National Future Extreme Heát Scellaliligs Ior Assessment of Climate Impacts on Public Health

Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

Dale A. Quattrochi
NASA Earth Science Office
Marshall Space Flight Center
Huntsville, AL
And
William L. Cresson
Mohammad Z. Al-Hamdan
Maurice G. Estes

Universities Space Research Association
National Space Science \& Technology Center Huntsville, AL

Proiect Obiective: To provide historical and future measures of climate-driven heat events to enable assessments of heat impacts on public health over the coterminous U.S.

>The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies.
$>$ We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes.
$>$ There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

National Future Extreme Heat Scenarios for Assessment of Climate Impacts on Public Health

GCM monthly mean $T_{\max }, T_{\min }$, q grids (2040, 2090 scenarios)

Hourly climate realizations: T, RH for 2040, 2090 scenarios

Temporally aggregate;
derive HI, NDHS

Compute monthly differences, averaged over 20-year periods

Future-current monthly difference grids (Δ climate): $\Delta T_{\text {max }}, \Delta T_{\text {min }}, \Delta q$

Hourly NLDAS-2 historical (1981-2000) data: T, RH

Users:
Publichealth professionals General public

CDC WONDER and EHTB:

- archive \& host county-level heat stress data and statistics

Gridded Statistics of Heat Stress:

- mean annual \#of days when T > threshold
- mean annual \#of days when $\mathrm{HI}>$ threshold
- mean annual \#of days when NDHS >0
- mean annual total NDHS

CDC Howe Search Mealth Toples A-Z

CDC WONDER

WONDER online databases utilize a rich ad-hoc query system for the analysis of public health data. Reports and other query systems are also available.

WONDER Systems

```
                Topics A-2. Index
```

- WONDER Online Databases
- AIDS Public Use Data
- Births
- Cancer Statistics

Environment

- Daily Air Temperatures \& Heat Index
- Daily Land Surface Temperatures

Daily Fine Particulate Matter
Daily Sunlighs

- Daily Precipitation

Mortality

Underlying Cause of Death

- Detailed Mortality
- Compressed Mortality
- Multiple cause of death (Detailed

Mortality)
Intant. Deaths.(Linked Bith/Intant
Death Records)
Online Tuberculosis Information
System
Population

- Bridoed-Race Population (from NCHS)
- Population (from Census)
- Sexually Transmitted Disease

Morbidity

- Vaccine Adverse Event Reporting
- Reports and References

Prevention Guidelines (Archive) Scientific Data and Decumentation (Archive)

- Other Query Systems
- Healthy People 2010
- MMWR Morbidity Tables
- MMWR Mortality Tables

CDC WONDER OUTPUT EXAMPLE

Metrics of Excessive Heat

1. Daily Maximum Air Temperature

$>$ Daily maximum air temperature, the highest temperature recorded at an observation site between midnight and midnight local standard time, is a traditional measure of heat, and one with which everyone is familiar. We used NLDAS data to calculate daily maximum air temperature.

$T\left({ }^{\circ} \mathrm{F}\right)$

$\square 40.2-47.1$
$\square 47.2-51.4$
$\square 51.5-55.3$
$\square 55.4-59$
$\square 59.1-62.3$
$\square 62.4-65.2$
$\square 65.3-68$
$\square 68.1-70.8$
$\square 70.9-73.6$
$\square 73.7-76.4$
$\square 76.5-79.3$
$\square 79.4-82.2$
$\square 82.3-85.1$
$\square 85.2-87.8$
$\square 87.9-90.3$
$\square 90.4-92.9$
$\square 93-95.6$
$\square 95.7-98.5$
$\square 98.6-102.1$
$\square 102.2-109$.

July 15, 2000

Metrics of Excessive Heat

2. Heat Index (HI)

We used NLDAS data to calculate daily maximum Heat Index (HI).

