not yet widely commercially 

available although it is being brought to market.  Another relatively new technology that 



produces high power and high repetition rates is known as ultrafast or femtosecond lasers. As 

the name implies, the duration of the laser pulses can be nearly a million times shorter than a 

typical nanosecond laser.  While the energy per pulse (typically less than 10 mJ, for 

commercially available systems) is much lower than ns-based systems, the output power can 

be on the order of 10
10

 Watts, opening up new opportunities for coherent measurement 

approaches.  Such high powers can be efficiently converted using optical parametric 

amplifiers and doubling or mixing crystals to extend the tuning range of femtosecond lasers 

to the UV and IR.  Femtosecond lasers are commercially available at repetition rates up to 10 

kHz - still two orders of magnitude too slow to time-resolve unsteady hypersonic flows.  

Even though the resulting measurements would not be time correlated, such high data rates 

are especially useful for acquiring statistics in short duration or expensive-to-operate test 

facilities.  The higher data rate allowed by femtosecond lasers would be beneficial in most 

experiments. Picosecond-duration lasers are also available for spectroscopic measurement 

applications, though picosecond lasers have neither the high energy per pulse of nanosecond 

lasers nor the high peak power of femtosecond lasers.  The linewidth of a femtosecond laser 

is closely related to the duration of the pulse. Typical off-the-shelf femtosecond lasers with 

pulse duration on the order of 100 fs have linewidths of ~10 nanometers.  While this 

relatively large linewidth prevents conventional high-resolution spectral-domain 

spectroscopy, the time domain can instead be used to obtain detailed spectral information. 

Most measurement techniques use some type of spectrally selective optic or optical 

system to collect or process light.  The simplest spectrally selective optic consists of filters 

that are placed in front of detectors or cameras. Absorptive and reflective filters are 

commercially available (or can be custom manufactured at a reasonable cost) at many 

wavelengths, for example to block the laser’s wavelength and collect the signal in another 

wavelength.  In some applications, the narrower the spectral filter the better, since the signal 

is often very close to the laser’s wavelength such as in Rayleigh and rotational Raman 

scattering.  Spectral filters blocking a 10-20 nm full width half maximum (FWHM) wide 

band near the laser’s wavelength with greater than 6 orders of magnitude of attenuation while 

transmitting >95% of the Raman shifted signal can be purchased.  However, such filters do 

not provide sufficient resolution to observe Doppler broadening and Doppler shifts required 

for gas temperature and velocity measurement from Rayleigh scattering, for example.  

Gaseous filters, such as I2 vapor contained in a heated cell, can provide spectrally narrow 

(0.0015 nm or 0.05 cm
-1

 FWHM) and high (6 or more orders of magnitude) absorption which 

is useful in many applications.
15

 Etalons are spectrally dispersive optics or optical systems 

that are made of a pair of partially reflective mirrors.  An etalon’s resolution depends on its 

flatness and reflectivity; the resolution can be high enough (0.01 cm
-1

) to resolve the Doppler 

broadening (0.05 - 0.5 cm
-1

) in typical hypersonic flow experiments and have an advantage 

over gas filters in that they can operate at any wavelength.   Spectrometers, containing a 

dispersive optic such as a prism or grating, are typically used to disperse a signal beam into a 

spectrum that can be acquired by a detector or camera.  Small (100 mm focal length), easy-to-

use fiber-optic coupled spectrometers are commercially available for applications in which 

spectral resolution on the order of 0.02 nm (5 cm
-1

) is acceptable. Larger spectrometers (for 

example with 1 meter or longer focal length) provide higher resolution spectra – the 



resolution generally increasing linearly with the focal length.  Coupled with a CCD camera, 

such spectrometers can typically achieve resolutions of 0.15 cm
-1

/pixel.
16

  Resolution can 

sometimes be improved by using a camera with smaller pixels or by using a telescope at the 

exit of the spectrometer to enlarge the spectrum.
17

 

For spectroscopic measurement techniques, light is detected with a variety of different 

single point, line, or imaging devices. Among single point detectors, photodiodes are 

typically used in applications where the intensity of the collected light is high, for example in 

absorption spectroscopy.  Photodiodes are used because they are linear over a wide range of 

light intensities, have fast time response, require relatively simple electronics and are 

inexpensive to produce.  Photomultiplier tubes (PMTs) are usually single-point detectors, but 

they allow variable gain useful for amplifying light at low signal levels, while also providing 

a fast (sub-ns) time response. While photodiodes and PMTs are both available as linear and 

even two-dimensional arrays, other camera technologies are usually used in spectroscopic 

applications where high resolution spatial or spectral information is required. Charge coupled 

device (CCD) cameras provide the linear response (less than 1% nonlinearity), high dynamic 

range (12-16 bits) and high sensitivity required by many spectroscopic imaging or spectral 

applications. For applications requiring short exposures, for example to freeze the flow or to 

reject unwanted luminosity while capturing a transient signal, CCD cameras can be fitted 

with an image intensifier allowing exposure times down to hundreds of picoseconds.  CCD 

cameras having 1 million pixels or more typically frame at tens of Hz consistent with high-

powered YAG laser systems.  CCD camera technology has been extended to much higher 

speeds (up to MHz rates) albeit with lower spatial resolution (for example 160x160 pixels).  

Recently, Complementary metal–oxide–semiconductor (CMOS) camera technology has 

allowed megapixel cameras to frame at tens of thousands of Hz allowing new opportunities 

for optical measurement techniques.  

3. Laser-Induced Fluorescence (LIF) 

Laser-induced fluorescence (LIF) uses 

a laser to probe individual species within 

the flowfield, providing information 

pertaining to both the thermodynamic 

(pressure, temperature, mole fraction) and 

fluid dynamic state (velocity) of the gas. 

The laser can be focused to a point for LIF 

measurements, formed into a thin sheet 

using a cylindrical and focusing lens in 

combination for planar LIF measurements 

(PLIF), or used to illuminate a volume for three-dimensional or stereoscopic imaging. 

Reviews of the laser-induced fluorescence measurement technique are available from 

Eckbreth
9
 and others.

18,19
 The measurement technique works by inducing a transition, usually 

of an electron, from a lower energy state (E1) to an excited energy state (E2) via stimulated 

absorption of one or more photons in the atomic or molecular species of interest. In a two-

level model assumption, the atom or molecule of interest in the E2 state then returns to the E1 

 

Figure 3.1: Two-level energy model of single-

photon fluorescence. 



state by transferring energy via spontaneous emission of a photon (fluorescence), or by 

transferring energy non-radiatively through a collision with another atom or molecule 

(collisional quenching).  

For an atom, such as N or O, the energy required to induce an absorption transition of an 

electron to the E2 state from the ground (E1) state is equal to the energy difference between 

the atom with an electron occupying the excited electronic orbital and the atom’s ground 

electronic orbital configuration, respectively. For molecules, such as N2 and O2, the energies 

of the E2 and E1 states include the energies associated with the vibrational and rotational 

motion of the molecule in addition to the energy associated with the molecule’s electronic 

configuration. Figure 3.1 shows a generalized two-level energy model for fluorescence with 

the stimulated absorption transition induced by a single photon. 

In Fig. 3.1, the rate at which the 

absorbing medium in the E1 state 

transitions to the E2 state is proportional to 

the product of the Einstein coefficient for 

stimulated absorption, B12, and the laser’s 

spectral irradiance (power per unit area per 

unit frequency),       , where I is the 

irradiance (power per unit area) and Lν is 

the laser spectral profile or laser line-shape 

(per unit of frequency).9 The energy of the 

absorbed and emitted photons is the frequency,  multiplied by Planck’s constant, h. The 

Einstein A21 and B12 coefficients describe the probabilities for emission and absorption,
20

 

respectively, while Q21 is the collisional quenching rate. For absorbing species, the line-shape 

function, Yν, describes the spectral width for a particular energy level. 

As detailed in Reference 9, the line-shape function combines effects from Gaussian-

shaped Doppler broadening and Lorentzian-shaped homogeneous broadening mechanisms.  

The integral of the product of the absorption line-shape function, Yν, and the laser’s spectral 

profile, Lν, is defined by the overlap integral,   ∫      , and describes what portion of a 

particular absorption transition is affected by the incident laser radiation. The rate constant 

for stimulated absorption, W12, which describes the rate at which species in E1 transition to E2 

via absorption of a single photon
9,19

 is then given by: 

           (3.1) 

As the laser passes through a flowfield, it is absorbed at a rate corresponding to Eq. 3.1, 

inducing a transition between the E1 and E2 states. Consequently, as the laser continues to 

propagate through the flowfield, the irradiance is continually diminished as a result of the 

absorption process as described by the Beer-Lambert law.9 

In certain circumstances, the energy separation between the E1 and E2 states for the 

species being examined with LIF is such that the frequency of a photon necessary to induce 

an absorption transition is far into the ultra-violet portion of the electro-magnetic spectrum. 

 

Figure 3.2: Two-level energy model of two-

photon fluorescence. 



However, achieving frequencies far into the UV with conventional laser systems can be 

difficult.
20

 Additionally, strong absorption of UV radiation by many materials and gases 

(including air) below approximately 200 nm limits the application of laser systems capable of 

producing such frequencies.9 One solution is to use two-photon LIF techniques to probe 

species having absorption transitions in the deep UV. With a two-photon technique, the 

frequency (and therefore energy) of each photon is half that required by a single photon for 

the same transition.  Figure 3.2 shows a generalized two-photon fluorescence energy model 

for two-photon LIF. For atomic species, such as N or O, spontaneous emission is often 

observed between E2 and an intermediate energy state, E3.   

For the two-photon LIF process in Fig. 3.2, the two-photon absorption cross-section 

results in a rate constant different from that in Eq. 3.1 and has the form:
9,20,21-24

 

         
   (3.2) 

where C12 relates to the two-photon absorption cross-section. Note that the dependence of the 

rate constant scales with the square of the incident laser irradiance, I. This behavior arises 

from the probability of observing the simultaneous arrival of two photons, which is the 

square of the probability for the arrival of a single photon.
20

  

In both Figures 1 and 2, Q21 is the so called quenching rate constant. It describes the rate 

at which energy is transferred through non-radiative collisions between excited atoms or 

molecules in the E2 state and atomic or molecular collision partners of species i. This rate 

constant is computed similarly to that in Ref. 9 as: 

       ∑              (3.3) 

where        ⁄  is the total population of the excited state,    is the mole fraction of 

quenching species i,      is the collision cross-section between the excited species, s, and 

quenching species, i, and      √              ⁄  is the mean relative velocity
25,26

 between 

the excited species and quenching species, with      being their reduced mass and Ttrans their 

translational temperature. The spontaneous emission coefficient, A, in Figures 1 and 2 is also 

known as the Einstein A coefficient and describes the probability for spontaneous emission of 

a photon by an atom or molecule in the excited state.
20 

 

For the two-level model in Fig. 3.1, the rate of change of the populations N1 and N2, in the 

E1 and E2 states, respectively, can be obtained from relations similar to those presented in 

Ref. 9: 

 
   

  
  

   

  
          (       ) (3.4)

  

                 (3.5) 

Equation 3.5 is a conservation law saying that the combined populations of the E1 and E2 

states are equal to the initial population of the excitation species’ E1 state, NS, which is in turn 



the product of the species mole fraction,   , the total population,   , and the temperature-

dependent Boltzmann fraction,   . Equation 3.4 assumes that the laser intensity is 

sufficiently weak such that stimulated emission (W21) can be neglected.  

The Boltzmann fraction,   , describes the ratio of the number of absorbers initially 

occupying E1 relative to all possible energy states at a particular temperature, T, when a 

system is in thermodynamic equilibrium.
26

 This term has a general form given by:
9,26,27

 

    
   

      ⁄

∑    
      ⁄

 

 (3.6) 

where    is the degeneracy of state j. Degeneracy refers to the number of quantized states that 

exist in a given energy level, Ej.
26

 The summation in the denominator is termed the partition 

function, Q.  

More involved differential rate equations can be formulated for the two-photon method 

like those presented in Ref. 24. It should be noted that the models presented in Figures 1 and 

2 neglect transitions from E1 to E2 resulting from collisions, with a rate constant of Q12. This 

is usually a good assumption for large energy separations associated with the visible or UV 

transitions typically employed for LIF. Transitions from the E2 and E3 states resulting from 

pre-dissociation (Qpre) and ionization (Qion), which are described in Refs. 9 and 19, have also 

been neglected. 

3.1 Linear, Steady State Solution 

If a continuous laser source is used to populate the E2 state and detection of fluorescence 

occurs well after this source is turned on, then N2 can be assumed to have reached its steady-

state value. From this assumption, the left-hand-side of Eq. 3.4 is set to zero, resulting in two 

algebraic equations (Eqs. 2.9 and 2.10) for two unknowns (N1 and N2). The same assumption 

can be made to determine the population, N2, achieved by a pulsed laser source if the time 

required to reach steady state is short compared to the duration of the pulse. This population 

is computed as: 

    
         

           
 (3.7) 

The product of this excited state population and the spontaneous emission rate constant is 

N2A21 and represents the number of transitions per unit time and per unit volume. Integrating 

this constant value with respect to time gives the total number of transitions per unit volume 

during the detection period. Substituting Eq. 3.1 for W12, and assuming that W12 is small 

compared to A21 and Q21 (which is valid for low-intensity excitation), a relation for the total 

number of photons collected via fluorescence by the detection device is:
19

 

                       
 

  
  (3.8) 

where      (       )⁄  is the fluorescence yield, tdet is the period of detection, V is the 

volume probed by the laser source,   is the solid angle over which detection occurs, and   is 



the detection efficiency. The fluorescence yield,  , describes the fraction of de-excitation 

transitions that occur via spontaneous emission (fluorescence) relative to all de-excitation 

transitions (i.e. spontaneous emission and collisional quenching, assuming pre-dissociation 

and ionization are negligible). Neglecting the constants in Eq. 3.8, a generalized form for the 

fluorescence signal similar to that presented in Refs. 19 and 28, including its thermodynamic 

( ,P,T) dependencies and velocity dependence (arising from the Doppler effect), is: 

            ( )     (        ) (         )     (3.9) 

3.2 Non-Steady State Solution 

For a pulsed laser source, if N2 is changing during the period of detection, then the 

entirety of Eq. 3.4 must be solved to obtain the time-dependent population, N2(t). Similarly, if 

the duration of the laser pulse is of the same order of magnitude as the time required to reach 

steady state, then the population at the end of the laser pulse, N2(tlaser), can be obtained by 

solving Eq. 3.4. By assuming the laser intensity behaves as a Heaviside step function in time, 

the population N2(t), existing during laser excitation can be calculated by substituting the 

relation for N1 from Eq. 3.5 into Eq. 3.4 and integrating with respect to time:
19
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 (      )            (3.10) 

where              . The inverse of this value, r
-1

, is the characteristic time needed 

to achieve steady state. This solution assumes an initial condition which typically specifies 

the initial excited state population to be zero (N2(0) = 0). 