HI (${ }^{\circ}{ }^{\circ}$

$\square 78.2-80$
$\square 80.1-81.3$
$\square 81.4-82.6$
$\square 82.7-83.9$
$\square 84-85.3$
$\square 85.4-86.7$
$\square 86.8-88.1$
$\square 88.2-89.4$
$\square 89.5-90.8$
$\square 90.9-92.2$
$\square 92.3-93.6$
$\square 93.7-95$
$\square 95.1-96.4$
$\square 96.5-97.7$
$\square 97.8-99$
$\square 99.1-100.3$
$\square 100.4-101.6$
$\square 101.7-102.9$
$\square 103-104.3$
$\square 104.4-107.3$

July 15, 2000

Metrics of Excessive Heat
 3. Net Daily Heat Stress (NDHS)

Net Daily Heat Stress is a new heat variable that gives an integrated measure of heat stress (and relief) over the course of a day, defined as:

$$
\text { NDHS }=\Sigma\left(\mathrm{HI}_{\mathrm{i}}-\mathrm{HI}_{\text {hot }}\right)-\Sigma\left(\mathrm{T}_{\text {cool }}-\mathrm{T}_{\mathrm{i}}\right)
$$

where the summations are over the hours in a day, but only positive terms are included. In other words, the first sum, the 'heat stress', is only calculated when $\mathrm{HI}_{\mathrm{i}}>\mathrm{HI}_{\text {hot }}$, where $\mathrm{HI}_{\text {hot }}$ is a threshold above which HI is considered a stressor, set to $90^{\circ} \mathrm{F}$.

The second term, 'heat relief', is only computed when $T_{i}<T_{\text {cool }}$, a temperature below which relief from heat occurs, set to $75^{\circ} \mathrm{F}$. This term is based on air temperature since HI is only defined when $\mathrm{T}>80^{\circ} \mathrm{F}$.

If heat relief is greater than heat stress, NDHS is set to 0.

Metrics of Excessive Heat
 3. Net Daily Heat Stress (NDHS)

NDHS (degree-hours)

$\square 0$
0.1-3

- 3.1 - 10
\square 10.1-20
\square 20.1-30
$\square 30.1$ - 36
\square 36.1-42.5
$\square 42.6$ - 49.1
\square 49.2-55.9
$\square 56$-62.9
$\square 63$ - 70.3
$\square 70.4-77.9$
$\square 78$ - 85.7
$\square 85.8$ - 94.4
$\square 94.5-103.9$
\square 104-113.7

\square 113.8-124.1
\square 124.2-134.7
\square 134.8-146.5
- 146.6-162.5
\square 162.6-187.2
July 15, 2000

GCMs

We obtained GCM output of monthly mean minimum and maximum daily temperatures and monthly mean specific humidity.
Source: Coupled Model Intercomparison Project (CMIP3) Multi-Model Dataset Archive at Program for Climate Model Diagnosis and Intercomparison (PCMDI). This activity was in support of the $4^{\text {th }}$ Assessment Report (AR4).

Scenarios:
20 th Century Climate for 1980-1999
SRES A2 for 2030-2049 (2040) and 2080-2099 (2090)
SRES A1B for 2030-2049 (2040) and 2080-2099 (2090)

	Model	\# Ensemble members used
1. CCSM3 (NCAR)	2	
2.	CSIRO-MK3.0 (Australia)	2
3. CSIRO-MK3.5 (Australia)	3	
4. BCCR-BCM2.0 (Norway)	1	
5. INM CM3.0 (Russia)	1	
6. MIROC 3.2 Med. Res. (Japan)	3	

Means of each variable were computed across ensembles, then across models.