When the laser source is turned off, the only pathways to return to the ground state from 

the excited state are assumed to be through either spontaneous emission or collisional 

quenching. Therefore, for the period following laser excitation, the first term on the right-

hand-side of Eq. 3.4 is zero. This modified version of Eq. 3.4 is then used to determine the 

excited-state population for the period after laser excitation by integrating with respect to 

time:
19
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This solution assumes that the laser intensity is turned off instantaneously, with an initial 

condition given by Eq. 3.10, evaluated at         . This solution shows that the population 

in the excited state decreases exponentially in time after the laser pulse. 

The term      (       )
   in Eq. 3.11 is referred to as the fluorescence lifetime and 

describes the rate at which the population in a particular excited state transitions to a lower 

state. As with the derivation of Eq. 3.8, the total number of photons collected via 

fluorescence over the detection period is determined by multiplying Eqs. 2.16 and 2.17 by the 

spontaneous emission rate Einstein coefficient    , accounting for the collection volume and 

detection system, and integrating with respect to time:
19
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Like Eq. 3.8, this solution assumes that W12 is small compared to A21 and Q21. However, if 

the laser irradiance, I, is sufficiently large such that W12 and W21 are of the same order of 

magnitude as Q21 and A21, then both must be included in the solution. This gives       

            during laser excitation. By defining the irradiance at which the 

fluorescence signal saturates as
9,19

      (       ) (       )⁄  and rearranging   such 

that       
  [     ⁄   ], a more detailed formulation for the fluorescence signal, including 

effects from laser saturation, is given as:
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  (3.13) 

When       , Eq. 3.13 simplifies to a form similar to that of Eq. 3.10. 

3.3 Multi-Level Fluorescence Modeling 

In the preceding discussion, a simplified two-level model of fluorescence was put forth, 

which provides for an understanding of the most basic physical mechanisms and energy 

transfer processes involved. This basic description allows for the development of a general 

analytic relation between the fluorescence signal and these mechanisms and processes. 

However, such a simple description does not account for rotational or vibrational energy 

transfer occurring between the absorbing species and the surrounding gas mixture. Since each 

electronic energy level depicted in Fig. 3.1 can have vibrational and rotational fine structure 

for molecular species, such energy transfer processes result in a redistribution of the 

populations to various vibrational and rotational states. To account for these processes, 

analytical models including multiple energy states and a system of population rate equations 

are used. Discussion of such modeling aspects can be found in Refs. 9, 18 and 19. 

3.4 Translational Temperature 

Translational temperature resulting from the random thermal motion of the absorbing 

species can be determined by measuring the Doppler-broadened width of the absorption line-

shape function
9
 If the temperature, pressure, and mole fractions at a particular location are 

assumed to be constant, then the Boltzmann fraction and fluorescence yield in Eq. 3.9 at that 

location are also assumed to be constant. If these assumptions are valid, and if the laser line-

shape function is known, then the fluorescence signal will be proportional to the overlap 

integral at a particular frequency. By scanning the laser’s spectral frequency across a 

particular transition, the absorption line-shape function can be obtained. 

Once the absorption line-shape is obtained, the contribution of homogeneous broadening 

mechanisms to the line-shape must be determined to allow for calculation of the Doppler-

broadened line width. Homogeneous broadening can include components from Van der 

Waals broadening and Stark broadening effects,
29

 in addition to collisional pressure-

broadening effects. In many cases, the Van der Waals and Stark effects can be ignored, 

resulting in homogeneous broadening from pressure alone. If the pressure is known, then the 

component of the line-shape due to homogeneous broadening can be determined. Alternately, 

if the pressure is sufficiently low, then collisional pressure broadening can be ignored. A 



fitting algorithm can then be used to determine the contribution of Doppler broadening to the 

line-shape. This allows for a more accurate temperature calculation as only one parameter, 

   , must be iterated upon to fit the line-shape. The translational temperature, Ttrans, of the 

absorbing species can then be obtained by modifying Eq. 3.2: 
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Both single-photon
29- 31

 and two-photon
32 - 36

 methods have been used to measure 

translational temperature. The requirement of scanning a laser’s frequency to resolve the 

Doppler-broadened line-shape can limit the time resolution of the temperature measurement 

such that only average translation temperatures can be obtained. 

Figure 3.3 shows LIF data (dotted 

line, upper plot) from Ref. 29 

obtained by performing a frequency 

scan with a semiconductor laser 

source over an argon metastable 

transition centered at 810.4 nm. Each 

frequency scan over the absorption 

transition took 500 seconds to 

complete. In the experiment, argon 

plasma was generated using an 

inductively-coupled plasma torch. 

The translation temperature, T, and 

electron number density, ne, were 

obtained by fitting the Voigt line-

shape function, which accounted for 

both Doppler-broadening and several 

collisional broadening mechanisms, 

to the experimental LIF data (solid 

line, upper plot). The lower plot in Fig. 3.3 shows the residual: the difference between the 

experimental LIF data and the fitted line-shape. An analysis of one of the scans in Ref. 29 

gave Ttrans = 6800±690 K, resulting in a ~10% measurement uncertainty.  

3.5 Rotational Temperature 

For molecules, the rotational temperature, Trot, can be obtained by exciting two absorption 

transitions and relating the signal intensities observed from each transition to the rotational 

temperature through modification of Eq. 3.9. This method was demonstrated in Ref. 37 using 

a two-photon excitation method to measure rotational temperature at a point in a cold (~300 

K) turbulent flow. For each rotational transition, the population fraction,   , is dependent on 

the rotational energy, FJ, rotational quantum number, J, and rotational temperature, Trot, of 

the absorbing species. This assumes that excitation occurs in the same vibrational state, v, 

such that the vibrational energy, Gv, is constant for each probed rotational transition. If   ,  , 

 , and      are assumed to be independent of the rotational state of the absorbing species, 

 

Figure 3.3: Experimental LIF data measured (dotted 

line, upper plot) in an Argon plasma and corresponding 

fit of Voigt line-shape (solid line, upper plot) to the 

experimental data (upper plot) and difference between 

experimental data and fit (lower plot). Image reprinted 

from Ref. 29 with permission of the authors and the 

publisher. 



then the ratio, R, of fluorescence signals can be simplified to the following relation, similar to 

that in Refs. 19, 38-41: 
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(     )   [           ⁄ ]
 (3.15) 

where the subscripts i and j refer to the particular excited absorption transition, E is the laser 

energy such that           , a is the beam cross-sectional area, tlaser is the temporal pulse 

width of the laser, and C is a constant which includes all terms that are independent of the 

rotational state of the absorbing species. Solving for Trot in Eq. 3.15 yields: 
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       (     )
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 (3.16) 

Here,       (         ), and is the difference in energy between the probed rotational 

levels. To minimize the uncertainty associated with the measured rotational temperature, 

     , a propagation-of-error analysis can be performed on Eq. 3.15 by computing the 

derivative of the signal ratio, R, with respect to Trot:
39,42

 

 
     

    
 
      

     

  

 
 (3.17) 

This analysis suggests that by increasing      , and thereby probing two widely 

separated rotational energy levels, the uncertainty in Trot can be proportionally decreased for a 

given error in R.
39

  

Figure 3.4 shows a mean rotational temperature map of nitric oxide measured in the wake 

of a 6.35-mm-thick flat plate in a Mach 3 turbulent flow, taken from Ref. 42. The map was 

obtained by averaging a series of images taken for excitation from rotational levels J = 8.5 

and J = 10.5, computing the ratio of 

the two averaged images, and using a 

relation similar to that in Eq. 3.16 to 

compute Trot. In this experiment, it 

was shown that the turbulent nature 

of the flowfield required excitation of 

two relatively closely spaced 

rotational levels (J = 8.5 and 10.5). 

This requirement arose from the 

nonlinear relation between R and Trot 

in Eq. 3.16, which can be heavily 

influenced by flowfield turbulence.  

Figure 3.4 shows a time-averaged 

temperature measurement obtained 

using a single laser, which probed the two transitions in separate wind tunnel runs.  To obtain 

instantaneous temperature measurements in a plane using this method, a two-laser, two-

camera system can be used, as in Refs. 38-40. In Ref. 39, instantaneous two-line temperature 

 

Figure 3.4: Rotational temperature map obtained in the 

supersonic wake of a flat plate using two-line rotational 

thermometry. Image reprinted from Ref. 42 with 

permission from the authors and Springer Science and 

Business Media. 



imaging of OH in a shock tube at a nominal pressure of 40.53 kPa and temperature range of 

1500-2950 K resulted in temperature measurements with errors of ~20%-25%. 

Multi-rotational-line temperature methods also exist and can potentially provide relatively 

higher sensitivity and dynamic range Trot measurements, particularly at lower temperatures 

where rotational energy levels are closely spaced.
43

 Such methods are appropriate when large 

variations in Trot are expected, requiring probing of several rotational levels. The rotational 

temperature is computed by exciting multiple rotational lines and measuring the signal. This 

measured fluorescence signal, together with the measured laser energy are then substituted 

into the following relation:
41
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       (     )
] (3.18) 

A plot of this logarithmic term versus FJ,i, known as a Boltzmann plot, yields a linear trend 

with a slope of        . Refs. 43-46 used this method to characterize rotational temperatures 

in arc jet flows. An alternative multi-line approach used in Ref. 47 for measurements in a 

flame involved fitting a simulated rotational spectrum to experimental data to obtain Trot. 

3.6 Vibrational Temperature 

The vibrational temperature, Tvib, can be measured using an approach similar to that used 

for rotational temperature. For Tvib measurements, a two-line approach can be used. Such an 

approach is presented in Ref. 48, in which the same rotational levels,      , are probed in 

two different vibrational levels,      , resulting in nearly constant rotational energies, FJ, 

but different vibrational energies, Gv. Assuming   ,  ,  , and      to be independent of the 

rotational and vibrational levels, the ratio of fluorescence signals, R, can be used to measure 

vibrational temperature, Tvib, in a way analogous to that in Eqs. 2.21 and 2.22. 

As with rotational temperature measurements, a multi-vibrational-line temperature 

measurement method can also be used to infer Tvib by modifying the logarithmic term from 

Eq. 3.18:
41
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If the rotational level,   , is fixed and the rotational energy,     , is kept approximately 

constant, then the vibrational temperature can be computed independently of rotational 

temperature.
41

 This is done by generating a Boltzmann plot of vibrational energy,     , versus 

this logarithmic term, resulting in a linear relation with a slope equivalent to    (      ). 

Figure 3.5(a), taken from Ref. 41, shows a Boltzmann plot generated using a relation like 

that in Eq. 3.19 to infer vibrational temperature. The image data in the experiment was used 

to measure Tvib at a point downstream of a free-piston shock tunnel nozzle on the centerline 

of the flow. In this experiment, three absorption transitions were selected that had nearly 

constant rotational energies, FJ, but differing vibrational energies, Gv. In Fig. 5(b), also taken 

from Ref. 41, the vibrational temperature of NO was observed to be constant with distance 



downstream of the nozzle, even though the nozzle was conical and the rotational temperature 

was shown to be decreasing with distance downstream, as the flow expanded. A simple 

computational model (shown in Fig. 5(b)) was not able to accurately predict the measured 

vibrational temperature.
41

 As shown in Fig. 5(b), Tvib = 785±30 K, giving an uncertainty of 

~4%. 

 

(a) 

 

(b) 

Figure 3.5: Vibrational temperature measurement obtained by probing multiple vibrational levels and 

generating (a) a Boltzmann plot and (b) vibrational temperatures plotted as a function of distance 

downstream. Images taken from Ref. 41 with permission of the authors. 

  

3.7 Species Concentration 

Returning to the simplified Eq. 3.8, it is possible to quantify the number density,     , 

using LIF. However, several factors complicate the interpretation of a LIF signal and its 

relation to concentration. For instance, Q21 in Eq. 3.3 depends on the concentration and 

temperature of the absorbing species and all other constituent species in the probed mixture. 

If the temperature of the mixture were unknown, then a separate measurement of temperature 

would be required to determine both Q21 and the temperature-dependent Boltzmann fraction. 

The measurement system also requires an appropriate absolute intensity calibration to a 

known reference, which can be further complicated by the collection optics and filters used in 

such a measurement. The response of the detection system as a function of      intensity and 

spectral frequency must also be well understood. The following discussion highlights some of 

the methods that have been used to provide concentration measurements that address some of 

these issues. 



3.7.1 Non-quantitative flow visualization  

A relatively simple approach to 

obtaining a qualitative visualization of 

species concentration is to use laser-

induced fluorescence to visualize the 

spatial distribution of the absorbing 

species. To first-order, the 

fluorescence signal in Eq. 3.9 is 

proportional to the relative species 

concentration,      , assuming all 

other terms are constant. In hypersonic 

non-equilibrium test facilities, the 

formation of reactive species at the 

high enthalpies required to simulate 

true flight conditions can influence the 

gas dynamics under study. For 

example, arc-heated facilities are often 

used to simulate true flight enthalpy 

conditions by depositing significant 

energy into a test gas and then expanding that gas to hypersonic Mach numbers. This process 

can result in a non-uniform species distribution resulting from the unsteady nature of the 

electrical arc.  

Figure 3.6 from Ref. 49 shows instantaneous nitric oxide (NO) planar LIF images in false 

color acquired in the Hypersonic Materials Environmental Test System (HyMETS) arc-

heated facility at the NASA Langley Research Center for a flow simulating earth’s 

atmosphere at several enthalpy conditions. The flow in this figure is from left to right. The 

object on the right-hand edge of the field of view is a 25 mm diameter silicon carbide tipped 

probe aligned with the axis of symmetry of the facility nozzle. For the lowest enthalpy 

condition shown (6.5 MJ/kg), the spatial distribution of NO within the core of the nozzle flow 

is irregular, suggesting that the energy deposition by the arc upstream of the nozzle is non-

uniform. As the flow enthalpy increases to 18.4 MJ/kg, the distribution of NO remains 

irregular and the total production of NO appears to decrease.  

Other examples of such LIF-based flow visualization experiments are provided in Ref. 

50. The interpretation of such flow visualization images and their relation to quantitative 

species concentration measurement is complicated.  The remaining terms in Eq. 3.9, such as 

the quenching rate constant, often vary significantly in high-speed non-equilibrium flows and 

can be difficult to determine. The sections that follow detail approaches for quantitative 

measurements of concentration which address such complicating factors. 

 

Figure 3.6: Instantaneous nitric oxide planar LIF flow 

visualization images in false color acquired in the 

Hypersonic Materials Environmental Test System 

(HyMETS) arc-heated facility at NASA Langley 

Research Center. Flow is from left to right. Images taken 

from Ref. 49 with permission of authors. 



3.7.2 Saturated LIF 

To avoid the complications associated with an unknown quenching rate constant, a 

relatively high laser irradiance where        can be used to probe the absorbing species.
9
 In 

this instance, the stimulated absorption and emission rates dominate both collisional 

quenching and spontaneous emission rates; that is, (       )  (       ). The result 

of this leads to a modified form of Eq. 3.8 where stimulated emission is included and the 

fluorescence signal is of a form similar to that in Ref. 9:  

               
   

       
     

 

  
  (3.20) 

If A21, B12, and B21 are known, then this method can be used to measure concentration if 

the remaining terms, such as   , can be determined. In practice, it is difficult to achieve 

        because high powered pulsed laser beams are typically Gaussian, both spatially and 

temporally, so much of the acquired signal can originate from the lower intensity edges of the 

Gaussian beam, which excite the fluorescence linearly.
9
 Further discussion of this method is 

found in Refs. 9 and 18. 

3.7.3 Pre-dissociation LIF 

Pre-dissociative fluorescence involves inducing a transition to a level in the excited state, 

which can then couple to a dissociative state, resulting in dissociation of the molecule into 

smaller molecules or atoms. Pre-dissociative fluorescence concentration measurements are 

similar to saturated fluorescence measurements in that the dependence on Q21 in Eq. 3.8 can 

be removed, in this case by exciting the absorbing species to a pre-dissociative state where 

the pre-dissociation rate, Qpre, is faster than both Q21 and A21.
9
 A discussion of this 

mechanism can be found in Refs. 51 and 52 and a general discussion of the method can be 

found in Refs. 9 and 18. An application of the pre-dissociative technique was presented in 

Ref. 53 to measure time-averaged OH concentrations in a supersonic hydrogen-air turbulent 

combusting flow. Concentrations as high as 5.4x10
16

 cm
-3

 with uncertainties of 21% or less 

were reported.
53

 

3.7.4 Short-Pulse LIF 

There are two methods of using short laser pulses to quantitatively determine 

concentration.  The first probes the species of interest with a laser pulse having a duration 

much shorter than the time between collisions with other species. With this method, the 

concentration can be determined by relating the measured exponential fluorescence decay 

behavior to the initial signal magnitude during the short-pulse excitation period. While this 

decay is a function of both A21 and Q21, extrapolation of the exponential behavior to initial 

excitation provides an inferred peak intensity magnitude, which is assumed to be independent 

of collisional quenching effects.
18

 This independence is assumed since a sufficient number of 

collisions, required to transfer energy non-radiatively from the excited state, would not yet 

have occurred. A discussion of this method can be found in Ref. 18. Reference 54 uses a form 

of this short-pulse method for OH concentration measurements in a turbulent flame.  



A second method for measuring concentration involves using a laser pulse that is shorter 

than or comparable to the fluorescence lifetime, but not shorter than the collisional timescales 

described in Ref. 9. In this approach, the fluorescence lifetime is measured directly, usually 

using a photomultiplier tube. This short-pulse LIF method can also be used to determine 

spontaneous emission
55

 and collisional quenching
56,57

 rate constants when the thermodynamic 

conditions of the probed mixture are known. Even for unknown conditions, measurement of 

the fluorescence lifetime allows for the quenching rate to be determined and accounted for. 

Refs. 58  and 59  use a two-photon LIF technique in which fluorescence lifetime 

measurements are used to correct for collisional quenching effects in a similar manner. Figure 

3.7(a), taken from Ref. 58, shows spectral scans of atomic nitrogen in the NASA Ames 

Aerodynamic Heating Facility arc jet flow (red data) and laboratory flow reactor (green data). 

Fluorescence measurements from the flow reactor and a krypton reference cell were used for 

intensity calibration in order to provide absolute atomic nitrogen number densities. The 

fluorescence lifetimes observed in the arc jet and flow reactor were used to correct for 

collisional quenching effects. Figure 3.7(b), also taken from Ref. 58, shows radial atomic 

nitrogen number density measurements for two air/argon arc jet runs taken 35.6 cm 

downstream of the nozzle exit. The reported uncertainty in number density was ~12%.
58

 

A similar approach is being developed for mole fraction measurements in hypersonic 

turbulent boundary layers using naphthalene PLIF.
60,61

 One benefit of using naphthalene is 

that it sublimates at slightly elevated temperatures (with respect to room temperature), 

allowing for the study of scalar transport effects in transitional boundary layers, turbulent 

boundary layers, and ablating surfaces. 

3.7.5 Bi-Directional Beam LIF 

If two overlapping, counter-propagating beams are tuned to the same transition, the ratio 

of fluorescence signals results in the cancellation of all terms in Eq. 3.9 at a point in the flow, 

with the exception of the spatially dependent laser irradiance. Thus, the spatially varying ratio 

 
(a)                                                                                   (b) 

Figure 3.7: (a) Spectral scans of atomic nitrogen in the NASA Ames Aerodynamic Heating Facility 

arc jet flow and in a laboratory flow reactor and (b) measured number densities spanning the radial 

direction of the arc jet 35.6 cm downstream of the nozzle exit. Image taken from Ref. 58 with 

permission of the authors. 



of fluorescence signals can be equated to the spatially varying ratio of irradiances of the 

respective beams. The Beer-Lambert law can then be used to relate irradiance, and therefore 

fluorescence signals, to number density via the relation:
62

 

   ( )      ( ) (3.21) 

where   ( ) is the transition cross-section of the absorbing species, describing the absorbing 

species’ interaction with the incident irradiance on a per atom or molecule basis.
20

 Combining 

Eq. 3.21 with the Beer-Lambert law allows for a relation between the natural logarithm of the 

signal ratio and the absorbing species number density to be made:
63
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where       ( )  and       ( )  are the 

spatially varying fluorescence signal 

intensities of the forward- and 

backward-propagating beams, 

respectively. In Eq. 3.22,      is the 

peak transition cross-section, with 

       (  ).
20

  

This concentration measurement 

technique was first demonstrated in 

Ref. 63. The technique only requires 

that a value for      be known in order 

to make an absolute concentration 

measurement of   .
63

 For total 

absolute concentration, however,    

must either be assumed or measured, 

as from Eq. 3.5,          . Figure 

3.8, taken from Ref. 63, graphically 

depicts the process of obtaining a 

concentration of OH in a methane-air 

flame. In the top plot, the fluorescence 

intensities are plotted versus position 

across the flame. The middle plot 

shows the natural logarithm of the ratio 

of these two signals with position and 

the bottom plot shows the calculated 

absolute OH concentration using Eq. 

3.22. Measurements of OH 

concentration were also made in a 

plane in Ref. 63 by imaging 

fluorescence from two counter-

 

Figure 3.8: Graphical depiction of methodology used 

to measure concentration using bi-directional beam 

LIF. Top plot shows spatially varying fluorescence 

signals, middle plot shows natural logarithm of ratio of 

these signals, and bottom plot shows OH concentration 

calculated using Eq. 3.22. Image reprinted from Ref. 

63 with permission of the authors and Springer Science 

and Business Media. 



propagating laser sheets. Equation 3.22 was applied using each row of pixels to compute 

signal ratios. Single-shot imaging of a hydrogen/air/oxygen flame allowed for calculation of 

means and standard deviations of OH concentration. Using 10 images for each laser sheet 

direction (20 total images), Figure 3.8 of Ref. 63 showed a mean peak OH concentration of 

~8.8x10
14

 cm
-1

 with a standard deviation of ~±1.7x10
14

 cm
-1

, which is ~19.7% of the mean. 

3.7.6 Combined LIF/Rayleigh/Raman 

In reacting flows, flows undergoing transition-to-turbulence, and turbulent flows, the 

time-varying nature of flow properties makes it difficult to ascertain concentration. By 

making simultaneous time-resolved measurements of temperature and major species 

concentrations, the thermodynamic-dependent parameters in Eq. 3.9 (Boltzmann fraction, 

overlap integral, and fluorescence yield) can be determined, and a direct relation between 

concentration and fluorescence signal established. A combined fluorescence, Rayleigh 

scattering, and Raman scattering measurement technique was used for this purpose in Ref. 

64 . In that experiment, the Raman scattering was used to measure instantaneous 

concentrations for major species (O2, N2, H2O, and H2) in a turbulent hydrogen jet flame. 

This allowed for the mole fractions of the collision partners,   , in Eq. 3.3 to be calculated. 

The combined Rayleigh/Raman scattering measurements were then used to measure 

temperature. The temperature-dependent collisional cross-sections and relative velocity in 

Eq. 3.3 could then be calculated, and the collisional quenching rate, Q21, determined. The 

temperature-dependent absorption line-shape and Boltzmann fraction could also be 

determined from the temperature measurement. The additional measurement of laser energy 

then provided for a direct relation between NO fluorescence signal and concentration to be 

established. In Ref. 65, this technique was used to make concentration measurements of CO 

in turbulent premixed and stratified CH4/air flames. A stated CO concentration accuracy and 

precision (single standard deviation) of 10% and 4.5%, respectively, were given.
65 

3.8 Pressure 

Measurements of pressure can also be obtained using a LIF-based approach, although 

such measurements are not as common as LIF-based temperature and species concentration 

measurements (described in the preceding sections) for determination of the thermodynamic 

state of a gas. This is in part due to the implicit relationship between fluorescence signal and 

pressure in Eq. 3.9, as opposed to the explicit relationships with temperature and 

concentration.  

One method by which pressure can be measured is by tuning to the center frequency of an 

absorption transition and relating the measured fluorescence signal to pressure. For such 

measurements, the selected absorption transition must be carefully chosen such that the 

temperature dependence (i.e.   ) can be removed over the range of temperatures expected for 

the experiment. When this is done, the fluorescence signal is inversely proportional to the 

static pressure if certain additional simplifying assumptions are made. This approach has 

been used in low-quenching (       ) flows
42

 or quenching-dominated (       ) 

flows where the pressure broadening is much larger than the Doppler broadening.
66,67

 



Often for quenching-dominated LIF-based pressure measurements, however, the 

dependence of fluorescence signal on pressure when tuned to the center of an absorption 

transition is nearly removed, as    (and hence pressure) can be factored out of both the 

numerator and denominator in Eq. 3.9. An alternative approach is to infer pressure from the 

absorption lineshape function. This can be accomplished if a separate measure of temperature 

can be made so that the absorption lineshape dependence on temperature can be isolated from 

its dependence on pressure. Common methods include those which relate the width of the 

absorption lineshape to pressure,
68

 those which resolve the entire absorption lineshape 

function,
69

 and those which relate the ratio of fluorescence signal from the wing of the 

lineshape to the signal from the center of the lineshape.
70-72 

3.9 Doppler-Based Velocimetry 

 The Doppler effect can be used to determine flow velocities for atomic and molecular 

species. The translational motion of the absorbing species in the direction of the excitation 

laser’s propagation, described by a velocity component  , results in a shift of the absorption 

line-shape function away from its transition center frequency,   , according to:  

    
 

 
   (3.23) 

 This velocity-dependent frequency shift of the absorption line-shape function is implicit 

in the overlap integral,  , and thus, its effect on fluorescence signal can be seen through the 

dependence of   on the velocity component,  , in Eq. 3.9. When a component of 

translational motion of the absorbing species opposes the laser’s direction of propagation, 

corresponding to the negative ( ) solution of Eq. 3.23, the incident laser radiation appears to 

be at a higher frequency from the perspective of the gas. Hence, as the laser’s frequency is 

scanned over the absorption transition, Yν, the measured intensity of fluorescence 

corresponding to this profile is shifted toward a lower frequency, or red-shifted. The converse 

is true when motion is in the same direction as the laser’s propagation, corresponding to the 

positive ( ) solution of Eq. 3.23, where the absorption profile is shifted toward a higher 

frequency, or blue-shifted. 

In one implementation, velocity component measurements can be made by scanning the 

laser over an absorption transition in both the measurement volume and a reference cell. In 

this case, the Doppler shift between the absorption profiles is used to compute an average 

velocity according to Eq. 3.23. Examples of such measurements include those in an 

arcjet,
30,31,35,73

 supersonic underexpanded jets,
68,69,74 - 76

 shock tunnel,
77 , 78

 and non-reacting 

supersonic flow with a rearward-facing step.
79 - 81

 Such measurements require that the 

flowfield be relatively steady since shot-to-shot fluctuations in fluorescence intensity from 

thermodynamic and fluid dynamic variations can affect the measured line-shape. The velocity 

measurements can also be complicated by a frequency shift in the line-shape function 

resulting from collisional effects (pressure). In compressible flows, the pressure field can 

vary significantly, and hence the collisional shift in the line-shape function can likewise vary. 

Absorption of laser energy can also result in an apparent frequency shift in the line-shape 

function. Recall that the line-shape function must be inferred from the overlap integral,  , 



which represents the convolution of the absorption line-shape and laser spectral line-shape. If 

absorption is significant, then irradiance will vary spatially, resulting in a spatially varying 

overlap integral. An analysis of how absorption affects the line-shape frequency shift is 

presented in Ref. 78. If flow symmetry is assumed, then the frequency shift due to pressure 

can be estimated.
77

 Flow symmetry can also be used to correct for the frequency shift 

resulting from absorption.
31

 Alternatively, if two counter-propagating laser beams are used, 

these frequency shift effects can be completely removed. The use of counter-propagating 

beams results in two excitation peaks, separated in frequency by twice the velocity-induced 

Doppler shift. The need for a reference cell measurement to ascertain velocity can also be 

removed, as a counter-propagating beam approach is self-referencing.
75,82,83

 

Figure 3.9 in Ref. 78 shows a 

two-component velocity 

measurement about a heat shield 

model taken in a hypersonic free-

piston shock tunnel. In this 

experiment, laser sheets were directed 

in both the radial (vertical) and axial 

(horizontal) directions so that 

measurements of the Doppler-shifted 

absorption profiles for the respective 

directions could be obtained and 

compared with measurements from a 

static reference cell to infer velocities. 

An estimation of velocity errors 

incurred from the frequency shifts 

due to absorption and collisional 

effects was also performed. In Ref. 78, three separate absorption transitions were probed to 

measure two different velocity components, with one transition being used for both 

components. This resulted in a measured axial freestream velocity of 2394±68 m/s and a 

measured radial velocity of 53±50 m/s, giving respective uncertainties of ~2.8% and 

~94.3%.
78

 

Another form of the fluorescence-based Doppler velocity measurement is a fixed 

frequency method, which can allow for an instantaneous velocity component measurement. 

With the fixed frequency technique, a narrow linewidth laser is tuned off the absorption 

profile peak to a point where the slope of the profile is maximum, as described in Refs. 70 

and 84 . Assuming that the absorption profile is approximately linear in the region of 

maximum slope, the measured signal intensity can be related to the Doppler shift of the 

profile. This fixed frequency Doppler velocimetry technique has been applied to a free jet,
85

 

supersonic underexpanded jet,
86

 and reacting supersonic flow.
87

 The stated random and 

systematic errors in Ref. 86, when added in quadrature, gave a total uncertainty of ~12%. In 

Ref. 87, the stated lowest time-averaged and single-shot uncertainties achieved were ~3% and 

~15%, respectively, for a 1600 m/s velocity range. 