Mean Maximum Temperature Difference - August 2040 - 1990, Average of all models, all ensemble members, A2 scenar

Example of current and future climates
Daily maximum Heat Index, A2 scenario

Example of current and future climates

Number of annual days when Heat Index exceeds $100^{\circ} \mathrm{F}$, A2 scenario

Annual davs
$\square 0$

0
\square

1-5
6-10

11-15
16-20
21-30
\square
\square
\square - 40

Number of days Heat Index exceeded 100 of 2007
\square

61-70

71-80

81-90

91-100
101-110
111-120
121-130
131-140
141-150
151-175

176-200

Mean Maximum Temperature Difference - August 2040 - 1990, Average of all models, all ensemble members, A2 scenario

of F	
	4.9
	3.2
	1.4

Example of current and future climates
Daily maximum Heat Index, A2 scenario

Example of current and future climates
Number of annual days when air temperature exceeds $90^{\circ} \mathrm{F}$, A2 scena
Annual days
$\square 0$
$\square 1-5$
$\begin{gathered}\square \\ \square \\ \square\end{gathered} 11-15$
\square 16-20
$\square 21-25$
$\square 26-30$
$\square 31-40$
$\square 41-50$
$\square 51-60$
$\square 61$ - 70
$\square 71$ - 80
$\square 81-90$
\square - 91 - 100
$\square 101$ - 110
$\square 111$ - 120
$\square 121-140$
\square 141-160
\square 161-180

- 181-200
- 201-225
- 226-260

1981-2010

2031-2060 A2 Scenario

2081-2110 A2 Scenario

Population projections

Combine current gridded population estimates with county-level proje

2010 Population NLDAS Grid

2050 County Projections 2050 Population (EPA-ICLUS)
> Projections made using county-level estimates (EPA-ICLUS), keeping in-county distribution constant.

Population-Weighted Heat Wave Days Index i.e. Mean Annual Number of Person-Days Experiencing Extreme Heat

These graphs show the mean annual number of EHE person-days by decade, based on three EHE definitions.
Bottom left is same as top left except with bars showing the standard error of the means.

Population on the NLDAS grid

Procedure for projecting population on the NLDAS grid

>Population on the NLDAS grid were determined from 2010 U.S. Census populations at the Census Tract level.
> County populations were determined by aggregating the NLDAS grid populations.
> The proportion of the county population within each NLDAS grid cell was computed by dividing the grid cell population by the respective county population.
$>$ Populations in 5 -year intervals to 2100 were estimated using projected county populations from EPAICLUS (Integrated Climate and Land Use Scenarios), keeping in-county distribution constant. The A2 climate scenario projections were used here.
$>$ The 5-year projections were interpolated to create annual projections.

May - September mean daily maximum temperatures

May - September mean total Net Daily Heat Stress

May - September Mean Number of Extreme Heat Event Days Maximum Temperature Definition
 1981-2010
 2031-2060

Number of days

0
1-10
11-13
14-16
17-19
20-22
23-25
26-28
29-31
32-34
35-37
38-40
41-45
46-50
51-55
56-60
61-65
66-70
71-80
81-90
91-100
101-125
126-150

Note: Since EHE days are based on days exceeding percentiles for the local climate, the number of EHE days for the baseline period (1981-2010) is nearly uniform across the country, at about 6 days per year.

Based on the Maximum Temperature EHE definition, the mean annual number of EHE days rises to 20-40 for much of the country by mid-century , and to $50-100+$ by the end of the century.

May - September Mean Number of Extreme Heat Event Days Maximum Heat Index Definition

1981-2010

2031-2060

2081-2110

Based on the Maximum Heat Index EHE definition, the mean annual number of EHE days rises to 30 60 for much of the country by mid-century, and to $60-150$ by the end of the century.

Summary

> GCM-scale monthly climatologies of max/min air temperature and specific humidity for the historical period 1981-2000, and future changes relative to this period.
> NLDAS-scale daily max/min temperatures, maximum heat index and Net Daily Heat Stress for historical period.
> NLDAS-scale statistics over 20-year past and future periods of heat stress measures.
> County-level heat stress measures to enable assessments of heat impacts on public health.
$>$ Population-weighted NDHS for coterminous U.S.