 

Figure 3.9: Two-component velocity measurement 

using fluorescence-based Doppler velocimetry 

technique. Vectors denote flow direction and color map 

represents magnitude. Image reprinted from Ref. 78 with 

permission of the authors and Springer Science and 

Business Media. 



3.10 Flow-Tagging Velocimetry 

Another technique by which velocity can be measured using fluorescence is flow-tagging 

velocimetry. Fluorescence-based flow-tagging velocimetry is a time-of-flight technique that 

involves laser excitation—or tagging—of the gas along a line, series of lines, or grid pattern.  

With this form of velocimetry, the species of interest in the gas absorbs the incident radiation 

from a laser source, which induces either of the following: 1) fluorescence, 2) a reaction that 

forms a product that then emits a photon via fluorescence, or 3) a reaction that forms a 

product that can then be probed with another laser source to induce fluorescence. Images of 

the fluorescence pattern are acquired at two time delays, with velocity computed by 

measuring the displacement of the tagged molecules between images. Typically, a line or 

series of lines can be used to measure a single-component of velocity while a crossed grid 

pattern can be used to measure two-components. Two general fluorescence-based methods of 

flow-tagging velocimetry are discussed here; one that requires a single laser source and 

another that requires multiple laser sources.  The main advantage of flow-tagging 

velocimetry, as compared to most Doppler-based methods (which are time averaged), is that 

it can make instantaneous (single-shot) measurements with fast time resolutions (as short as a 

few hundred nanoseconds).  A disadvantage, however, is that flow-tagging velocimetry 

cannot provide full velocity field information. A broader discussion of molecular-tagging 

velocimetry, which relies on molecular tracers for flow-tagging, is provided in Ref. 88. 

3.10.1 Single-laser methods 

 The first method involves either direct or indirect excitation of fluorescence with a single 

laser source. The first application of this method to a gaseous flow involved excitation of 

phosphorescence of biacetyl molecules, as described in Ref. 89. If this method is used, the 

fluorescence lifetime of the tagged molecules must be long enough so that advection provides 

for measurable displacements with tagged regions having signal intensities that are still above 

the detection limit of the imaging system at the time the second image is acquired. Typical 

experiments involve capturing a 

reference image acquired during the 

tagging process, or a relatively short 

time thereafter. If a single-framing 

camera is used, such as in Ref. 90, a 

single reference image or set of 

reference images is acquired. The 

timing of the single-frame camera is 

then delayed and a subsequent image 

or set of images is then acquired. If a 

two-camera system or dual-framing 

camera is used, such as in Ref. 91, the 

delayed image is acquired in sequence 

after the reference image. The velocity 

is computed by measuring the 

displacement of the tagged molecules 

 

Figure 3.10: Single-line excitation of nitric oxide 

fluorescence used to study hypersonic boundary layer 

flow over a flat plate. Images, from left to right, 

correspond to camera delay settings of 0 ns, 250 ns, 

500 ns, and 750 ns. Image reprinted from Ref. 90  with 

permission of the authors. 



that occurs in the time between when the reference and delayed images were acquired. The 

form of this technique relying on direct excitation of fluorescence for flow tagging has been 

applied to the study of supersonic jets,
92-98

 hypersonic boundary layers,
90,91,99,100

  and arcjet 

flowfields.
31

  

Figure 3.10, taken from Ref. 90, shows images from tagging a single line of nitric oxide 

using direct excitation of fluorescence within a flat plate hypersonic laminar boundary layer. 

In this Figure, the left-most image corresponds to the reference image, while the remaining 

images, from left to right, correspond to delayed images taken at 250 ns, 500 ns, and 750 ns 

after tagging, respectively. Measurements of freestream velocity, spatially averaged from a 

point just above the velocity boundary layer (3 mm) to 15 mm above the flat plate, resulted in 

a mean of 3,035±100 m/s at 90% confidence, giving an uncertainty of 3.3% of the mean.
90

 

Single-shot uncertainty estimates for a 3,000 m/s freestream flow and for camera delay 

settings of 250 ns, 500 ns, and 750 ns were 4.6%, 3.5%, and 3.5%, respectively.
90

 

An indirect excitation scheme, as described in Refs. 101-103, relies on photodissociation 

of molecular nitrogen for flow tagging. The technique uses a femtosecond laser pulse to 

dissociate molecular nitrogen into two nitrogen atoms, which then recombine after a 

collision, forming molecular nitrogen in an intermediate state. A subsequent collision brings 

the molecular nitrogen to an excited electronic B state, which then emits a photon via 

fluorescence upon transitioning to the excited electronic A state. Ref. 103 provides a 

description of this process. One benefit of this indirect technique, known as Femtosecond 

Laser Electronic Excitation Tagging (FLEET), is that the recombination rate of dissociated 

atomic nitrogen allows for a much longer fluorescence lifetime. This would allow 

displacements to be measured over greater time scales, providing for accurate measurements 

of velocity in low-speed flow regions, such as in a hypersonic wake flow. Additionally, the 

technique relies on molecular nitrogen for tagging, which is present in most hypersonic 

facilities. 

3.10.2 Multi-laser methods 

A second method of fluorescence-based flow-tagging velocimetry involves writing a line, 

series of lines, or grid pattern into the flowfield by one of several laser-based mechanisms. 

This pattern can then be interrogated, or read, by subsequent laser pulses to induce 

fluorescence, allowing for the determination of velocity through measurement of the 

displacement of the pattern. Such techniques usually involve two or three different lasers and 

are therefore more time consuming to set up and more difficult to execute. 

One mechanism by which a pattern can be written into the flowfield is via ionization of 

the absorbing species, known as Laser Enhanced Ionization (LEI) flow tagging. The tagging 

process is accomplished by promoting the species (such as sodium in Refs. 104-106) to a 

higher energy state via laser excitation near the ionization limit. Collisions then result in the 

ionization of the species, with the tagging pattern corresponding to the ionized regions. 

Subsequent laser pulses are used to induce fluorescence of the absorbing species in regions 

that have not been photo-ionized. Supersonic measurements of velocity in a shock tube were 



performed using LEI flow-tagging in Refs. 104 and 105, and hypersonic velocity 

measurements in an expansion tube were performed in Ref. 106.  

A second mechanism that can be used to write a pattern into the flowfield is by 

vibrational excitation of molecular oxygen via Raman pumping. This is followed by reading 

the pattern of the vibrationally-excited oxygen by inducing fluorescence. The technique, 

known as Raman Excitation and Laser-Induced Electronic Fluorescence (RELIEF),
107

 is 

advantageous as it relies on the flow-tagging of oxygen which is a common working gas of 

most hypersonic facilities. This technique has been used to characterize turbulence in a free 

jet
108

 and underexpanded jet.
109

  The RELIEF technique, however, is limited to temperatures 

below 750 K. Above this temperature, a significant fraction of oxygen molecules are 

vibrationally excited, making it difficult to distinguish the tagged molecules from the 

background.
110

 

Yet another mechanism involves using one laser to photo-dissociate a molecular species. 

This results in the formation of a product species for which a second laser can be used to read 

the location of the written pattern by exciting laser-induced fluorescence in the product 

species. The formation of the product species typically occurs through one or more reactions. 

A list of partner species used in the writing and reading process include: H2O-OH,
111-117

 N2O-

NO,
118

 O2-O3,
119,120

 N2/O2-NO,
121-124

 and NO2-NO.
94,125-132 

 

Figures 10(a) and 10(b), taken from Ref. 129, show images of vibrationally excited NO 

fluorescence in a grid pattern formed via photodissociation of NO2 in a mixture containing 

6.3% NO2 in N2. The images were taken in a supersonic underexpanded jet 400 ns (Fig. 

3.11(a)) and 800 ns (Fig. 3.11b) after the pattern was written into the flow with a two-

dimensional array of 355 nm beams. Two components of velocity were obtained by relating 

the displacement of the grid in the left image to a grid imaged in a stationary gas. The upper 

half of Fig. 3.11(c), taken from Ref. 129, shows measured streamwise velocities compared 

with computation, shown in the lower half of Fig. 3.11(c). The use of two pulsed dye lasers in 

this experiment permitted the excitation of both a low (J = 1.5) and high (J = 8.5) rotational 

   

 
(a)                            (b)                                 (c)                                         (d) 

Figure 3.11: Flow-tagging images of vibrationally excited NO fluorescence obtained (a) 400 ns and 

(b) 800 ns after photodissociation of NO2. The two-dimensional grid pattern allows for calculation of 

two velocity components. Measured (c, top) and computed (c, bottom) streamwise velocity maps. 

Measured (d, top) and computed (d, bottom) rotational temperature map. Image reprinted from Ref. 

129  with permission of the authors and the publisher.  



level within the same vibrationally excited (v = 1) NO state. The fluorescence images 

corresponding to the low-J (Fig. 3.11(a)) and high-J (Fig. 3.11(b)) rotational levels also 

allowed for measurement of the rotational temperature by using a calculation similar to that 

presented in Eq. 3.16. The top half of Fig. 3.11(d), from Ref. 129, shows measured rotational 

temperature compared with computation, shown in the lower half of Fig. 3.11(d). Stated root-

mean-square (RMS) uncertainties in the velocity measurement were ~5% with high signal-to-

noise.
129

 The stated RMS uncertainties in rotational temperature ranged from 9% to 35% 

prior to the Mach disk.
129

 

NO2-NO flow tagging velocimetry has also been used to study boundary layer transition 

on a flat plate in a Mach 10 wind tunnel.
131,132

 Pure NO2 was seeded into the boundary layer 

through a spanwise slot located downstream of the sharp leading edge.  The angle of attack of 

the flat plate was 20 degrees, reducing the edge Mach number to about 4.2. Parallel focused 

beams of 355 nm light oriented normal to the surface of the flat plate (and in a plane parallel 

with the streamwise direction of the flow) dissociated the NO2, creating NO. After a 40 ns 

delay, the NO was probed by a 226 nm laser, at which time the camera acquired an image. 

One microsecond later, a second 226 nm laser probed the NO and the second image was 

acquired with the same camera.  The two images were compared to compute velocity 

profiles. Figure 3.12 shows the resulting velocity profiles for two cases, one with no trip (i.e. 

tripping element, a protuberance designed to trip the flow from laminar to turbulent) and one 

with a 1-mm tall cylindrical trip, where the measurements were made downstream of, and on 

the centerline of, the trip. (The laminar boundary layer thickness was also approximately 1 

mm thick.) The figure shows mean profiles (black, top two charts) as well as profiles of the 

fluctuating component of velocity, u’ (red, bottom two charts). For the case of no trip, the 

velocity profiles compare well with a compressible Blasius solution (shown in light grey). 

When the trip is present, the measured mean profiles depart from the laminar solution, 

showing a profile that is more full than the laminar profile near the plate surface with a 

pronounced velocity deficit near the edge of the profile. The fluctuating streamwise velocity 

increases by a factor of three, up to 250 m/s, between the two cases, with the fluctuations 

highest in the wake of the trip. The single-shot measurement precision was 15-25 m/s, which 

was 1-2% of the maximum velocity in the boundary layer. The accuracy was estimated to be 

5-15 m/s.
131

 

3.11 Advantages and Limitations of Laser-induced Fluorescence 

The time scales associated with inducing fluorescence via laser excitation are typically a 

few hundred nanoseconds, which is much shorter than hypersonic flow time scales, therefore 

providing sufficient temporal resolution for high-speed transition-to-turbulence 

measurements. The availability of pulsed lasers capable of picosecond and femtosecond 

excitation allow for fluorescence measurements with time scales much less than those 

associated with collision and reaction time scales. Recently developed kHz- and MHz-rate 

pulsed laser systems have allowed image sequences consisting of tens to thousands
133

 of 

images to be acquired, providing time-resolved information pertaining to high-speed fluid 

dynamic behavior. Both fluorescence-based velocimetry
128

 and visualization
134 , 135

 

experiments in hypersonic flow fields have been performed with these types of laser systems. 



The spatial resolution of a LIF technique is also sufficient for many applications, and higher 

than other techniques such as Raman or CARS, with laser sheet thicknesses typically in the 

range of 0.1 to 1 mm and magnifications of tens of pixels per mm, depending on the 

experimental setup. Fluorescence-based measurements are more sensitive than other 

techniques (for example Raman spectroscopy) with sensitivity on the order of parts-per-

million or better.
9 
 

(a)  

(b)  

(c)  

(d)  
Figure 3.12: Streamwise velocity profiles on a flat plate in a Mach 10 facility for the case of no trip 

(a) and a k  = 1 mm tall, 4 mm diameter cylinder trip (b) and the fluctuating streamwise velocity for 

no trip (c) and a k = 1 mm tall, 4 mm diameter cylinder trip (d). Images reprinted from Ref. 132 with 

permission of the authors.  

 



Additionally, a wide range of species including intermediate combustion species can be 

probed using fluorescence techniques. Reference 18 provides an extensive listing of many 

species that have been detected using LIF and other methods. Another advantage of LIF is 

that it is readily extended to planar or volumetric measurement (see Refs. 136 and 137).  

Several factors complicate acquisition and interpretation of LIF signals, complicating 

quantitative measurements. Quenching of the fluorescence, which prevents easy 

quantification of signal intensities, was discussed extensively above. Absorption of laser 

energy as the laser light passes through the flowfield can limit the effectiveness of 

fluorescence-based measurements, as the energy will decrease in an exponential manner over 

a given spatial path length according to the Beer-Lambert relations in Eqs. 2.5 and 2.6. This 

makes quantitative measurements difficult, as the laser energy at a particular location may not 

be easily determined. Absorption can be significant when the concentration of the absorbing 

ground state population is high, the transition cross-section is relatively large, the Einstein B 

coefficient for stimulated absorption is relatively large, and/or the path length through which 

the laser radiation passes is relatively long. To avoid strong absorption, a transition may be 

selected for which the population is small based on analysis of the Boltzmann fraction, as was 

done for PLIF visualization measurements in a hypersonic shock tunnel described in Ref. 

138. Absorption can also limit measurement capabilities when fluorescence from the probed 

volume is re-absorbed by the species of interest. This effect, known as radiative trapping, 

occurs when fluorescence emission at frequencies readily absorbed by highly populated states 

must pass through gas containing these potential absorbers before reaching the imaging 

system. Measurements in a non-uniform or turbulent mixture are especially susceptible to 

errors associated with absorption and radiative trapping effects, as the absorption coefficient 

is a spatially- and temporally-varying property. A discussion of these issues, and some 

methods used to circumvent them, is provided in Ref. 9.   

Another disadvantage of LIF is that it usually probes only a single species at a time, 

compared to Raman or CARS, which can interrogate many species simultaneously. However, 

the fact that PLIF can measure spatial distributions of species can compensate for the single-

species capability in some applications. 

Consideration must also be given to the optical access of the test facility. Since much of 

the work described in this discussion requires fluorescence excitation using laser frequencies 

in the UV portion of the electromagnetic spectrum, the window material used in hypersonic 

facilities must be capable of transmitting such frequencies with minimal absorption. Also, 

typically two or three windows are required for LIF or PLIF applications. The laser (beam or 

sheet) is typically brought in from one window and observed through another window at right 

angles to the first window. A third window can allow the laser to leave the test section, 

reducing scattered light, and allowing the quantification of absorption of the laser beam/sheet 

in some applications. These windows are typically relatively large compared to those 

required for CARS or diode laser absorption measurements. When short-pulse LIF 

experiments are performed, the inverse relationship between the pulse temporal width and 

spectral width (which for a Gaussian pulse is              ⁄ )
20

 can result in distortion of 

the temporal characteristics of the pulse. This is because the refractive properties of the 



optical windows of the test facility affect the speed with which the frequency components of 

the short pulse pass through the window material. Reference 20 discusses issues related to 

short pulse excitation and interaction with optical components. 

4. Rayleigh and Raman Scattering 

4.1 Introduction 

When a light beam passes through a gaseous medium, it can interact with the gas 

molecules or particles in the gas, thereby scattering light away from the path of the incident 

beam.  Elastic scattering occurs if no energy is gained or lost to the medium.  If energy is 

either absorbed or lost by the medium, the scattering is inelastic.  Light scatter from particles 

that have a diameter, d, on the order of or larger than the light wavelength, , is termed Mie 

scattering.  Scattering for which d<< is known as spontaneous Rayleigh scattering if 

elastic and spontaneous Raman scattering if inelastic.  These processes are shown 

schematically in Figs. 4.1 and 4.2.  

Represented on the energy level 

diagram in Fig. 4.1, a photon excites a 

molecule from an originating state, 1, 

to a ‘virtual’ state, 2, from which the 

scattered photon is emitted.  The virtual 

state, represented by a dashed line, is 

not an actual resonant state of the 

molecule.  Instead, it indicates a non-

resonant, short-lived state in which the 

electron distribution of the molecule is distorted.  This virtual state immediately relaxes to the 

originating state (in the case of Rayleigh scattering) or another state (in the case of Raman 

scattering).  Relaxation to a higher lying (e.g. vibrational) state than the originating state is 

termed Stokes Raman scattering.  In this case, the molecule absorbs a quantum of energy 

through this process. In anti-Stokes Raman scattering the molecule imparts a quantum of 

energy to the scattered photon so that the scattered photon has higher energy than the incident 

photon.  In this case, the originating state must not have been a ground state.    

Figure 4.2 shows notional 

Raman/Rayleigh spectra, not drawn to scale.  

Rayleigh scattering is shown at the laser’s 

wavelength. Discrete pure rotational Raman 

lines, associated with rotational quanta 

imparted to or subtracted from the incident 

laser frequency, are shown on opposite sides 

of the Rayleigh peak. Vibrational Raman 

bands are located further away, spectrally 

shifted towards the red (Stokes) and the blue (anti-Stokes).  The vibrational Raman bands 

show rotational fine structure.  Raman scattering is much weaker than Rayleigh scattering. 

 

Figure 4.1.  Energy level diagram indicating incident 

radiation, Rayleigh scattering and Raman scattering. 

 

Figure 4.2.  Notional Raman/Rayleigh spectra. 
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Raman scattering is typically three orders of magnitude smaller than Rayleigh scattering for 

most gases of interest to supersonic and hypersonic flows.
9
 

4.2 Theory of spontaneous Rayleigh and Raman scattering 

Comprehensive reviews of the theory and application of Rayleigh and Raman scattering 

have been given by others.
9,18,139,140

  Herein we provide a brief introduction and overview.   

Later sections will show how this theory is applied to measure thermodynamic properties.  

Consider an electromagnetic wave incident upon a molecule, perturbing the molecule’s 

electron cloud and making it oscillate at the same frequency as the incident wave.  These 

oscillations cause a periodic charge separation within the molecule, known as an induced 

dipole moment. Oscillating dipole moments act like antennas, emitting radiation.  As 

described in more detail by Baldwin,
141

 if these oscillations are in-phase, the emission adds 

constructively, producing a coherent beam.  If out-of-phase (for example, in the direction 

orthogonal to the beam), the emitted light interferes destructively and the radiation cancels.  

For a monochromatic plane wave passing through a gas, the constructive interference occurs 

only in the forward direction.  The resulting emitted coherent light is perfectly in-phase with 

and indistinguishable from the incident wave.  In a gas composed of a finite number of 

molecules, the destructive interference at other angles is not fully complete because of 

statistical variations in the number of particles located in different wavelength-sized volumes 

of the gas.141
, 142

  That is, there are not exactly the same number of particles in each 

wavelength sized volume, which would be required to cancel out the radiation perfectly.  This 

statistical variation in the number density then leads to Rayleigh and Raman scattering.  

Rayleigh and Raman increase significantly in intensity at shorter wavelengths: both scale 

approximately as 1/
4
.
9 

The radiant intensity, I


, which is the scattered power per unit solid angle, is proportional 

to the square of the induced dipole moment.  The induced dipole moment,  ⃗  is given by:
9
 

  ⃗      ⃗⃗  (4.1) 

where    is the permittivity of free space,   is the molecular polarizability and  ⃗⃗  is the 

incident electric field given by  ⃗⃗    ⃗⃗⃗⃗⃗    (   ), where   ⃗⃗⃗⃗⃗ is the amplitude of the electric 

field,    is the frequency of the laser light and t is time. 

The polarizability of a molecule depends on its internal structure and varies with time 

during vibrational oscillations at the natural frequency of the molecule,   , vibrating in the 

direction of its normal spatial coordinate, Q. The polarizability can be approximated with a 

Taylor series expansion: 
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where the small physical displacement, dQ, of the atoms about their equilibrium positions 

(denoted by the subscript 0) during vibrations is: 



         (   )   (4.3) 

Combining Eqs. (4.1)-(4.3): 
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Expanding and using a trigonometric identity:
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The first term on the right side of Eq. (4.5) describes Rayleigh scattering at a frequency 

corresponding to the incident laser’s wavelength.  The second term indicates Raman 

scattering which is shifted from the Rayleigh scattering by ±   resulting in upshifted (anti-

Stokes) and downshifted (Stokes) Raman scattering.  While significant theory has been 

developed to describe the physics of Raman and Rayleigh scattering, the strengths of the 

scattering for different gases is generally measured and reported as a temperature-

independent differential cross section:
9
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which can be rearranged as: 
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    (4.7) 

where the subscript zz refers to a polarization in the z (vertical) direction caused by an 

incident electric field oriented in the z direction, N is the number density of the gas and I is 

the laser irradiance.
9
 The differential cross sections vary by process (Rayleigh vs. Raman), by 

molecule, and vary with the laser wavelength but are independent of pressure and 

temperature.  

Rayleigh scattering from different molecules cannot be distinguished spectrally, so it is 

not usually used to detect individual species.  Under circumstances where the composition is 

fixed or known, or limited to vary under controlled conditions,
143,144

 Rayleigh scattering can 

be used to measure the gas density, . As discussed further below, the Rayleigh scattering 

cross section varies from molecule to molecule, with some hydrocarbon species having cross 

sections more than an order of magnitude larger than N2.  The cross section for a mixture of 

gases is equal to the mole-fraction-weighted average of the individual cross sections.  If the 

composition can be estimated or measured, for example by Raman scattering,
145

 then the 

effective cross section for the gas mixture can be determined, allowing the density to be 

determined from the measured Rayleigh scattering. Under conditions where the pressure and 

composition are known or can be determined and where the perfect gas law applies, the gas 

temperature can be inferred from the measured density.
9
 Such measurements can suffer from 

interference from Mie scattering from particles and laser scattered light.
9
 To avoid Mie 



interferences, the gases can be filtered to remove particles.  Careful experimental design and 

blackening of surfaces can minimize scattered laser light.   

Spectral analysis of Rayleigh 

scattering yields additional parameters 

that can be measured.  Figure 4.3 

shows a schematic of the dispersed 

Rayleigh scattered light (solid line), 

separated from the incident laser light 

(dashed line).  The spectral shift of the 

Rayleigh from the laser is caused by 

the Doppler shift of the gas relative to 

the incident light beam and depends on 

the detection angle.  The width of the 

Rayleigh spectrum depends, in part, on 

the gas temperature.  The amplitude of 

the scattering, as described above, depends on the gas density (and composition).  Thus, in 

principle, by spectrally dispersing the Rayleigh scattered light, the temperature, velocity, and 

density of a gas can be measured simultaneously.  These effects are detailed below with 

examples given.   

Revisiting Eq. (4.5), notice that for Raman scattering to occur, (
  

  
)
 
must be nonzero. 

This happens when a molecule exhibits a change in its polarizability with vibrational 

displacement. For example, as the atoms in the N2 molecule vibrate, they become less 

polarizable as the atoms approach each other (charges exhibiting more force because they are 

closer to each other) and more polarizable when further apart (charges more weakly 

interacting).  This results in a nonzero (
  

  
)
 
.  Such vibrations are Raman active.  On the 

other hand, some vibrational modes do not change the molecule’s polarizability, for example 

the asymmetric stretch of CO2 has the following vibration pattern:  O  C  O.  Such 

modes have (
  

  
)
 
   and are termed Raman inactive.  Further quantum mechanical 

selection rules and molecular structure considerations (atomic mass, bond length, moment of 

inertia, etc.) determine the shape and structure of the Raman spectra.
9
  Since the frequency of 

Raman spectra depends strongly on the individual species’ molecular structure (each 

vibrational resonance occurring at a different energy), Raman spectra from different 

molecules appear spectrally separated when they are dispersed, typically using a grating-

based spectrometer equipped with a camera to acquire the spectra.   Because Raman 

scattering is species-specific, it can be used to measure individual species concentrations, 

where in Eq. (4.6), N is the species being detected and the differential cross section is that of 

the individual species.   

 

Figure 4.3.  Notional sketch of spectrally dispersed 

Rayleigh scattered light (solid line) which has been 

Doppler shifted from the incident laser light (dashed). 



4.3 Advantages and Disadvantages of Rayleigh and Raman Scattering  

Rayleigh and Raman scattering have many inherent advantages compared to other 

measurement techniques. Both use just a single laser and the laser need not be resonant with 

any particular molecular resonance as in absorption or laser induced fluorescence (LIF). This 

allows high-powered, fixed frequency lasers to be used for Rayleigh or Raman. Since they 

are linear laser techniques involving only a single excitation beam, Raman and Rayleigh are 

relatively easy to set up and understand, and the data are, in general, easier to analyze than 

nonlinear techniques like coherent anti-Stokes Raman spectroscopy (CARS). Neither Raman 

nor Rayleigh is sensitive to collisional quenching, a phenomenon which complicates the 

interpretation of LIF signals. Absolute intensity calibration of both techniques is relatively 

straight forward and easily performed. Raman and Rayleigh can be performed simultaneously 

using the same laser to measure species concentrations (Raman), temperature (Raman and/or 

Rayleigh), density (Raman and/or Rayleigh) and velocity (Rayleigh).   

The major disadvantage of Raman and Rayleigh scattering is the low signal intensity.  

The low signal from Raman scattering generally prevents minor species (less than a few 

percent by mole fraction) from being detected using this technique.  Because the signals are 

so low, large (low f-number) collection optics are usually used.  Ideally, the detection optics 

need to be placed close to the measurement region. In ducted flows, large windows are 

required.  Hypersonic and combusting flows can sometimes be luminous.  Natural 

luminosity, like spontaneous Rayleigh and Raman scattering, emits light in all directions.  In 

order to improve the signal-to-noise ratio, temporal, spatial, and spectral filtering can be used 

to collect the desired radiation and block unwanted natural luminosity.  For example, gated 

detection of pulsed signals (or lock-in detection of continuous signals) can be used.  

4.4 Translational Temperature, Velocity, and Density Measurements 

The gas temperature and velocity can be determined from the Rayleigh spectrum by 

resolving the Doppler broadening and Doppler shift, respectively.  The Rayleigh scattering 

linewidth is typically in the range of 1-6 GHz (0.03-0.17 cm
-1

) for supersonic and hypersonic 

flow experiments in the range of a few hundred to a few thousand kelvins, depending on the 

temperature and angle of incidence of detection and collection of the light (see Ref. 139 for 

detailed information about the Rayleigh scattering lineshape and angular dependence).  A 

high-resolution laser can be used so that the broadening caused by the laser’s lineshape is 

negligible compared to this Doppler broadening.  For example, injection seeded, pulsed 

Nd:YAG lasers typically have linewidths of about 0.1 GHz (0.004 cm
-1

) while continuous 

sources can have linewidths that are orders of magnitude smaller.   To spectrally resolve 

Rayleigh scattering, a high-spectral-resolution instrument is required.  Two methods, 

described below and also in the introduction, are typically used: gas vapor cells and Fabry-

Perot etalons.   

A gaseous cell filled with iodine vapor can be used in combination with excitation in the 

visible wavelength range, where I2 has many absorption lines, by placing a low-pressure gas 

cell containing crystalline iodine and I2 vapor in front of a detector or camera.  The diameter 



of the cell should be larger than the diameter of the collection lens.  The cell length, pressure 

and temperature of the I2 cell are chosen to control the I2 gas concentration and spectral line 

shape and therefore the absorption magnitude and profile.  Attenuation of transmitted light by 

a factor of 10
5
 can be achieved using high-resolution cw lasers, though it is more difficult to 

achieve attenuations greater than ~10
3
 with off-the-shelf injection-seeded, pulsed Nd:YAG 

lasers.
146

  The absorptions can be used to reject spurious scattered laser light, while passing 

the pressure- and Doppler-broadened and Doppler-shifted Rayleigh scattering, allowing 

background-scatter-free density measurements.  These sharp absorption features can also be 

used for temperature and velocity measurements by using the steep edge of the absorption 

spectral profile to provide spectral resolution.  Since the absorption spectrum of the gas filter 

is well known, if the laser frequency is scanned across the filter, then the Doppler-broadened 

and Doppler-shifted Rayleigh-scattered light will transmit through the filter, being acquired 

by the camera.  Each pixel on the camera will then have obtained a convolution of the 

Rayleigh-scattered light with the absorption spectrum.  These spectra can then be 

deconvolved to determine the gas temperature through the thermal broadening and gas 

velocity through the observed Doppler shift.  Miles et al.
139

 demonstrated this approach in a 

Mach 2 pressure-matched jet flow, shown in Fig. 4.4.  Variations of this technique can 

provide both time-averaged and single-shot measurements.  For single-shot measurements, 

the dynamic range of velocities that can be measured is limited, although by increasing the 

gas cell buffer gas pressure, the dynamic range has been increased by Elliot et al,. who made 

single-shot measurements with ~9% uncertainty over a velocity range from 200 to 600 

m/s.
147,148

 

 By using a Fabry-Perot etalon, single-shot Rayleigh spectra can be obtained, allowing 

instantaneous (in ~100 ns) and simultaneous measurement of temperature, density and 

velocity.   A Fabry-Perot etalon consists of two planar, reflective surfaces that cause 

interference, dispersing the transmitted light spatially, so that in the focal plane of the etalon, 

the spectrum of the light is separated spatially and can be resolved spectrally.  Two different 

strategies have been developed to acquire these spectra.  The first uses a CCD camera in the 

focal plane of the etalon to capture the dispersed spectrum.
149-152

   The second method uses 

spatial masks or mirrors to direct the Rayleigh-scattered light to single-point detectors such as 

 

Figure 4.4.  Temperature (left), pressure (center) and velocity (right) measured in a Mach 2 

supersonic jet flow using Rayleigh scattering observed through a gas vapor cell using a frequency-

scanned, injection-seeded Nd:YAG laser.
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photo-multiplier tubes (PMTs).
153,154

   Typically, CCD cameras read out more slowly than 

single-point detectors such as PMTs, so using PMTs generally results in higher-speed 

detection.  Measurement rates up to 32 kHz have been reported using this approach.
154

   

However, using a CCD camera offers several measurement advantages, described below.   

Figure 4.5 shows one such example of CCD-based detection of Rayleigh-scattered light 

from Bivolaru et al.
151

  A pulsed Nd:YAG laser is focused into a heated Mach 1.6 jet flow.  

The Rayleigh-scattered light is collected at right angles by a lens system that down-collimates 

the collected light and passes it through a solid etalon.  The etalon-processed light is then 

focused on an electron-multiplying charged-coupled device camera (EMCCD) where the 

interference fringes are realized.  This image is called an interferogram. An optical fiber (OF) 

directs some of the spectrally narrow laser light into the optical path so that a circular 

reference fringe will appear in the interferogram, as in Fig. 4.6(a).  The pair of oval patterns 

located in the white rectangle show Doppler-shifted, Doppler-broadened, Rayleigh-scattered 

light collected by the lenses and dispersed by the etalon.  A similar pattern is shown on the 

left side of the interferogram.  These four oval patterns originate from four different spatial 

locations a few mm apart in the flow, thus resulting in four simultaneous, spatially-separated 

measurements.  The gas velocity, V, and the Doppler shift, Δf , are related by: Δf = ((ks-ko)•

V)/,where  is the wavelength of the incident light, ko is the wave vector of the incident 

light and ks is the wave vector of the collected light. (The wave vector points in the direction 

of light propagation and has a magnitude of 2)  In the vector diagram shown in Fig. 4.5, 

ko1 is the wave vector of the incident light and ks1 is the wave vector of the collected light.  

The observed Doppler shift measures the velocity component V1 in the direction defined by 

ks1 - ko1, which bisects the angle   between the laser and collection wave vectors.  Similarly, 

a mirror Mr reflects this incident beam back through the lens, L2, and into the measurement 

volume with wave vector ko2 resulting in collected Rayleigh signal having a wave vector ks2.  

This signal is sensitive to the velocity component V2.   The reflected beam was slightly 

misaligned in the downward direction so that the two measurements would be spatially 

separated on the interferogram, shown in Fig. 4.6(a).  Furthermore, the geometry of this 

experiment was constructed so that the V1 would be orthogonal to the jet axis, measuring a 

radial velocity component while V2 was parallel to the jet axis, measuring the axial velocity 

component.  In Fig. 4.6(a), four spatially separated measurements of axial velocity are 

collected in the bottom half of the interferogram while four measurements of radial velocity 

are collected in the top half.  Figure 4.6(b) shows the two boxed peaks after they have been 

processed to linearize the interferograms and to bin the data into single spectra.
150,151

   These 

spectra were fitted with Gaussian curves to determine the Doppler shift and broadening 

associated with Rayleigh scattering, relative to the reference peaks.  Subsequent work by this 

team and others has been able to simultaneously determine the gas velocity, temperature and 

density from similar spectra.
155,156

     



In Ref. 151, Bivolaru et al. reported velocity measurements with a precision of ~40 m/s in 

a flow with ~1200 m/s, or about 3% of the maximum velocity.  The dynamic range of the 

instrument was ~3000 m/s.  (The dynamic range is mainly determined by the thickness of the 

etalon, which sets the free spectral range, or fringe-to-fringe spectral separation.)  Thus, 

expressed as a percentage of the dynamic range of the instrument, the measurement precision 

is ~1%.  To obtain more precise measurements at lower temperatures, the experiment can be 

designed to use higher spectral resolution.  

The use of the camera-based approach has some advantages over the PMT-based 

approach.  First, it can tolerate (and in fact, benefits from) scattering from stationary surfaces 

 

Figure 4.5.  Two-component interferometric Rayleigh scattering system from Ref. 151. Mirrors are 

denoted by M, dichroic mirrors by DM and lenses by L.  PBS is a polarizing beam splitter while NBF 

is a narrowband filter.  IR is an iris and FPC is a focal plane camera used to monitor the beam 

alignment. In this experiment, the dichroic mirrors were required to filter out other laser beams 

associated with a dual-pump CARS measurement that was being performed simultaneously. 

Reprinted with permission of the authors.  

(a) (b)  

Figure 4.6.  (a) Fabry-Perot interferogram of Rayleigh-scattered light obtained by laser beams 

from two different directions as well as laser-light, resulting in the circular pattern. (b) the 

linearized Rayleigh-scattered spectrum obtained from the boxed region in (a), showing best fits 

to the reference and Doppler-shifted light.
151

  Reprinted with permission of the authors.  
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in the flow.  Such scattering, as long as it is not too large, provides a reference frequency to 

determine the Doppler shift.  Second, having a laser frequency reference in each 

interferogram makes the system insensitive to variations in the etalon transmission spectrum 

or the laser wavelength.  In typical PMT-based experiments, the etalon must be temperature 

controlled, vibration isolated (if it is an air spaced etalon) and the laser frequency must be 

carefully controlled.  Uncontrolled drift in either the etalon or laser would result directly in a 

systematic error in the PMT-based approach while it is automatically corrected in the CCD-

based approach.  A third advantage of the CCD-based approach is that it is somewhat more 

tolerant of scattering from clusters and particles in the flow, lessening the need for gases to be 

filtered.  Scattered light from particles typically appears in CCD-based interferograms as 

spatially distinct, circular artifacts.  These can sometimes be removed by image processing. 

However, if the scattering is too large either spatially or in intensity, it can corrupt the 

measurement; even in this case, other spatial locations in the flow may yield measurements 

from the same interferogram.  As shown in Fig. 4.6, the CCD-based detection allows multiple 

spatial points to be measured simultaneously, allowing measurements at adjacent spatial 

locations to be correlated.  Furthermore, with CCD-based detection, it is straightforward to 

measure multiple velocity components with the same instrument, also shown in Fig. 4.6.  

Finally, CCD-based detection has often been combined with pulsed-laser excitation, which 

has two benefits: it makes the measurement instantaneous, occurring in ~10 ns, and the signal 

intensity is much higher, allowing measurement in much lower density flows, such as 

atmospheric-pressure flames and low-pressure gas flows.   Instantaneous measurements at 1/5 

of atmospheric density or lower are possible with this approach.
151

 

 

Figure 4.7.  Five-hundred-pulse-average Raman spectrum in a high-pressure CH4 air flame.  The 

excitation laser wavelength was 532 nm.  A 532 nm filter blocks Mie, Rayleigh and spurious laser 

scattering as well as some of the low-rotational-quantum-number rotational Raman lines.  A 

subframe burst gating (SBG) technique was also used to subtract background emission from this 

spectrum.
157

 Figure courtesy of and with permission of J. Kojima, NASA Glenn Research Center. 



4.5 Rotational and Vibrational Temperature Measurements 

Raman scattering is sensitive to individual molecular rotational and vibrational 

transitions.  Since the population of these lines depends on (actually defines) the temperature, 

it is possible to measure rotational and vibrational temperatures from spontaneous Raman 

spectra.  Figure 4.7 shows a typical Raman spectrum obtained in a hydrocarbon-air flame at 

high pressure.
158

   A pulse-stretcher was used to extend the duration of the 500-mJ, 532-nm 

pulse by nearly a factor of 10, thereby lowering the peak laser power to avoid laser-induced 

breakdown while maintaining high pulse energy to yield a sufficiently high signal-to-noise 

ratio.
158

   This spectrum shows many temperature and concentration dependent features.  The 

relative heights and shapes of the 

different bands depend on temperature 

and gas concentration.  Modeling, 

calibration and analysis of such Raman 

spectra can yield rotational and 

vibrational temperatures as well as 

concentrations.    Several different 

strategies for temperature measurement 

based on spontaneous Raman 

scattering exist.  Rotational 

temperatures can be measured from 

pure-rotational Raman scattering either 

using high-resolution or low-resolution 

detection, as indicated in Fig. 4.8.
159

   

The advantage of low-resolution 

detection is that the spectrum can be 

acquired simultaneously with the same 

instrument used to acquire multi-

species spectra like that shown in Fig. 

4.7.  A disadvantage of this low-

resolution technique is that many different species have similar pure rotational Raman shifts, 

so they overlap in the same spectral region close to the excitation laser.  Such interferences 

from different species can lead to measurement errors.  This technique works over a wide 

temperature range, including at room temperature. Alternately, rotational temperatures could 

be determined by resolving the rotational-vibrational Raman scattering, typically of N2,
160

 as 

is often done for CARS.
161

   When flows are in rotational-vibrational equilibrium, it is more 

common to measure the temperature using vibrational bands, as described below, because 

they result in higher signal-to-noise ratios and consequently, more precise temperature 

measurements.    

Vibrational temperatures can be measured from the relative heights of different 

vibrational Raman bands.  A commonly used method compares the ratio of the Stokes to anti-

Stokes (S-AS) vibrational Raman bands of N2. 
9,162-164

  N2 is often used because it is present 

in high concentration in many supersonic, hypersonic, and combusting flows, resulting in 

 

                         Wavelength (nm)                                            Wavelength (nm) 

Figure 4.8.  Theoretical calculation of the pure 

rotational Raman spectra of N2 at two different 

temperatures and two different spectral resolutions, 

adapted from Ref. 159. © IOP Publishing. Reproduced 

with permission of the authors and of IOP Publishing. 

All rights reserved. 



adequate signal-to-noise ratio.  Also, N2 is used because it is relatively well understood and 

well resolved spectrally from other species. Recall from Fig. 4.1 that the anti-Stokes 

scattering originates from an excited vibrational state, whereas the Stokes scattering can 

originate from the ground vibrational state.  Thus, the integrated intensity of the anti-Stokes 

N2 spectrum at 473 nm in Fig. 4.7 can be compared to the Stokes scattering at 607 nm.   This 

ratio, which is a monotonic function of temperature, can be used to determine the 

temperature.  Since this method integrates the signal intensity in the two different bands, it 

improves the signal-to-noise ratio, allowing single-shot determination of temperature.  Single 

shot precisions of ~20% of the measured temperature have been obtained at several points 

along a line using this method.
162

  This technique becomes insensitive to temperature below 

about 700 K because the low population in the excited vibrational state causes low signal-to-

noise ratio.
9
  

A second method of measuring the vibrational temperature is to spectrally resolve the 

different vibrational bands of a molecule such as N2, though the individual rotational lines 

need not be resolved.  The relative heights of the vibrational levels can be plotted on a 

Boltzmann plot or can be fitted spectrally to determine the vibrational temperature.
165

  For 

example, Sharma and coworkers
165

 used a KrF excimer laser operating at 248 nm to generate 

spontaneous Raman scattering in the Electric Arc Shock Tube (EAST) facility at NASA 

Ames Research Center.  The EAST facility, normally operated as a shock tube, was fitted 

with a two-dimensional converging-diverging nozzle so that a shock reflection generated a 

high pressure (100 atm), high temperature (5600 K) reservoir of N2 gas that expanded 

through the nozzle.  The sudden expansion through the nozzle results in vibrational-rotational 

nonequilibrium, which was monitored with Raman scattering.  Measurements were 

performed at different distances downstream to study the evolution of the vibrational 

relaxation.  Figure 4.9 shows a sample spectrum generated and spectrally fit to determine the 

rotational and vibrational temperatures.  The vibrational temperatures were then plotted 

versus distance downstream in the flow so that different vibrational relaxation models could 

be tested.
165

  Though not explicitly stated in the paper, the temperature measurement 

precision appears to be about 5%. 

 

Figure 4.9.  An experimental Raman spectrum of N2, fitted for rotational and vibrational 

temperature (left), and resulting vibrational temperatures measured as a function of distance 

downstream of the nozzle (right), adapted from Ref. 165 with permission of the authors. 



4.6 Species Concentration Measurement 

Rayleigh scattering has been used in some specialized experiments for determining 

species concentration.  For example, the Rayleigh scattering cross section for propane is 13.5 

times larger than for air, allowing mixing to be quantified in propane/air jets.
166

  However, 

Raman scattering is much more commonly used to measure species concentrations.  Sandia 

National Laboratories have extensively used Raman scattering for major-species 

concentration measurements (along with Rayleigh and LIF measurements for temperature 

and minor-species concentration measurements, respectively).
65

  This system uses a series of 

four frequency-doubled Nd:YAG lasers to produce temporally-stretched 1.8 Joule pulses 

which are focused to a 0.22 mm (1/e
2
) diameter spot size.   A separate laser excites LIF of 

CO.  An imaging system directs the collected Raman/Rayleigh/LIF scattered light into the 

optical analysis system shown in the bottom-right panel of Fig. 4.10.  The system contains 

two mechanical chopper wheels (one “slow” and one “fast”) that are synchronized with the 

laser to transmit the signals while rejecting flow luminosity.  It also has a transmission 

grating and multiple lenses, beam splitters and cooled (low noise) CCD cameras.  This 

system images a 6-mm-long segment of the Rayleigh, Raman and LIF probe volume, 

allowing concentrations and temperature to be obtained along a line.  The spatial resolution 

for the Raman measurements was ~10 pixels / mm along the 6-mm-long probe volume, 

though the actual spatial resolution was slightly worse due to optical distortions from the 

flame.
65

   

A sample of the resulting concentration measurements is shown in Fig. 4.10.  Raman has 

been used to measure N2, O2, CH4, CO2, H2O and H2 while CO was measured with two-

photon LIF excited at 230.1 nm.  Temperature was measured from the intensity of the 

Rayleigh-scattered light, using the ideal gas law to convert density to temperature as 

described above.  The data are graphed versus temperature to show the correlation of species 

with temperature and to allow comparison with an unstrained flame calculation, shown in 

blue.   The individual (red) data points correspond to different single pulses of the laser.  

Thus, these measurements are ‘single shot’ having been obtained with flow freezing (~100 

ns) time resolution.  Data such as these have been acquired at many locations in a variety of 

different flames, allowing the development of a large database of turbulent flames. The 

accuracy of the Raman concentration measurements varies from 2% to 10% of the measured 

concentration, while the precision (based on one standard deviation) varies from 0.7% to 

7.5% depending on the species.  The accuracy of the temperature measurement, based on 

Rayleigh scattering signal intensity, was reported to be 2% with a 1- precision of 0.75%. 



 

Figure 4.10.  Scatter plots of mole fraction and equivalence ratio () data at one location in an 

atmospheric pressure, methane-air flame compared with a calculation, and a schematic of the optical 

components associated with the collection and analysis of light from the Sandia Raman/Rayleigh/LIF 

imaging system (bottom right).  Adapted from Ref. 65 with permission of the authors and the The 

Combustion Institute. 

5. Coherent Anti-Stokes Raman Spectroscopy 

5.1 Introduction  

Comprehensive reviews of the theory and application of Coherent anti-Stokes Raman 

spectroscopy, often called coherent anti-Stokes Raman scattering, or CARS, in a gas have 

been given by others.
9,18

  A brief introduction and overview are provided herein.  CARS is a 

non-linear optical process in which three laser beams interact with the gas generating a 

fourth, laser-like signal beam. The energy level diagram of this process (each arrow 

represents a change in state due to photon absorption, an up arrow, or emission, a down 

arrow, and the length of the arrow is proportional to energy change or, equivalently, photon 

frequency) is shown in Fig. 5.1 

 
Figure 5.2.  Planar BOXCARS beam geometry. 
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The pump beam and the lower 

frequency Stokes beam interact with the 

gas, a pump frequency photon is 

absorbed and a Stokes frequency 

photon is emitted coherently with the 

Stokes beam, and the gas is excited to a 

higher energy state via a state that in 

most CARS setups is a virtual state 

(although it could also be a real state). 

The difference between the frequencies 

of the upper and lower state,              , is called the Raman shift. A probe beam 

photon is coherently scattered from this excited state, shifted up in frequency by the Raman 

shift to form part of the signal beam, and the gas molecule returns to its original state.  Total 

momentum as well as energy is conserved. Therefore, the momentum of the scattered 

photons equals that of the incident photons, leading to the following equation: 

       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗        ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (5.1) 

Since the k’s are the wave vectors (length proportional to photon frequency with the same 

direction as the beam), this equation allows the direction of the signal beam to be found from 

the directions of the pump, Stokes, and probe beams. 

A physical interpretation of this process is that the interaction of the pump and Stokes 

beams establishes an optical fringe pattern in the gas.  If the pump and Stokes frequencies are 

the same, as with a related technique called degenerate four-wave mixing (DFWM), this 

fringe pattern is stationary. In CARS, the frequencies are different and the fringe pattern 

moves across the interaction region, modulating the intensity at any particular point at the 

beat frequency, i.e., the Raman shift frequency. This moving fringe pattern excites a 

polarization response in the gas which acts as a moving grating from which a probe beam 

photon is scattered, in a manner similar to Bragg scattering, to form the signal beam photon.  

Since the grating is moving, the frequency of the signal photon is shifted relative to the probe 

photon by the Raman shift frequency. (An analogous effect occurs in an acousto-optical 

modulator where acoustical waves in a solid material, such as glass, form a moving grating of 

varying index of refraction, and incident laser light is coherently or Bragg scattered from this 

volumetric “grating” with its frequency shifted by the acoustical frequency.
167

) 

If the pump, probe, and Stokes lasers are all single frequencies, then the signal is also at a 

single frequency, as indicated in Fig. 5.1.  If the pump and/or Stokes lasers are broadband 

lasers, while the probe is single frequency, then the signal is also broadband, and contains a 

spectrum that reflects the variation of CARS susceptibility of the molecules in the probe 

volume as a function of Raman shift.  In many broadband CARS setups, the probe and pump 

frequencies are the same (derived from the same laser source). In the dual-pump CARS 

technique, 
9 ,168

 pump and probe frequencies are different and these two laser beams have 

interchangeable roles (each beam performs the role of pump in one CARS process and probe 

in a second CARS process). The signal is thus the coherent superposition of the signal from 

 
Figure 5.1.  Energy level diagram showing the CARS 

process. 
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the two processes, generated over two different ranges of Raman shift.  When the desired 

Raman shift is small, as in rotational CARS (i.e., when the transitions probed are pure 

rotational transitions, which differ by relatively small quanta of energy and are thus relatively 

closely spaced spectrally), the pump and Stokes beams can be derived from the same 

broadband laser while the probe beam is single frequency (dual-broadband CARS).
9 
 

Since CARS is a non-linear process (see Section 1.2) it requires high irradiance levels. 

Consequently, CARS signal in a gas is typically generated by focusing pump, Stokes, and 

probe beams, and overlapping them at their common focus.  If the beams are initially separate 

and crossed at the common focus, the arrangement is called BOXCARS; if they lie in a plane 

(Fig. 5.2), it is called planar BOXCARS. In this arrangement the measurement volume is the 

small region of overlap of all three beams.   

5.2 CARS Theory
9,18,167

 

CARS, like Raman and Rayleigh scattering, arises because of time-varying polarization 

induced in the gas in the presence of electromagnetic radiation.  CARS, specifically, arises 

due to the third order susceptibility,      , for which the induced polarization is described as 

follows: 

  ( )(       )           (     ) (       ) (      )   (5.2) 

The E’s are the complex electrical field amplitudes.  This equation can be substituted into the 

wave equation relating the electrical field to the induced polarization and solved by 

integration along the direction of the signal beam.  The CARS irradiance is thus: 

                                  
        (5.3) 

L is the length of the measurement volume, i.e., the length of the region along which the 

pump, Stokes, and probe beams all overlap.  Rigorous calculations of the CARS 

susceptibility require quantum mechanical treatments, but classical derivations are simpler to 

understand. The gas is modeled as a simple harmonic oscillator in which the variation of the 

normal coordinate, Q (intermolecular spacing in the case of vibrational states), with time is 

described by a second order linear ordinary differential equation, with a time-dependent 

forcing function proportional to the average over an optical cycle of the square of the 

electrical field.  (Thus, the forcing term oscillates at the Raman shift frequency.)  The 

constant of proportionality in the forcing term is proportional to (
  

  
)
 
, and consequently to 

the Raman scattering cross section, where   is the optical polarizability of the molecule.  The 

CARS susceptibility is found by solving for the time dependence of the normal coordinate, 

combining with Eqs. (5.1) and (5.2) for the polarization (from the chapter on Rayleigh and 

Raman scattering), and comparing with Eq. (5.2): 

       
 (

  

 
)

  (  
  

  
)  (  

  

  
) 

             (5.4) 



The susceptibility is proportional to the molecule number density, N, and the differential 

Raman cross section, (
  

 
) , and reaches a peak where the detuning,       

(             ), approaches zero. The damping coefficient,  , determines the line width.  

A quantum-mechanical treatment yields the following equation: 

       ∑
    

        
      where        (

  

 
)
 
       (5.5) 

The index j refers to a particular transition and    is the fractional difference in the population 

of the two states of the gas between which a transition is taking place (the two real levels in 

the energy level diagram of Fig. 5.1);     is the non-resonant susceptibility, a nearly constant 

term for the CARS process in which all the states in Fig. 5.1, other than the ground state, are 

virtual states.  The (real part of the) line shape in Eqn. (5) is a Lorentz function with full-

width at half maximum equal to   . This line shape is the same as the (complex conjugate of 

the) line shape for the classical solution when the detuning is small relative to the vibrational 

frequency.  The line width depends inversely upon the lifetimes of the two states involved in 

the transition, which depend upon the rate of collisions between molecules (collisional 

broadening).  Light emitted by molecules in motion is observed at a slightly different 

frequency by a stationary observer by an amount proportional to the velocity component 

towards the observer. This effect, when averaged over many molecules travelling in different 

directions, results in Doppler broadening.  Since the distribution of molecular velocity 

components about the bulk mean in a gas in equilibrium is Gaussian, the line shape becomes 

a Voigt profile: a convolution between Gaussian and Lorentzian functions.  At pressures 

much above atmospheric, additional line narrowing effects occur. 

 Since the CARS signal is proportional to        
 , a CARS spectrum reflects the 

populations of the molecular energy states involved in the transitions. Since these 

populations, in equilibrium, are related via the Boltzmann equation to the temperature, CARS 

can measure temperature. Integrated CARS signal is also strongly dependent upon number 

density and, in principle, could be used to measure density.  This is not typically done 

because of experimental difficulties in maintaining a consistent geometry of the laser beams 

at the beam intersection.  Small uncontrolled motions of the beams due to refraction in 

inhomogeneous gas fields, movements of the optical system, variation in the quality of the 

laser beams, etc., cause changes in signal intensity, and calibrations fail.  However, where 

two gas species are resonant in a spectrum, the ratio of the population of one species to 

another may be found from the shape of the spectrum. Where only one species present is 

resonant, but     is known, the fraction of that species may be found from the relative 

amplitude of the resonant signal to the non-resonant “background”; however,     depends on 

the number density of all species present.  If all species but one are resonant in the spectrum 

then the composition can be fully determined by reference to the non-resonant background.
169

 

Use of CARS as a diagnostic tool requires comparison of experimental and theoretical 

spectra.
170

 Calculation of theoretical spectra is quite complex and numerically time-

consuming: after computation of theoretical susceptibility, spectra must be convolved with 

laser line shapes and instrument probe function.
171

 



 Nitrogen is a very useful species for 

measurement of temperature since it is 

usually present in fuel-air combustion or 

hypersonic flows, and is readily probed 

by CARS. The band head of the N2 Q 

branch is located at a Raman shift of 

2330 cm
-1

 (units of inverse wavelength, 

proportional to frequency divided by the 

speed of light), and is readily accessible 

using available lasers.  The Q branch 

occurs as a result of transitions between 

adjacent vibrational states (Δv=+1, 

where v is the vibrational quantum 

number) with no change in the rotational 

state (ΔJ=0, where J is the rotational quantum number).  Figure 5.3 shows a portion of the N2 

Q-branch spectrum near the band head. Transitions are between v=0 and v=1and each peak 

corresponds to a different J value.  Since rotation of the molecules affects the energy 

associated with a given vibrational state, the energy difference between v=0 and v=1 (at 

given rotational level) is a function of the rotational level.  Two spectra are shown in this 

figure – the first is the CARS susceptibility and the second is a computed typical broadband 

CARS spectrum formed by convolution of typical laser line shapes and a typical instrument 

function with the susceptibility.
171

  As may be seen, line shapes are typically not fully 

resolved in experiments.   

Figure 5.4 shows the sensitivity of the signal spectrum to (a) temperature and (b) 

concentration.  The calculations are for (a) air and (b) either air (79% N2) or 10% N2, 21% 

O2, 69% H2O, with a pressure of 1 atmosphere. The CARS signal strength varies strongly 

with temperature, partly through the effect of temperature on density (N) via the N
2
 

dependence of the CARS susceptibility.  By using the Sandia CARSFT code,
170

 the pressure 

and temperature dependence was determined to be proportional to         at moderate to 

high pressures.
172

  However, the shape of the spectrum also changes. At low temperature, 

only one vibrational band is present, associated with v=0 to v=1 transitions, and is relatively 

narrow (because fewer J levels are occupied). At the higher temperatures, “hot” bands are 

present also, associated with v=1 to v=2 and v=2 to v=3 transitions, and more J levels are 

populated. As the fraction of N2 is reduced, the amplitude of the band structure becomes 

smaller relative to the non-resonant background, and sensitivity to N2 is lost for 

concentrations less than a few percent. This lack of sensitivity below a few percent is typical 

and prevents measurement of minor species, although a number of CARS techniques, for 

example resonance CARS (e.g., Ref. 
173

), have been developed to circumvent this limitation. 

 
Figure 5.3.  CARS N2 Q-branch susceptibility and 

spectrum near band head at 1 atm., 1400 K. 
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(a) (b)  

Figure 5.4.  Effects of (a) temperature and (b) concentration on the CARS N2 Q-branch spectrum. 

5.3 Ultrafast CARS 

Ultra-fast techniques have been surveyed by Roy et al.
174

 The CARS technique as 

described above is a steady-state process involving the mixing of four beams simultaneously 

present. For given laser energy available in the pump, probe, and Stokes laser beams, the 

energy in the signal beam is proportional to t
-2

, where t is the time over which the 

measurement is made.  Nanosecond (ns= 10
-9

 s) CARS is performed with Q-switch pulsed 

lasers where the pulse energy is distributed over 5 ns to 10 ns, at a pulse rate on the order of 

10 Hz.  There are many 10’s or 100’s of thousands of Raman frequency cycles during each 

laser pulse, so that CARS is effectively a steady-state process.  However, with the advent of 

femtosecond (fs= 10
-15

 s) lasers (e.g., titanium-sapphire), very short pulse widths of order 10
-

14
 seconds are possible at high pulse repetition rate (1 kHz or more), and the pulse width is 

less than the period of a Raman cycle.  Due to the t
-2

 scaling, strong signal energy is available 

with modest pulse energy.   

The theory of fs CARS is different from ns CARS since a steady state problem is replaced 

with an impulsively initiated, time-dependent one.
175

  First, a polarization grating is 

established in the gas by the interaction of pump and Stokes beams. This grating evolves in 

time through rotational-vibrational relaxation and then, after some delay (typically up to 

several hundred picoseconds in measurement applications), a signal is generated by scattering 

the probe pulse off the grating.  By making measurements at different probe delays the 

relaxation of the grating, which carries with it an imprint of the vibrational and rotational 

state of the probed molecules, may be observed.  “Chirping” techniques have been developed 

where the probe beam is broadened both temporally and spectrally in such a way that the 

frequency of the probe varies with time.  The temporal relaxation is thus mapped into 

frequency space, obtained in a single laser pulse, and may be analyzed with an optical 

spectrometer.
176

  

Picosecond (ps = 10
-12

 s) CARS employs mode-locked solid state lasers with pulse 

lengths on the order of 10 ps and has characteristics of both ns and fs CARS.  As with fs 

CARS, generation of the grating by the pump and Stokes beams, and scattering of the probe 

to form the signal, are typically separate steps.  However, the probe pulse is still relatively 
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long compared with the Raman cycle period, and the signal contains an optical spectrum 

similar to that of ns CARS.
177

 An advantage of ps CARS over ns CARS is that the ps pulses 

required to obtain adequate signal-to-noise ratio CARS spectra are better suited to pass 

through commercially available optical fibers without damaging the fibers.
178

  Both fs and ps 

CARS have the potential advantages over ns CARS of much higher data (pulse) rates and the 

absence, when the probe is delayed relative to the pump-Stokes laser pulses, of non-resonant 

background effects. Another advantage of fs CARS is simpler theoretical modeling, since few 

or no collisions occur in the time of the measurement (negligible collisional effects).
174 

 

5.4 Advantages and Disadvantages of CARS for probing Supersonic, Hypersonic and 

Nonequilibrium Flow 

In hypersonic propulsion systems (scramjets), flow velocities are supersonic in inlets and 

nozzles, and may be supersonic or a mixture of subsonic and supersonic in the combustors.  

In combustors, pressures are roughly one atmosphere while temperatures are similar to those 

of low speed combustion.  Thermal non-equilibrium (not typically present in low speed 

combustion) as well as chemical non-equilibrium can be present due to the short flow through 

time (on the order of milliseconds). CARS has several advantages in this application. The 

signal comes as a laser beam, which means that it can be collected through a relatively small 

aperture and may be separated from non-coherent interferences by spatial filtering.  This is 

particularly useful in an engine combustor where there may be emission from the gases and 

thermal radiation from the wall, and where, for structural reasons, it may not be possible to 

incorporate large windows.  Typical CARS measurements are spatially and temporally 

resolved, with ~1.5 mm long and 50 μm diameter measurement volume, and a 10 ns time 

scale. CARS is able to non-intrusively measure local temperature and composition.  Since the 

Q-branch spectrum reflects the rotational-vibrational state of the molecule, the populations of 

these states may be directly determined, which is useful when thermal equilibrium (and 

therefore a single “temperature”) does not exist.  

CARS has been used much less frequently in hypersonic freestreams, where temperatures 

and pressures can be very low.  Due to the previously-mentioned         scaling of the 

CARS signal, the signal to noise ratio may be low.  At low temperatures only the vibrational 

ground state and far fewer rotational states of molecules are populated. Vibrational CARS 

(e.g., of the N2 Q-branch) then depends upon measuring high resolution spectra of the 

rotational structure of the “cold” band near the band head, which depends upon the pressure-

dependent collisional effects on line shape, as well as temperature.  Measurements of both 

pressure and temperature, at pressures down to about 0.1 atm., have been made in an 

underexpanded supersonic jet using this approach.
179

 If the v>0 bands are populated at low 

rotational temperature (vibrational non-equilibrium), this can be easily measured. 

Alternatively, pure rotational CARS (Δv=0, ΔJ=±2) is sometimes used at low temperatures 

since the lines have greater separation than in the Q-branch, but no information on the 

vibrational state is obtained.
180

  

In nonequilibrium flows CARS has a significant advantage that it can simultaneously 

monitor multiple individual state populations.  Thus non-Boltzmann distributions can be 



probed, as in the examples below.  Using vibrational broadband CARS, separate rotation and 

vibrational temperatures can be determined from CARS spectra. 

CARS has some disadvantages compared to other measurement techniques.  It typically 

measures at only a single point, and so does not typically provide simultaneous information at 

multiple spatial locations.  Instead, the probe volume is typically scanned around the flow 

allowing time-averaged spatial properties to be measured.  The data rate is low in ns systems 

(order 10 Hz) so that in pulsed hypersonic facilities only one single measurement is obtained 

per facility run. Also, its ~1.5 mm long probe volume can be too large in certain applications 

where it is desired to resolve small length scales such as shock waves, shear layers or 

turbulent eddies. Many of these limitations are being overcome with fs CARS, where 1D
181

 

and 2D
182

 imaging have been demonstrated recently with smaller probe volumes and data 

acquisition rates in the kHz regime have been achieved.
174

  CARS requires optical access on 

two sides of the flow, which may limit application in some facilities.  The experimental setup 

for CARS, involving two or three pulsed laser systems along with large spectrometer(s), is 

relatively complicated and time consuming to set up.  Furthermore, the nonlinear nature of 

the theory of CARS complicates the interpretation and analysis of the resulting spectra.  

However, with the combination of accurate and precise temperature and multi-species 

measurement capabilities, CARS is commonly used in many supersonic, hypersonic, and 

nonequilibrium flow applications.    

5.5 Mole Fraction and Nonequilibrium Temperature Measurement 

Extensive dual-pump CARS measurements have been made in a dual-mode scramjet 

burning hydrogen.
183

 The experiments were conducted in a facility which provided 

electrically heated clean air to the scramjet combustor via a Mach 2 nozzle. The CARS lasers, 

which were located outside the scramjet lab, consisted of an injection-seeded Nd:YAG, 

frequency doubled to 532 nm, an in-house broad band dye laser (Stokes laser) centered 

around 603 nm with FWHM of 10 nm, and a commercial narrow-band dye laser centered 

around 550.5 nm. Beams were relayed to the experiment via a translation system that could 

move the measurement volume and through special slotted windows in the scramjet. Beams 

were focused and crossed in the scramjet in a planar BOXCARS arrangement (Fig. 5.2) to 

form the measurement volume. The signal beam was transmitted out of the scramjet, 

recollimated, separated from one of the pump beams, relayed to a 1 m spectrometer, then 

imaged onto a cooled CCD array with 1340×100 pixels.  The measured spectra had 

background subtracted and were normalized by a CARS spectrum in argon, which has no 

resonances, to remove the spectrum of the broad-band laser.  The resulting spectra were fitted 

to theory, using the Sandia CARSFIT code
170 

to generate the theoretical spectra and an in-

house fitting code
171 

to do the fitting, resulting in temperature standard deviations of ~3%.
184

 

The fitted parameters included vibrational temperature of N2, a single rotational temperature 

for all resonant species, and mole fractions of N2, O2, and H2.   

Vibrational non-equilibrium was observed in the flow at the exit of the nozzle and in the 

freestream of the scramjet flow, which could be fitted to around 1200 K in vibrational 

temperature of N2 and 1000 K in vibrational temperature of O2, while the facility air 



stagnation temperature was 1200 K and the nozzle exit static temperature was around 680 

K.
185

 The low rate of relaxation of N2 vibrational energy relative to rotational (which rapidly 

comes into equilibrium with translational), and the higher but still relatively low rate for O2 is 

consistent with known rates in the literature.
186

 Measurements in which a varying amount of 

steam was added to the air flow are consistent with the known effect of water vapor to 

promote equilibrium.
187

 Figure 5.5 shows the effect of water vapor in the dual-pump CARS 

spectrum; notice the large effect of steam on the hot band of the N2 spectrum and a lesser 

effect on the hot band of the O2. The intensity of these bands is proportional to the population 

difference between the v=1 and v=2 vibrational states (roughly proportional to the population 

of v=1 since the population of v=2 is small). 

 

Figure 5.5.  Experimental dual-pump CARS spectra in a Mach 2 flow with varying amounts of steam 

added to the air. The N2 Q-branch is on the right and the O2 on the left. 

Figure 5.6 shows some typical (averaged) measured spectra and fits to theory in the 

scramjet. Spectrum (a) was in the freestream air of the flow and is shown with a fitted 

rotational temperature of 923 K and N2 vibrational temperature of 1133 K. N2 and O2 Q-

branch resonances may be seen. Spectrum (b) is in the combustion plume and shows H2 

rotational (S) lines as well as the aforementioned Q-branches, with fitted rotational and 

vibrational temperatures of 1588 K and 1766 K, respectively. Figure 5.7 shows contour maps 

of vibrational temperature in the combustor operated in the “scram” mode.  The wireframe 

represents the corners of the flow path; a single hydrogen injector is seen at the downstream 

end of the small ramp visible on the top surface of the flow path. Flow enters at Mach 2 from 

the test facility nozzle and is from left to right.  The development of the combustion may be 

seen; combustion is initiated on the top of the plume of hydrogen, near the fuel injector, and 

wraps around and engulfs the plume further downstream. 
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(a) (b)  

Figure 5.6.  Typical fits of theory to experimental dual-pump CARS spectra in a dual-mode scramjet: 

(a) freestream, (b) combustion plume. 

 

Figure 5.7.  Contour plots of CARS-measured mean vibrational temperature in a dual-mode scramjet. 

Simultaneous with the temperature measurements, species concentrations were also 

determined from CARS data.  The concentration information was derived from the relative 

intensity of the different resonant features in the CARS spectra, comparing to the intensity of 

the nonresonant background, and considering that the mole fractions must sum to one.
169

  

Figure 5.8 shows CARS mole fraction measurements obtained at the same conditions as Fig. 

5.7. The mole fraction is uniform air in the first plane at the left of each of the figures.  

Evidence of the cold H2 fuel jet is seen in the temperature map (Fig. 5.6) and all three mole 

fraction maps in the second plane, which is located just downstream of the fuel injector (Fig. 

5.7).  As the fuel jet spreads spatially and is consumed by combustion, the presence of N2 in 

the center of the downstream fuel plume shows evidence of fuel-air mixing. However, the O2 

mole fraction does not track exactly with the N2 because it is reacting with the H2.  Not until 

the final plane at the right side of each figure, when all the H2 is consumed, does the O2 

penetrate to the center of the duct, in the wake of the fuel plume.  
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Figure 5.8.  Contour plots of CARS-measured mean mole fractions of N2 (top), O2 (middle) and H2 

(bottom) in a dual-mode scramjet at the same conditions as Fig. 5.6.
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  Reprinted with permission of 

the authors.   

5.6 Measurement of non-thermalized population distributions using CARS 

Nonequilibrium flows sometimes result in non-Boltzmann distributions, for example 

among rotational or vibrational states.  Montello et al.
188

 used picosecond CARS to probe 

non-thermal vibrational distributions in N2 generated in low pressure (100 Torr) N2 and air 

pulsed discharges.  They used a 150 ps duration, frequency-doubled Nd:YAG laser to 

generate the two green pump beams.  The Nd:YAG laser also pumped a red broadband dye 

laser for the Stokes beam.  These frequencies were chosen to probe the Q-branch Raman 

spectrum of N2. The CARS signal was dispersed on a spectrometer, allowing instantaneous 

quantification of the N2 vibrational distribution function (VDF).  By varying the time 

between the CARS acquisition and the pulsing of the plasma discharge, the time evolution of 

the VDF could be studied. 



Figure 5.9(a) shows vibrational N2 CARS spectra obtained at different times after the 

beginning of the ~100 ns duration pulsed discharge.  The narrowness of the bands indicates a 

relatively low rotational temperature, compared to the VDF. The populations of the excited 

vibrational levels are observed to increase with time (though the rotational distribution stays 

relatively constant).  Vibrational levels from 0-9 were observed to have measurable 

population.  When the vibrational populations are graphed with respect to vibrational 

quantum number (Fig. 5.9(b)) a thermalized population distribution would appear as a nearly 

straight line on this semi-log plot.  Instead, departure from the Boltzmann distribution is 

observed, as evident from the non-linear trends in the data.  A theoretical model captures 

much of the nonequilibrium physics occurring in this plasma.
188

  

(a)    (b)  
Figure 5.9.   (a) N2 Q-branch CARS spectrum obtained in a pulsed discharge operating with 100 Torr 

of N2 shown for three different measurement times after the beginning of the ~100 ns discharge pulse. 

(b)  Experimental and predicted vibrational energy level populations based on (a), showing non-

thermal vibrational distributions which evolve with time. 

 

5.7 CARS summary 

In summary, CARS is a powerful technique for simultaneously and quantitatively 

measuring multiple flow parameters in gas flows with thermal and/or chemical non-

equilibrium.  If the gas is in thermal equilibrium, CARS can be used to measure temperature; 

if not, it can provide information on rotational and vibrational (for rotational-vibrational 

CARS) state populations, allowing separate determinations of rotational and vibrational 

temperature or rotational and vibrational distribution functions in non-thermalized flows.  It 

also can be used to quantify the relative concentration of the species probed.  It is spatially 

and temporally resolved, with a short measurement time (sub-ps to 10 ns) and a measurement 

volume that is typically on the order of 1 mm long.  Nanosecond CARS is limited by 

available lasers to measurement rates of about 10 Hz, but femtosecond CARS data rates are 

often 1 kHz or more.  Nanosecond CARS is a well-established technique, picosecond and 

femtosecond CARS in gases is quite recent, due to the advent of suitable lasers, and 

techniques are still under development.  The primary limitations of state-of-the art CARS 

systems include their complexity (which has meant relatively few applications of it to large-



scale test facilities), the fact that measurements are pointwise and not planar or volumetric, 

and (for nanosecond CARS) the low data rate.  Other issues include sensitivity to optical 

misalignment due to vibrations or refractive index variations along the beam path, and lack of 

spectral and collision-rate modeling for some species.  

6. Conclusions 

This manuscript has described numerous spectroscopic measurement techniques that are 

potentially applicable to the investigation of aerospace flows.  One might ask, “Which 

technique is best?” or “Which one should I use?”  The answer to the first question is that no 

one is best.  The different techniques measure different properties in different ways and have 

relative merits.  In addition, flow conditions and facility constraints may prevent application 

of specific measurement techniques.  The answer to the second, more important question, 

depends on many factors.  It depends on the measurement requirements as well as the past 

experience of the research team.  It depends on the available equipment, the budget for new 

equipment and the time frame available to make the measurement.   Some techniques, such as 

CARS, require a year or years of training to gain enough experience to apply the technique 

expertly.  Dual-pump CARS requires home-built equipment (i.e. a broadband dye laser) as 

well as two commercially available lasers, a spectrometer, a low noise CCD camera, and 

other equipment. It is therefore relatively time consuming and expensive to set up.  If a 

researcher or research team has experience with similar technology (for example Nd:YAG 

lasers, dye lasers, CCD cameras), then the work will progress faster.  Less complicated 

(easier to set up and to understand) methods might yield usable results in a shorter time 

frame. These practical issues are certainly important, but a major consideration in planning an 

experiment is tailoring the chosen technique to the measurement requirements, the 

characteristics of the facility and the expertise of the scientist or engineer performing the 

experiment.  

A measurement campaign should begin by answering the following questions, for 

example by interviewing the final “customer” of the data:  

 What parameter(s) need to be measured?   

 Must multiple parameters be obtained simultaneously to determine correlations? 

 What spatial resolution is required? 

 Is imaging required or are single-point or line measurements sufficient? 

 What temporal resolution is required?  (e.g. time required for a single measurement) 

 Do measurements need to be time resolved? (e.g. a continuous sequence of data)  

 What accuracy is needed?   

 What precision is needed? 

 What quantity of data is required?   

 When is the data needed?  Is instant (real-time) data required? 

 Where in the flow are measurements required?  (inflow, exit, near walls, etc.) 

 What type of optical access is available? 



 Can (toxic) seed gases be introduced? Will they influence the properties being 

measured? 

 What is the ordered priority of the above requirements? 

This list of requirements must be matched with available measurement technologies such 

as those reported in the sections above.  There is rarely a perfect solution for this exercise.   

Instead, there is a compromise between the needs of the customer and the capabilities of the 

instrumentation team and the chosen technique.  Goals should then be established before the 

research actually starts.  This exercise is fruitful for the measurement scientist because it 

often results in a need for a new measurement technique that can be developed if existing 

techniques are not suitable 
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